Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Anal Chem ; 86(19): 9662-9, 2014 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-25160652

RESUMEN

The analysis of lipids by mass spectrometry (MS) can provide in-depth characterization for many forms of biological samples. However, such workflows can also be hampered by challenges like low chromatographic resolution for lipid separations and the convolution of mass spectra from isomeric and isobaric species. To address these issues, we describe the use of differential mobility spectrometry (DMS) as a rapid and predictable separation technique within a shotgun lipidomics workflow, with a special focus on phospholipids (PLs). These analytes, ionized by electrospray ionization (ESI), are filtered using DMS prior to MS analysis. The observed separation (measured in terms of DMS compensation voltage) is affected by several factors, including the m/z of the lipid ion, the structure of an individual ion, and the presence of chemical modifiers in the DMS cell. Such DMS separations can simplify the analysis of complex extracts in a robust and reproducible manner, independent of utilized MS instrumentation. The predictable separation achieved with DMS can facilitate correct lipid assignments among many isobaric and isomeric species independent of the resolution settings of the MS analysis. This leads to highly comprehensive and quantitative lipidomic outputs through rapid profiling analyses, such as Q1 and MRM scans. The ultimate benefit of the DMS separation in this unique shotgun lipidomics workflow is its ability to separate many isobaric and isomeric lipids that by standard shotgun lipidomics workflows are difficult to assess precisely, for example, ether and diacyl species and phosphatidylcholine (PC) and sphingomyelin (SM) lipids.


Asunto(s)
Metabolismo de los Lípidos , Espectrometría de Masas/métodos
2.
J Mol Biol ; 428(24 Pt A): 4856-4866, 2016 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-27363608

RESUMEN

In this study, we used water-soluble stable mass isotope precursors to measure the turnover of endogenous ceramide (Cer) and glycosphingolipids (GSLs) in HEp-2 cells. Cells incubated in the presence of [13C-U]glucose showed rapid incorporation of hexose residues with an increased mass of 6Da into GSLs. Different turnover rates of GSL classes and their molecular species were observed. Approximately 30% of the glucosylceramide, 50% of the lactosylceramide, and 50% of the globotriaosylceramide species showed a much slower turnover than the rest. This demonstrates the existence of different lipid pools, where a certain fraction of species survived for a long time in the cells. The species with the shortest N-amidated fatty acyl groups (C16:0 and C18:0) showed a more rapid turnover than those with the longest N-amidated fatty acids (C24:0 and C24:1). Experiments with addition of [13C-U]serine were performed to study de novo synthesis of Cer from serine and palmitoyl-CoA. These experiments revealed that de novo synthesis contributes to a minor extent to the total synthesis of new sphingolipids and showed that there is a more rapid formation of the longest Cer species (C24:0 and C24:1) than of the shortest species (C16:0), that is, the opposite as observed for the GSLs in the experiments with [13C-U]glucose. In conclusion, this FLUX lipidomics experimental approach with the addition of [13C-U]glucose to cells allows us to not only study the total turnover but also permit observations of lipid intermediates and metabolic flow of endogenous GSL species at the molecular lipid level.


Asunto(s)
Células Epiteliales/metabolismo , Glicoesfingolípidos/metabolismo , Marcaje Isotópico/métodos , Isótopos/metabolismo , Isótopos de Carbono/metabolismo , Línea Celular , Glucosa/metabolismo , Humanos , Serina/metabolismo
3.
Oncotarget ; 7(48): 79885-79900, 2016 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-27829218

RESUMEN

2-fluoro-2-deoxy-D-glucose (FDG), labeled with 18F radioisotope, is the most common imaging agent used for positron emission tomography (PET) in oncology. However, little is known about the cellular effects of FDG. Another glucose analogue, 2-deoxy-D-glucose (2DG), has been shown to affect many cellular functions, including intracellular transport and lipid metabolism, and has been found to improve the efficacy of cancer chemotherapeutic agents in vivo. Thus, in the present study, we have investigated cellular effects of FDG with the focus on changes in cellular lipids and intracellular transport. By quantifying more than 200 lipids from 17 different lipid classes in HEp-2 cells and by analyzing glycosphingolipids from MCF-7, HT-29 and HBMEC cells, we have discovered that FDG treatment inhibits glucosylceramide synthesis and thus reduces cellular levels of glycosphingolipids. In addition, in HEp-2 cells the levels and/or species composition of other lipid classes, namely diacylglycerols, phosphatidic acids and phosphatidylinositols, were found to change upon treatment with FDG. Furthermore, we show here that FDG inhibits retrograde Shiga toxin transport and is much more efficient in protecting cells against the toxin than 2DG. In summary, our data reveal novel effects of FDG on cellular transport and glycosphingolipid metabolism, which suggest a potential clinical application of FDG as an adjuvant for cancer chemotherapy.


Asunto(s)
Fluorodesoxiglucosa F18/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Metaboloma/efectos de los fármacos , Transporte Biológico/efectos de los fármacos , Transporte Biológico/efectos de la radiación , Células Cultivadas , Endocitosis/efectos de los fármacos , Endocitosis/efectos de la radiación , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/efectos de la radiación , Aparato de Golgi/efectos de los fármacos , Aparato de Golgi/metabolismo , Aparato de Golgi/efectos de la radiación , Células HT29 , Humanos , Metabolismo de los Lípidos/efectos de la radiación , Células MCF-7 , Metaboloma/efectos de la radiación , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/efectos de la radiación , Toxina Shiga/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA