Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Nature ; 621(7978): 300-305, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37704763

RESUMEN

Crystal phase is a key factor determining the properties, and hence functions, of two-dimensional transition-metal dichalcogenides (TMDs)1,2. The TMD materials, explored for diverse applications3-8, commonly serve as templates for constructing nanomaterials3,9 and supported metal catalysts4,6-8. However, how the TMD crystal phase affects the growth of the secondary material is poorly understood, although relevant, particularly for catalyst development. In the case of Pt nanoparticles on two-dimensional MoS2 nanosheets used as electrocatalysts for the hydrogen evolution reaction7, only about two thirds of Pt nanoparticles were epitaxially grown on the MoS2 template composed of the metallic/semimetallic 1T/1T' phase but with thermodynamically stable and poorly conducting 2H phase mixed in. Here we report the production of MoS2 nanosheets with high phase purity and show that the 2H-phase templates facilitate the epitaxial growth of Pt nanoparticles, whereas the 1T' phase supports single-atomically dispersed Pt (s-Pt) atoms with Pt loading up to 10 wt%. We find that the Pt atoms in this s-Pt/1T'-MoS2 system occupy three distinct sites, with density functional theory calculations indicating for Pt atoms located atop of Mo atoms a hydrogen adsorption free energy of close to zero. This probably contributes to efficient electrocatalytic H2 evolution in acidic media, where we measure for s-Pt/1T'-MoS2 a mass activity of 85 ± 23 A [Formula: see text] at the overpotential of -50 mV and a mass-normalized exchange current density of 127 A [Formula: see text] and we see stable performance in an H-type cell and prototype proton exchange membrane electrolyser operated at room temperature. Although phase stability limitations prevent operation at high temperatures, we anticipate that 1T'-TMDs will also be effective supports for other catalysts targeting other important reactions.

2.
Nano Lett ; 24(5): 1553-1562, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38266492

RESUMEN

Although metal-organic frameworks (MOFs) have attracted more attention for the electrocatalytic CO2 reduction reaction (CO2RR), obtaining multicarbon products with a high Faradaic efficiency (FE) remains challenging, especially under neutral conditions. Here, we report the controlled synthesis of stable Cu(I) 5-mercapto-1-methyltetrazole framework (Cu-MMT) nanostructures with different facets by rationally modulating the reaction solvents. Significantly, Cu-MMT nanostructures with (001) facets are acquired using isopropanol as a solvent, which favor multicarbon production with an FE of 73.75% and a multicarbon:single-carbon ratio of 3.93 for CO2RR in a neutral electrolyte. In sharp contrast, Cu-MMT nanostructures with (100) facets are obtained utilizing water, promoting single-carbon generation with an FE of 63.98% and a multicarbon: single-carbon ratio of only 0.18. Furthermore, this method can be extended to other Cu-MMT nanostructures with different facets in tuning the CO2 reduction selectivity. This work opens up new opportunities for the highly selective and efficient CO2 electroreduction to multicarbon products on MOFs via facet engineering.

3.
J Am Chem Soc ; 146(22): 15640-15647, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38771765

RESUMEN

Single-atom catalysts (SACs) have been widely investigated and have emerged as a transformative approach in electrocatalysis. Despite their clear structure, the origin of their exceptional activity remains elusive. Herein, we elucidate a common phenomenon of the hybridization state transition of metal centers, which is responsible for the activity origin across various SACs for different reactions. Focusing on N-doped carbon-supported Ni SAC (NiN4 SAC) for CO2 reduction reaction (CO2RR), our comprehensive computations successfully clarify the hybridization state transition under working conditions and its relation with the activity. This transition, triggered by the reaction intermediates and applied potential, converts the Ni center from the inert dsp2 hybridization state to the active d2sp3 hybridization state. Importantly, the calculated activity and selectivity of the CO2RR over the d2sp3-hybridized Ni center are consistent with the experimental results, offering strong support for the proposed hypothesis. This work suggests a universal principle of electronic structure evolution in SACs that could revolutionize catalyst design, which also introduces a new paradigm for manipulating electronic states to enhance catalytic performance, with implications for various reactions and catalyst platforms.

4.
J Am Chem Soc ; 146(8): 5693-5701, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38335459

RESUMEN

Rationally modulating the binding strength of reaction intermediates on surface sites of copper-based catalysts could facilitate C-C coupling to generate multicarbon products in an electrochemical CO2 reduction reaction. Herein, theoretical calculations reveal that cascade Ag-Cu dual sites could synergistically increase local CO coverage and lower the kinetic barrier for CO protonation, leading to enhanced asymmetric C-C coupling to generate C2H4. As a proof of concept, the Cu3N-Ag nanocubes (NCs) with Ag located in partial Cu sites and a Cu3N unit center are successfully synthesized. The Faraday efficiency and partial current density of C2H4 over Cu3N-Ag NCs are 7.8 and 9.0 times those of Cu3N NCs, respectively. In situ spectroscopies combined with theoretical calculations confirm that Ag sites produce CO and Cu sites promote asymmetric C-C coupling to *COCHO, significantly enhancing the generation of C2H4. Our work provides new insights into the cascade catalysis strategy at the atomic scale for boosting CO2 to multicarbon products.

5.
Angew Chem Int Ed Engl ; : e202409763, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38954763

RESUMEN

Developing non-platinum group metal catalysts for the sluggish hydrogen oxidation reaction (HOR) is critical for alkaline fuel cells. To date, Ni-based materials are the most promising candidates but still suffer from insufficient performance. Herein, we report an unconventional hcp/fcc Ni (u-hcp/fcc Ni) heteronanocrystal with multiple epitaxial hcp/fcc heterointerfaces and coherent twin boundaries, generating rugged surfaces with plenty of asymmetric convex sites. Systematic analyses discover that such convex sites enable the adsorption of *H in unusual bridge positions with weakened binding energy, circumventing the over-strong *H adsorption on traditional hollow positions, and simultaneously stabilizing interfacial *H2O. It thus synergistically optimizes the HOR thermodynamic process as well as reduces the kinetic barrier of the rate-determining Volmer step. Consequently, the developed u-hcp/fcc Ni exhibits the top-rank alkaline HOR activity with a mass activity of 40.6 mA mgNi-1 (6.3 times higher than fcc Ni control) together with superior stability and high CO-tolerance. These results provide a paradigm for designing high-performance catalysts by shifting the adsorption state of intermediates through configuring surface sites.

6.
J Am Chem Soc ; 145(51): 28276-28283, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38095164

RESUMEN

Photocatalytic reduction of CO2 to high value-added multicarbon (C2+) products is an important way to achieve sustainable production of green energy but limited by the low efficiency of catalysts. One fundamental issue lies in the high complexity of catalyst structure and reaction process, making the rational catalyst design and targeted performance optimization a grand challenge. Herein, we performed a mechanism-guided design of photocatalysts for CO2 reduction by using the experimentally reported Cu doped TiO2 (Cu-TiO2) with high C3H8 selectivity and well-defined structure as the prototype. Our mechanistic study highlights three key factors for C3H8 formation, i.e., formation of double O vacancies (Vdi-O) for selectivity, C-C coupling for activity, and Vdi-O recovery for durability. More importantly, Vdi-O formation/recovery and C-C coupling are negatively correlated, indicating that ideal candidates should achieve a balance between oxygen vacancy (VO) formation and C-C coupling. On this basis, TiO2 with the doping of two adjacent Cu atoms (Cu-Cu-TiO2) was designed with enhanced performance for CO2 photoreduction toward C3H8. Furthermore, a simple descriptor (Nµ, "effective d electron number") based on inherent atomic properties was constructed to uncover the underlying causes of the performance variation of different systems. These results provide new insights into the "structure-performance" relation of metal oxide-based photocatalysts, thus offering useful strategies for the rational design of excellent catalysts for CO2 photoreduction.

7.
J Am Chem Soc ; 144(28): 12874-12883, 2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35700099

RESUMEN

Supported catalysts have exhibited excellent performance in various reactions. However, the rational design of supported catalysts with high activity and certain selectivity remains a great challenge because of the complicated interfacial effects. Using recently emerged two-dimensional materials supported dual-atom catalysts (DACs@2D) as a prototype, we propose a simple and universal descriptor based on inherent atomic properties (electronegativity, electron type, and number), which can well evaluate the complicated interfacial effects on the electrochemical reduction reactions (i.e., CO2, O2, and N2 reduction reactions). Based on this descriptor, activity and selectivity trends in CO2 reduction reaction are successfully elucidated, in good agreement with available experimental data. Moreover, several potential catalysts with superior activity and selectivity for target products are predicted, such as CuCr/g-C3N4 for CH4 and CuSn/N-BN for HCOOH. More importantly, this descriptor can also be extended to evaluate the activity of DACs@2D for O2 and N2 reduction reactions, with very small errors between the prediction and reported experimental/computational results. This work provides feasible principles for the rational design of advanced electrocatalysts and the construction of universal descriptors based on inherent atomic properties.

8.
J Am Chem Soc ; 144(37): 17140-17148, 2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36089737

RESUMEN

The long-term stability of single-atom catalysts is a major factor affecting their large-scale commercial application. How to evaluate the dynamic stability of single-atom catalysts under working conditions is still lacking. Here, taking a single copper atom embedded in N-doped graphene as an example, the "constant-potential hybrid-solvation dynamic model" is used to evaluate the reversible transformation between copper single atoms and clusters under realistic reaction conditions. It is revealed that the adsorption of H is a vital driving force for the leaching of the Cu single atom from the catalyst surface. The more negative the electrode potential, the stronger the adsorption of H. As a result, the competitive hydrogen evolution reaction is inhibited, and Cu-N bonds are weakened, resulting in some Cu atoms being tethered on the catalyst surface and some being dissolved in the aqueous solution. The collision of the Cu atoms in the two states forms a transient Cu cluster structure as a true catalytic active site to promote CO2 reduction to ethanol. As the applied potential is released or switched to a positive value, hydroxyl radicals (OH•) play a dominant role in the oxidation process of the Cu cluster, and then Cu returns to the initial atomic dispersion state by redeposition, completing the reconstruction cycle of the copper catalyst. Our work provides a fundamental understanding of the dynamic stability of Cu single-atom catalysts under working conditions at the atomic level and calls for a reassessment of the stability of currently reported single-atom catalysts considering realistic reaction conditions.

9.
J Am Chem Soc ; 144(1): 547-555, 2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-34932339

RESUMEN

Controlled construction of bimetallic nanostructures with a well-defined heterophase is of great significance for developing highly efficient nanocatalysts and investigating the structure-dependent catalytic performance. Here, a wet-chemical synthesis method is used to prepare Au@Pd core-shell nanorods with a unique fcc-2H-fcc heterophase (fcc: face-centered cubic; 2H: hexagonal close-packed with a stacking sequence of "AB"). The obtained fcc-2H-fcc heterophase Au@Pd core-shell nanorods exhibit superior electrocatalytic ethanol oxidation performance with a mass activity as high as 6.82 A mgPd-1, which is 2.44, 6.96, and 6.43 times those of 2H-Pd nanoparticles, fcc-Pd nanoparticles, and commercial Pd/C, respectively. The operando infrared reflection absorption spectroscopy reveals a C2 pathway with fast reaction kinetics for the ethanol oxidation on the prepared heterophase Au@Pd nanorods. Our experimental results together with density functional theory calculations indicate that the enhanced performance of heterophase Au@Pd nanorods can be attributed to the unconventional 2H phase, the 2H/fcc phase boundary, and the lattice expansion of the Pd shell. Moreover, the heterophase Au@Pd nanorods can also serve as an efficient catalyst for the electrochemical oxidation of methanol, ethylene glycol, and glycerol. Our work in the area of phase engineering of nanomaterials (PENs) opens the way for developing high-performance electrocatalysts toward future practical applications.

10.
Nat Mater ; 20(8): 1113-1120, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33859384

RESUMEN

Metastable 1T'-phase transition metal dichalcogenides (1T'-TMDs) with semi-metallic natures have attracted increasing interest owing to their uniquely distorted structures and fascinating phase-dependent physicochemical properties. However, the synthesis of high-quality metastable 1T'-TMD crystals, especially for the group VIB TMDs, remains a challenge. Here, we report a general synthetic method for the large-scale preparation of metastable 1T'-phase group VIB TMDs, including WS2, WSe2, MoS2, MoSe2, WS2xSe2(1-x) and MoS2xSe2(1-x). We solve the crystal structures of 1T'-WS2, -WSe2, -MoS2 and -MoSe2 with single-crystal X-ray diffraction. The as-prepared 1T'-WS2 exhibits thickness-dependent intrinsic superconductivity, showing critical transition temperatures of 8.6 K for the thickness of 90.1 nm and 5.7 K for the single layer, which we attribute to the high intrinsic carrier concentration and the semi-metallic nature of 1T'-WS2. This synthesis method will allow a more systematic investigation of the intrinsic properties of metastable TMDs.

11.
J Am Chem Soc ; 143(41): 17292-17299, 2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34613737

RESUMEN

Crystal phase engineering of noble-metal-based alloy nanomaterials paves a new way to the rational synthesis of high-performance catalysts for various applications. However, the controlled preparation of noble-metal-based alloy nanomaterials with unconventional crystal phases still remains a great challenge due to their thermodynamically unstable nature. Herein, we develop a robust and general seeded method to synthesize PdCu alloy nanomaterials with unconventional hexagonal close-packed (hcp, 2H type) phase and also tunable Cu contents. Moreover, galvanic replacement of Cu by Pt can be further conducted to prepare unconventional trimetallic 2H-PdCuPt nanomaterials. Impressively, 2H-Pd67Cu33 nanoparticles possess a high mass activity of 0.87 A mg-1Pd at 0.9 V (vs reversible hydrogen electrode (RHE)) in electrochemical oxygen reduction reaction (ORR) under alkaline condition, which is 2.5 times that of the conventional face-centered cubic (fcc) Pd69Cu31 counterpart, revealing the important role of crystal phase on determining the ORR performance. After the incorporation of Pt, the obtained 2H-Pd71Cu22Pt7 catalyst shows a significantly enhanced mass activity of 1.92 A mg-1Pd+Pt at 0.9 V (vs RHE), which is 19.2 and 8.7 times those of commercial Pt/C and Pd/C, placing it among the best reported Pd-based ORR electrocatalysts under alkaline conditions.

12.
J Am Chem Soc ; 142(29): 12760-12766, 2020 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-32551635

RESUMEN

The crystal phase of metal nanocatalysts significantly affects their catalytic performance. Cu-based nanomaterials are unique electrocatalysts for CO2 reduction reaction (CO2RR) to produce high-value hydrocarbons. However, studies to date are limited to the conventional face-centered cubic (fcc) Cu. Here, we report a crystal phase-dependent catalytic behavior of Cu, after the successful synthesis of high-purity 4H Cu and heterophase 4H/fcc Cu using the 4H and 4H/fcc Au as templates, respectively. Remarkably, the obtained unconventional crystal structures of Cu exhibit enhanced overall activity and higher ethylene (C2H4) selectivity in CO2RR compared to the fcc Cu. Density functional theory calculations suggest that the 4H phase and 4H/fcc interface of Cu favor the C2H4 formation pathway compared to the fcc Cu, leading to the crystal phase-dependent C2H4 selectivity. This study demonstrates the importance of crystal phase engineering of metal nanocatalysts for electrocatalytic reactions, offering a new strategy to prepare novel catalysts with unconventional phases for various applications.

13.
J Am Chem Soc ; 142(44): 18971-18980, 2020 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-33086784

RESUMEN

Heterostructured, including heterophase, noble-metal nanomaterials have attracted much interest due to their promising applications in diverse fields. However, great challenges still remain in the rational synthesis of well-defined noble-metal heterophase nanostructures. Herein, we report the preparation of Pd nanoparticles with an unconventional hexagonal close-packed (2H type) phase, referred to as 2H-Pd nanoparticles, via a controlled phase transformation of amorphous Pd nanoparticles. Impressively, by using the 2H-Pd nanoparticles as seeds, Au nanomaterials with different crystal phases epitaxially grow on the specific exposed facets of the 2H-Pd, i.e., face-centered cubic (fcc) Au (fcc-Au) on the (002)h facets of 2H-Pd while 2H-Au on the other exposed facets, to achieve well-defined fcc-2H-fcc heterophase Pd@Au core-shell nanorods. Moreover, through such unique facet-directed crystal-phase-selective epitaxial growth, a series of unconventional fcc-2H-fcc heterophase core-shell nanostructures, including Pd@Ag, Pd@Pt, Pd@PtNi, and Pd@PtCo, have also been prepared. Impressively, the fcc-2H-fcc heterophase Pd@Au nanorods show excellent performance toward the electrochemical carbon dioxide reduction reaction (CO2RR) for production of carbon monoxide with Faradaic efficiencies of over 90% in an exceptionally wide applied potential window from -0.9 to -0.4 V (versus the reversible hydrogen electrode), which is among the best reported CO2RR catalysts in H-type electrochemical cells.

14.
Small ; 16(12): e1901981, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31192525

RESUMEN

The mixing of charge states of metal copper catalysts may lead to a much improved reactivity and selectivity toward multicarbon products for CO2 reduction. Here, an electrocatalyst model composed of copper clusters supported on graphitic carbon nitride (g-C3 N4 ) is proposed; the connecting Cu atoms with g-C3 N4 can be oxidized to Cux + due to substantial charge transfer from Cu to N atoms, while others stay as Cu0 . It is revealed that CO2 can be captured and reduced into *CO on the Cut 0 site, owing to its zero oxidation state. More importantly, C-C coupling reaction of two *CHO species on the Cut 0 -Cub x + atomic interface can occur with a rather low kinetic barrier of 0.57 eV, leading to the formation of the final C2 product, namely, C2 H5 OH. During the whole process, the limiting potential is just 0.68 V. These findings may open a new avenue for CO2 reduction into high-value fuels and chemicals.

15.
J Am Chem Soc ; 141(45): 18264-18270, 2019 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-31637918

RESUMEN

Electrocatalytic N2 reduction is one of the most promising ways for green and sustainable production of NH3. However, a mechanistic understanding of the N2 reduction process remains very limited. Herein, a surface-hydrogenation mechanism for the N2 reduction reaction is proposed, which can well address the recently emerged sharp discrepancies between experiments and computations. Our results reveal that surface hydrogenation can drive N2 reduction reaction on catalysts with weak N2-binding strength (i.e., noble-metal catalysts) at low potentials. Instead of N2 adsorption, the reduction of H+ is found to be the first step, which is also the potential determining step of the whole process. N2 can be activated and reduced into *N2H2 subsequently by overcoming relatively high energy barriers, which determines the total reaction rate. Moreover, the cooperative effect of surface *H and the catalysts plays a key role in the activation of N2. Our work not only provides new insights into the N2 reduction reaction, but also paves a promising way for advancing sustainable NH3 production.

16.
J Am Chem Soc ; 140(43): 14161-14168, 2018 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-30282453

RESUMEN

Solar nitrogen (N2) fixation is the most attractive way for the sustainable production of ammonia (NH3), but the development of a highly active, long-term stable and low-cost catalyst remains a great challenge. Current research efforts for N2 reduction mainly focus on the metal-based catalysts using the electrochemical approach, while metal-free or solar-driven catalysts have been rarely explored. Herein, on the basis of a concept of electron "acceptance-donation", a metal-free photocatalyst, namely, boron (B) atom, decorated on the optically active graphitic-carbon nitride (B/g-C3N4), for the reduction of N2 is proposed by using extensive first-principles calculations. Our results reveal that gas phase N2 can be efficiently reduced into NH3 on B/g-C3N4 through the enzymatic mechanism with a record low onset potential (0.20 V). Moreover, the B-decorated g-C3N4 can significantly enhance the visible light absorption, rendering them ideal for solar-driven reduction of N2. Importantly, the as-designed catalyst is further demonstrated to hold great promise for synthesis due to its extremely high stability. Our work is the first report of metal-free single atom photocatalyst for N2 reduction, offering cost-effective opportunities for advancing sustainable NH3 production.

17.
Nano Lett ; 17(8): 5133-5139, 2017 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-28745889

RESUMEN

Nanosheet supported single-atom catalysts (SACs) can make full use of metal atoms and yet entail high selectivity and activity, and bifunctional catalysts can enable higher performance while lowering the cost than two separate unifunctional catalysts. Supported single-atom bifunctional catalysts are therefore of great economic interest and scientific importance. Here, on the basis of first-principles computations, we report a design of the first single-atom bifunctional eletrocatalyst, namely, isolated nickel atom supported on ß12 boron monolayer (Ni1/ß12-BM), to achieve overall water splitting. This nanosheet supported SAC exhibits remarkable electrocatalytic performance with the computed overpotential for oxygen/hydrogen evolution reaction being just 0.40/0.06 V. The ab initio molecular dynamics simulation shows that the SAC can survive up to 800 K elevated temperature, while enacting a high energy barrier of 1.68 eV to prevent isolated Ni atoms from clustering. A viable experimental route for the synthesis of Ni1/ß12-BM SAC is demonstrated from computer simulation. The desired nanosheet supported single-atom bifunctional catalysts not only show great potential for achieving overall water splitting but also offer cost-effective opportunities for advancing clean energy technology.

18.
Angew Chem Int Ed Engl ; 56(35): 10501-10505, 2017 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-28675552

RESUMEN

Sulfur vacancies (SVs) inherent in MoS2 are generally detrimental for carrier mobility and optical properties. Thiol chemistry has been explored for SV repair and surface functionalization. However, the resultant products and reaction mechanisms are still controversial. Herein, a comprehensive understanding on the reactions is provided by tracking potential energy surfaces and kinetic studies. The reactions are dominated by two competitive mechanisms that lead to either functionalization products or repair SVs, and the polarization effect from decorating thiol molecules and thermal effect are two determining factors. Electron-donating groups are conducive to the repairing reaction whereas electron-withdrawing groups facilitate the functionalization process. Moreover, the predominant reaction mechanism can be switched by increasing the temperature. This study fosters a way of precisely tailoring the electronic and optical properties of MoS2 by means of thiol chemistry approaches.

19.
Chemphyschem ; 15(12): 2490-6, 2014 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-25044560

RESUMEN

Density functional calculations were preformed to investigate whether adding Ni into a Cu surface (denoted as Cu/Ni) or adding Cu into a Ni surface (Ni/Cu) is more efficient for catalyzing the water-gas shift (WGS)? The reactions of water dissociation and monoxide dissociation were selected to assess the activity and selectivity towards WGS, respectively. Our results show that Ni-atom modification of surfaces is thermodynamically favorable for both reactions. Kinetically, compared with pure Cu, water dissociation is greatly facilitated on Ni-modified surfaces, and the activity is insensitive to the Ni concentration; however, monoxide dissociation is not well-promoted on one Ni-atom-modified surfaces, but two Ni-atom modification can notably decrease the dissociation barriers. Overall, on the basis of these results, we conclude that 1) the catalytic performance of bimetallic metals is superior to monometallic ones; 2) at the same Ni concentration on the surface, Cu/Ni and Ni/Cu alloys have almost the same performance towards WGS; and 3) to acquire high WGS performance, the surface Ni atoms should either be low in concentration or highly dispersed.

20.
Sci Bull (Beijing) ; 69(10): 1410-1417, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38480022

RESUMEN

Oxygen-containing species have been demonstrated to play a key role in facilitating electrocatalytic CO2 reduction (CO2RR), particularly in enhancing the selectivity towards multi-carbon (C2+) products. However, the underlying promotion mechanism is still under debate, which greatly limits the rational optimization of the catalytic performance of CO2RR. Herein, taking CO2 and O2 co-electrolysis over Cu as the prototype, we successfully clarified how O2 boosts CO2RR from a new perspective by employing comprehensive theoretical simulations. Our results demonstrated that O2 in feed gas can be rapidly reduced into *OH, leading to the partial oxidation of Cu surface under reduction conditions. Surface *OH accelerates the formation of quasi-specifically adsorbed K+ due to the electrostatic interaction between *OH and K+ ions, which significantly increases the concentration of K+ near the Cu surface. These quasi-specifically adsorbed K+ ions can not only lower the C-C coupling barriers but also promote the hydrogenation of CO2 to improve the CO yield rate, which are responsible for the remarkably enhanced efficiency of C2+ products. During the whole process, O2 co-electrolysis plays an indispensable role in stabilizing surface *OH. This mechanism can be also adopted to understand the effect of high pH of electrolyte and residual O in oxide-derived Cu (OD-Cu) on the catalytic efficiency towards C2+ products. Therefore, our work provides new insights into strategies for improving C2+ products on the Cu-based catalysts, i.e., maintaining partial oxidation of surface under reduction conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA