RESUMEN
The 16-subunit Constitutive Centromere-associated Network (CCAN)-based inner kinetochore is well-known for connecting centromeric chromatin to the spindle-binding outer kinetochore. Here, we report a non-canonical role for the inner kinetochore in directly regulating sister-chromatid cohesion at centromeres. We provide biochemical, X-ray crystal structure, and intracellular ectopic localization evidence that the inner kinetochore directly binds cohesin, a ring-shaped multi-subunit complex that holds sister chromatids together from S-phase until anaphase onset. This interaction is mediated by binding of the 5-subunit CENP-OPQUR sub-complex of CCAN to the Scc1-SA2 sub-complex of cohesin. Mutation in the CENP-U subunit of the CENP-OPQUR complex that abolishes its binding to the composite interface between Scc1 and SA2 weakens centromeric cohesion, leading to premature separation of sister chromatids during delayed metaphase. We further show that CENP-U competes with the cohesin release factor Wapl for binding the interface of Scc1-SA2, and that the cohesion-protecting role for CENP-U can be bypassed by depleting Wapl. Taken together, this study reveals an inner kinetochore-bound pool of cohesin, which strengthens centromeric sister-chromatid cohesion to resist metaphase spindle pulling forces.
Asunto(s)
Proteínas de Ciclo Celular , Centrómero , Cromátides , Proteínas Cromosómicas no Histona , Cinetocoros , Cinetocoros/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Cromosómicas no Histona/genética , Humanos , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Cromátides/metabolismo , Cromátides/genética , Centrómero/metabolismo , Cohesinas , Células HeLa , Unión Proteica , Cristalografía por Rayos XRESUMEN
The ring-shaped Cohesin complex, consisting of core subunits Smc1, Smc3, Scc1, and SA2 (or its paralog SA1), topologically entraps two duplicated sister DNA molecules to establish sister chromatid cohesion in S-phase. It remains largely elusive how the Cohesin release factor Wapl binds the Cohesin complex, thereby inducing Cohesin disassociation from mitotic chromosomes to allow proper resolution and separation of sister chromatids. Here, we show that Wapl uses two structural modules containing the FGF motif and the YNARHWN motif, respectively, to simultaneously bind distinct pockets in the extensive composite interface between Scc1 and SA2. Strikingly, only when both docking modules are mutated, Wapl completely loses the ability to bind the Scc1-SA2 interface and release Cohesin, leading to erroneous chromosome segregation in mitosis. Surprisingly, Sororin, which contains a conserved FGF motif and functions as a master antagonist of Wapl in S-phase and G2-phase, does not bind the Scc1-SA2 interface. Moreover, Sgo1, the major protector of Cohesin at mitotic centromeres, can only compete with the FGF motif but not the YNARHWN motif of Wapl for binding Scc1-SA2 interface. Our data uncover the molecular mechanism by which Wapl binds Cohesin to ensure precise chromosome segregation.
Asunto(s)
Proteínas de Ciclo Celular , Proteínas Cromosómicas no Histona , Segregación Cromosómica , Cohesinas , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Humanos , Unión Proteica , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Secuencias de Aminoácidos , Mitosis , Cromátides/metabolismo , Proteínas Portadoras , Proteínas Proto-OncogénicasRESUMEN
Stomata in leaves regulate gas (carbon dioxide and water vapor) exchange and water transpiration between plants and the atmosphere. SLow Anion Channel 1 (SLAC1) mediates anion efflux from guard cells and plays a crucial role in controlling stomatal aperture. It serves as a central hub for multiple signaling pathways in response to environmental stimuli, with its activity regulated through phosphorylation via various plant protein kinases. However, the molecular mechanism underlying SLAC1 phosphoactivation has remained elusive. Through a combination of protein sequence analyses, AlphaFold-based modeling and electrophysiological studies, we unveiled that the highly conserved motifs on the N- and C-terminal segments of SLAC1 form a cytosolic regulatory domain (CRD) that interacts with the transmembrane domain(TMD), thereby maintaining the channel in an autoinhibited state. Mutations in these conserved motifs destabilize the CRD, releasing autoinhibition in SLAC1 and enabling its transition into an activated state. Our further studies demonstrated that SLAC1 activation undergoes an autoinhibition-release process and subsequent structural changes in the pore helices. These findings provide mechanistic insights into the activation mechanism of SLAC1 and shed light on understanding how SLAC1 controls stomatal closure in response to environmental stimuli.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Estomas de Plantas , Transducción de Señal , Fosforilación , Estomas de Plantas/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Dominios Proteicos , MutaciónRESUMEN
The medial prefrontal cortex (mPFC) has been implicated in the pathophysiology of social impairments including social fear. However, the precise subcortical partners that mediate mPFC dysfunction on social fear behaviour have not been identified. Employing a social fear conditioning paradigm, we induced robust social fear in mice and found that the lateral habenula (LHb) neurons and LHb-projecting mPFC neurons are synchronously activated during social fear expression. Moreover, optogenetic inhibition of the mPFC-LHb projection significantly reduced social fear responses. Importantly, consistent with animal studies, we observed an elevated prefrontal-habenular functional connectivity in subclinical individuals with higher social anxiety characterized by heightened social fear. These results unravel a crucial role of the prefrontal-habenular circuitry in social fear regulation and suggest that this pathway could serve as a potential target for the treatment of social fear symptom often observed in many psychiatric disorders.
RESUMEN
Sterile 20-like kinases Mst1 and Mst2 (Mst1/2) and large tumor suppressor 1/2 are core kinases to mediate Hippo signaling in maintaining tissue homeostasis. We have previously demonstrated that Smad ubiquitin (Ub) regulatory factor 1 (Smurf1), a HECT-type E3 ligase, ubiquitinates and in turn destabilizes large tumor suppressor 1/2 to induce the transcriptional output of Hippo signaling. Here, we unexpectedly find that Smurf1 interacts with and polyubiquitinates Mst1/2 by virtue of K27- and K29-linked Ub chains, resulting in the proteasomal degradation of Mst1/2 and attenuation of their tumor-suppressor functions. Among the potential Ub acceptor sites on Mst1/2, K285/K282 are conserved and essential for Smurf1-induced polyubiquitination and degradation of Mst1/2 as well as transcriptional output of Hippo signaling. As a result, K285R/K282R mutation of Mst1/2 not only negates the transcriptional output of Hippo signaling but enhances the tumor-suppressor functions of Mst1/2. Together, we demonstrate that Smurf1-mediated polyubiquitination on K285/K282 of Mst1/2 destabilizes Mst1/2 to attenuate their tumor-suppressor functions. Thus, the present study identifies Smurf1-mediated ubiquitination of Mst1/2 as a hitherto uncharacterized mechanism fine-tuning the Hippo signaling pathway and may provide additional targets for therapeutic intervention of diseases associated with this important pathway.
Asunto(s)
Genes Supresores de Tumor , Ubiquitina-Proteína Ligasas , Vía de Señalización Hippo , Ligasas/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Humanos , Animales , RatonesRESUMEN
The decoherence-free subspace (DFS) serves as a protective shield against certain types of environmental noise, allowing the system to remain coherent for extended periods of time. In this paper, we propose two protocols, i.e., one converts two-logic-qubit Knill-Laflamme-Milburn (KLM) state to two-logic-qubit Bell states, and the other converts three-logic-qubit KLM state to three-logic-qubit Greenberger-Horne-Zeilinger states, through cavity-assisted interaction in DFS. Especially, our innovative protocols achieve their objectives in a heralded way, thus enhancing experimental accessibility. Moreover, single photon detectors are incorporated into the setup, which can predict potential failures and ensure seamless interaction between the nitrogen-vacancy center and photons. Rigorous analyses and evaluations of two schemes demonstrate their abilities to achieve near-unit fidelities in principle and exceptional efficiencies. Further, our protocols offer progressive solutions to the challenges posed by decoherence, providing a pathway towards practical quantum technologies.
RESUMEN
Based on rich sulfur-involving chemical transformations, a novel spokewise synthetic strategy, a subclass of the collective strategies, has been developed to concisely synthesize four erythrina alkaloids through a single-step transformation from a common synthetic precursor. Moreover, six additional erythrina alkaloids have also been synthesized by subsequent 1-2 steps chemical transformations. The current synthetic approaches provide a valuable platform for collective total syntheses of erythrina alkaloids and pseudo-natural erythrina alkaloids.
RESUMEN
Background: understanding the effects of coexposure to compound extreme events, such as air pollution and extreme heat, is important for reducing current and future health burdens. This study investigated the independent and synergistic effects of exposure to air pollution from vegetation fires and extreme heat on all-cause mortality in Upper Northern Thailand. Methods: we used a time-stratified case-crossover study design with a conditional quasi-Poisson model to examine the association between mortality and coexposure to air pollution due to vegetation fire events (fire-PM2.5) and extreme heat. Extreme heat days were defined using the 90th and 99th percentile thresholds for daily maximum temperature. Results: we observed a significant positive excess risk of mortality due to independent exposure to fire-PM2.5 and extreme heat, but not an interactive effect. All-cause mortality risk increased by 0.9% (95% confidence interval (CI): 0.1, 1.8) for each 10 µg/m3 increase in fire-PM2.5 on the same day and by 12.8% (95% CI: 10.5, 15.1) on extreme heat days (90th percentile) relative to nonextreme heat days. Conclusion: this study showed that exposure to PM2.5 from vegetation fires and extreme heat independently increased all-cause mortality risk in UNT. However, there was no evidence of a synergistic effect of these events.
Asunto(s)
Contaminación del Aire , Incendios , Tailandia , Humanos , Calor Extremo/efectos adversos , Contaminantes Atmosféricos , Material ParticuladoRESUMEN
BACKGROUND: This study aimed to assess and compare procalcitonin (PCT) and C-reactive protein (CRP) levels between COVID-19 and non-COVID-19 sepsis patients. Additionally, we evaluated the diagnostic efficiency of PCT and CRP in distinguishing between Gram-positive (GP) and Gram-negative (GN) bacterial infections. Moreover, we explored the associations of PCT with specific pathogens in this context. METHODS: The study included 121 consecutive sepsis patients who underwent blood culture testing during the COVID-19 epidemic. PCT and CRP were measured, and reverse transcriptase-polymerase chain reaction (RT-PCR) was employed for the detection of COVID-19 nucleic acid. The Mann-Whitney U-test was used to compare PCT and CRP between the COVID-19 and non-COVID-19 groups. Receiver operating characteristic (ROC) curves were generated to compare PCT and CRP levels in the GN group versus the GP group for assessing the diagnostic efficiency. The kruskal-Wallis H test was applied to assess the impact of specific pathogen groups on PCT concentrations. RESULTS: A total of 121 sepsis patients were categorized into a COVID-19 group (n = 25) and a non-COVID-19 group (n = 96). No significant differences in age and gender were observed between the COVID-19 and non-COVID-19 groups. The comparison of biomarkers between these groups showed no statistically significant differences. The optimal cut-off values for PCT and CRP in differentiating between GP and GN infections were 1.03 ng/mL and 34.02 mg/L, respectively. The area under the ROC curve was 0.689 (95% confidence interval (CI) 0.591-0.786) for PCT and 0.611 (95% CI 0.505-0.717) for CRP. The diagnostic accuracy was 69.42% for PCT and 58.69% for CRP. The study found a significant difference in PCT levels among specific groups of pathogens (P < 0.001), with the highest levels observed in Escherichia coli infections. The frequency of Staphylococcus spp. positive results was significantly higher (36.0%) in COVID-19 compared to non-COVID-19 sepsis patients (P = 0.047). CONCLUSION: Sepsis patients with COVID-19 revealed a significantly higher culture positivity for staphylococcus spp. than the non-COVID-19 group. Both PCT and CRP showed moderate diagnostic efficiency in differentiating between GP and GN bacterial infections. PCT showed potential utility in identifying E. coli infections compared to other pathogens.
Asunto(s)
COVID-19 , Infecciones por Escherichia coli , Infecciones por Bacterias Gramnegativas , Sepsis , Humanos , Proteína C-Reactiva/análisis , Polipéptido alfa Relacionado con Calcitonina , Escherichia coli/metabolismo , Calcitonina , Estudios Retrospectivos , COVID-19/diagnóstico , Sepsis/microbiología , Biomarcadores , Curva ROC , Infecciones por Bacterias Gramnegativas/microbiología , Staphylococcus , Prueba de COVID-19RESUMEN
The momentum distribution of photoelectrons in H2+ molecules subjected to an attosecond pulse is theoretically investigated. To better understand the laser-molecule interaction, we develop an in-line photoelectron holography approach that is analogous to optical holography. This approach is specifically suitable for extracting the amplitude and phase of the forward-scattered electron wave packet in a dissociating molecule with atomic precision. We also extend this approach to imaging the transient scattering cross-section of a molecule dressed by a near infrared laser field. This attosecond photoelectron holography sheds light on structural microscopy of dissociating molecules with high spatial-temporal resolution.
RESUMEN
Altered energy metabolism is a cancer hallmark as malignant cells tailor their metabolic pathways to meet their energy requirements. Glucose and glutamine are the major nutrients that fuel cellular metabolism, and the pathways utilizing these nutrients are often altered in cancer. Here, we show that the long ncRNA CCAT2, located at the 8q24 amplicon on cancer risk-associated rs6983267 SNP, regulates cancer metabolism in vitro and in vivo in an allele-specific manner by binding the Cleavage Factor I (CFIm) complex with distinct affinities for the two subunits (CFIm25 and CFIm68). The CCAT2 interaction with the CFIm complex fine-tunes the alternative splicing of Glutaminase (GLS) by selecting the poly(A) site in intron 14 of the precursor mRNA. These findings uncover a complex, allele-specific regulatory mechanism of cancer metabolism orchestrated by the two alleles of a long ncRNA.
Asunto(s)
Glutaminasa/genética , Neoplasias/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Factores de Escisión y Poliadenilación de ARNm/metabolismo , Alelos , Empalme Alternativo , Metabolismo Energético , Células HCT116 , Humanos , Neoplasias/genética , Precursores del ARN/química , Precursores del ARN/metabolismo , ARN Mensajero/metabolismoRESUMEN
Alzheimer's disease (AD), as the most common type of dementia, has two pathological hallmarks, extracellular senile plaques composed of ß-amyloid peptides and intracellular neurofibrillary tangles containing phosphorylated-tau protein. Amyloid precursor protein (APP) and tau each play central roles in AD, although how APP and tau interact and synergize in the disease process is largely unknown. Here, we showed that soluble tau interacts with the N-terminal of APP in vitro in cell-free and cell culture systems, which can be further confirmed in vivo in the brain of 3XTg-AD mouse. In addition, APP is involved in the cellular uptake of tau through endocytosis. APP knockdown or N-terminal APP-specific antagonist 6KApoEp can prevent tau uptake in vitro, resulting in an extracellular tau accumulation in cultured neuronal cells. Interestingly, in APP/PS1 transgenic mouse brain, the overexpression of APP exacerbated tau propagation. Moreover, in the human tau transgenic mouse brain, overexpression of APP promotes tau phosphorylation, which is significantly remediated by 6KapoEp. All these results demonstrate the important role of APP in the tauopathy of AD. Targeting the pathological interaction of N-terminal APP with tau may provide an important therapeutic strategy for AD.
Asunto(s)
Enfermedad de Alzheimer , Precursor de Proteína beta-Amiloide , Ratones , Humanos , Animales , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo , Modelos Animales de Enfermedad , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Ratones TransgénicosRESUMEN
OBJECTIVES: To establish a reliable ultrasound (US) method of evaluating dynamic extrusion of lateral meniscus in healthy population, and to investigate the pattern of dynamic meniscus extrusion (ME) in lateral meniscus under loading conditions. METHODS: The lateral ME was examined via US method in unloaded, double-leg standing, and single-leg standing positions. Two different US measurement methods were compared to the magnetic resonance imaging (MRI) results to determine the optimal measurement methods. The US results obtained by different researchers were tested for interobserver consistency and the results obtained by the same researcher on two separate days were tested for intraobserver consistency. The patterns of dynamic extrusion were compared between medial and lateral sides. RESULTS: A total of healthy 44 volunteers were included in the study, with 86 knees assessed by US, and 25 knees evaluated by MRI. The US evaluation of dynamic lateral ME demonstrated excellent interobserver and intraobserver reliability. The US measurements using method A were consistent with the MRI results with no significant difference (P = .861, intraclass correlation coefficient [ICC] = 0.868), while method B underestimated the lateral ME compared to MRI (P = .001, ICC = 0.649). Lateral ME decreased slightly from unloaded (1.0 ± 0.8 mm) to single-leg standing position (0.8 ± 0.8 mm), whereas medial ME increased significantly in both double-leg and single-leg standing positions (2.4 ± 0.7 mm, 2.6 ± 0.7 mm). CONCLUSION: A novel US evaluation method of lateral ME was established with reliable and accurate results compared to the MRI. Lateral ME in healthy populations decreased slightly as the loadings increased, which was different from the pattern of dynamic extrusion in medial meniscus.
Asunto(s)
Meniscos Tibiales , Ultrasonografía , Humanos , Masculino , Femenino , Ultrasonografía/métodos , Adulto , Reproducibilidad de los Resultados , Meniscos Tibiales/diagnóstico por imagen , Valores de Referencia , Adulto Joven , Imagen por Resonancia Magnética/métodos , Persona de Mediana Edad , Variaciones Dependientes del Observador , Voluntarios SanosRESUMEN
Stomata in leaves regulate gas exchange between the plant and its atmosphere. Various environmental stimuli elicit abscisic acid (ABA); ABA leads to phosphoactivation of slow anion channel 1 (SLAC1); SLAC1 activity reduces turgor pressure in aperture-defining guard cells; and stomatal closure ensues. We used electrophysiology for functional characterizations of Arabidopsis thaliana SLAC1 (AtSLAC1) and cryoelectron microscopy (cryo-EM) for structural analysis of Brachypodium distachyon SLAC1 (BdSLAC1), at 2.97-Å resolution. We identified 14 phosphorylation sites in AtSLAC1 and showed nearly 330-fold channel-activity enhancement with 4 to 6 of these phosphorylated. Seven SLAC1-conserved arginines are poised in BdSLAC1 for regulatory interaction with the N-terminal extension. This BdSLAC1 structure has its pores closed, in a basal state, spring loaded by phenylalanyl residues in high-energy conformations. SLAC1 phosphorylation fine-tunes an equilibrium between basal and activated SLAC1 trimers, thereby controlling the degree of stomatal opening.
Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de la Membrana/genética , Hojas de la Planta/genética , Estomas de Plantas/genética , Ácido Abscísico/metabolismo , Aniones/metabolismo , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/ultraestructura , Brachypodium/genética , Brachypodium/ultraestructura , Dióxido de Carbono/metabolismo , Microscopía por Crioelectrón , Transporte Iónico/genética , Proteínas de la Membrana/ultraestructura , Fosforilación/genética , Hojas de la Planta/ultraestructura , Estomas de Plantas/ultraestructura , Conformación Proteica , Transducción de Señal/genéticaRESUMEN
Rhubarb is widely used in health care, but causing a great amount of rhein-containing herbal residue. Rhein with several toxicities might pollute environment, damage ecology and even hazard human health if left untreated. In this study, the degradation effects of bisulfite- (BS) and peroxymonosulfate- (PMS) based oxidation systems on rhein in rhubarb residue were compared and investigated. The effects of BS and PMS with two valence states of ferric ion (Fe) on the degradation of rhein in rhubarb residue were optimized for the selection of optimal oxidation system. The influences of reaction temperature, reaction time and initial pH on the removal of rhein under the optimal oxidation system were evaluated. The chemical profiles of rhubarb residue with and without oxidation process were compared by UPLC-QTOF-MS/MS, and the degradation effects were investigated by PLS-DA and S plot/OPLS-DA analysis. The results manifested that PMS showed relative higher efficiency than BS on the degradation of rhein. Moreover, Fe(III) promoted the degradation effect of PMS, demonstrated that Fe(III)/PMS is the optimal oxidation system to degrade rhein in rhubarb residue. Further studies indicated that the degradation of rhein by the Fe(III)/PMS oxidation system was accelerated with the prolong of reaction time and the elevation of reaction temperature, and also affected by the initial pH. More importantly, Fe(III)/PMS oxidation system could degrade rhein in rhubarb residue completely under the optimal conditions. In conclusion, Fe(III)/PMS oxidation system is a feasible method to treat rhein in rhubarb residue.
Asunto(s)
Antraquinonas , Oxidación-Reducción , Peróxidos , Rheum , Antraquinonas/química , Rheum/química , Peróxidos/química , Espectrometría de Masas en Tándem , Sulfitos/química , Concentración de Iones de Hidrógeno , Compuestos Férricos/química , TemperaturaRESUMEN
PURPOSE: Previous studies have lacked a comprehensive analysis of imaging modalities for diagnosing Moyamoya disease (MMD). This study aims to bridge this gap by utilizing multi-modal imaging to provide a more detailed understanding of the clinical and imaging characteristics of MMD. METHODS: A retrospective analysis was conducted on seventy-eight adult MMD patients enrolled from March 2018 to March 2021. The study focused on clinical features, imaging findings, and treatment outcomes, with a particular emphasis on the comparative efficacy of different imaging modalities. RESULTS: In this series, clinical manifestations varied depending on the type of MMD, with intracerebral hemorrhage (ICH) being the most common (69.2%), followed by cerebral infarction (25.6%). Imaging techniques provided critical diagnostic insights: magnetic resonance imaging (MRI) demonstrated superior sensitivity over computed tomography (CT) in detecting hemorrhages, whereas computed tomography angiography (CTA) and digital subtraction angiography (DSA) identified intricate vascular lesions, including moyamoya vessels and aneurysms. Notably, cerebral perfusion imaging (CTP) highlighted significant differences in cerebral blood flow and volume between infarction and hemorrhage cases. This comprehensive imaging approach guided varied therapeutic strategies, including bypass surgery in 57 patients and interventional embolization for aneurysms in 14 patients. CONCLUSION: The authors' findings underscore the critical role of early diagnosis using DSA, whereas highlighting CTA and MRA as valuable noninvasive tools for screening and follow-up. The integration of multi-modal imaging provides a detailed vascular assessment crucial for individualized patient management, facilitating timely interventions and significantly improving clinical outcomes.
RESUMEN
Salinity is one of the most serious threats to sustainable agriculture. The Salt Overly Sensitive (SOS) signaling pathway plays an important role in salinity tolerance in plants, and the SOS2 gene plays a critical role in this pathway. Mulberry not only has important economic value but also is an important ecological tree species; however, the roles of the SOS2 gene associated with salt stress have not been reported in mulberry. To gain insight into the response of mulberry to salt stress, SOS2 (designated MulSOS2) was cloned from mulberry (Morus atropurpurea Roxb), and sequence analysis of the amino acids of MulSOS2 showed that it shares some conserved domains with its homologs from other plant species. Our data showed that the MulSOS2 gene was expressed at different levels in different tissues of mulberry, and its expression was induced substantially not only by NaCl but also by ABA. In addition, MulSOS2 was exogenously expressed in Arabidopsis, and the results showed that under salt stress, transgenic MulSOS2 plants accumulated more proline and less malondialdehyde than the wild-type plants and exhibited increased tolerance to salt stress. Moreover, the MulSOS2 gene was transiently overexpressed in mulberry leaves and stably overexpressed in the hairy roots, and similar results were obtained for resistance to salt stress in transgenic mulberry plants. Taken together, the results of this study are helpful to further explore the function of the MulSOS2 gene, which provides a valuable gene for the genetic breeding of salt tolerance in mulberry.
Asunto(s)
Arabidopsis , Morus , Tolerancia a la Sal/genética , Morus/genética , Fitomejoramiento , Estrés Salino , Agricultura , Plantas Modificadas GenéticamenteRESUMEN
In this study, the researchers aimed to understand the life experience of older widowed women living alone. Employing a phenomenological approach, we interviewed 15 older women (age 62 to 95) living alone at homes in two villages in Central Java. Through systematic text condensation procedure, we identified five themes: (1) negative feelings at times, (2) getting used to living alone, (3) needing help to support independent living, (4) coping toward negative feelings, (5) attachment to the original house. We depicted the struggles of older women living alone in their homes. Despite the coping strategies they have developed over time, older women needed help during hard times, especially when getting sick. Families and neighbors were the main resources to maintain their independent living. Improving the home environment to increase suitability for aging residents and providing a support system are the options that best fit the needs and values the older women believed.
Asunto(s)
Adaptación Psicológica , Entrevistas como Asunto , Investigación Cualitativa , Apoyo Social , Viudez , Humanos , Femenino , Viudez/psicología , Anciano , Persona de Mediana Edad , Indonesia , Anciano de 80 o más Años , Vida Independiente/psicología , Acontecimientos que Cambian la Vida , Características de la Residencia , Estrés Psicológico/psicología , Calidad de Vida/psicologíaRESUMEN
Quantum entanglement is a fundamental characteristic of quantum mechanics, and understanding the robustness of entanglement across different mixed states is crucial for comprehending the entanglement properties of general quantum states. In this paper, the robustness of entanglement of Dicke-W and Greenberger-Horne-Zeilinger (GHZ) mixed states under different mixing ratios is calculated using the entanglement witness method. The robustnesses of entanglement of Dicke-W and GHZ mixed states are different when the probability ratio of Dicke to W is greater than 32 and less than 32. For the probability of Dicke and W states greater than or equal to 32, we study the robustness of entanglement of Dicke and GHZ mixed states and analyze and calculate their upper and lower bounds. For the probability of Dicke and W states less than 32, we take the equal probability ratio of Dicke and W states as an example and calculate and analyze the upper and lower bounds of their robustness of entanglement in detail.
RESUMEN
A hallmark of mixed lineage leukemia gene-rearranged (MLL-r) acute myeloid leukemia that offers an opportunity for targeted therapy is addiction to protein tyrosine kinase signaling. One such signal is the receptor tyrosine kinase Fms-like receptor tyrosine kinase 3 (FLT3) upregulated by cooperation of the transcription factors homeobox A9 (HOXA9) and Meis homeobox 1 (MEIS1). Signal peptide-CUB-EGF-like repeat-containing protein (SCUBE) family proteins have previously been shown to act as a co-receptor for augmenting signaling activity of a receptor tyrosine kinase (e.g., vascular endothelial growth factor receptor). However, whether SCUBE1 is involved in the pathological activation of FLT3 during MLL-r leukemogenesis remains unknown. Here we first show that SCUBE1 is a direct target of HOXA9/MEIS1 that is highly expressed on the MLL-r cell surface and predicts poor prognosis in de novo acute myeloid leukemia. We further demonstrate, by using a conditional knockout mouse model, that Scube1 is required for both the initiation and maintenance of MLL-AF9-induced leukemogenesis in vivo. Further proteomic, molecular and biochemical analyses revealed that the membrane-tethered SCUBE1 binds to the FLT3 ligand and the extracellular ligand-binding domains of FLT3, thus facilitating activation of the signal axis FLT3-LYN (a non-receptor tyrosine kinase) to initiate leukemic growth and survival signals. Importantly, targeting surface SCUBE1 by an anti-SCUBE1 monomethyl auristatin E antibody-drug conjugate led to significantly decreased cell viability specifically in MLL-r leukemia. Our study indicates a novel function of SCUBE1 in leukemia and unravels the molecular mechanism of SCUBE1 in MLL-r acute myeloid leukemia. Thus, SCUBE1 is a potential therapeutic target for treating leukemia caused by MLL rearrangements.