RESUMEN
Acute lung injury causes severe inflammation and oxidative stress in lung tissues. In this study, we analyzed the potential regulatory role of nuclear factor erythroid-2-related factor 2 (Nrf2) on NADPH oxidase 1 (NOX1) in tumor necrosis factor-α (TNF-α)-induced inflammation and oxidative stress in human type II alveolar epithelial cells. In this study, A549 cells were transfected with Nrf2 siRNA and overexpression vectors for 6 h before being induced by TNF-α for 24 h. TNF-α upregulated the expression of NOX1 and Nrf2 in A549 cells. Furthermore, overexpression of Nrf2 could reduce TNF-α-induced NF-κB mRNA and protein expression after transfection with the Nrf2 siRNA vector, and the levels of IL-6, IL-8, ROS, and malondialdehyde (MDA) in TNF-α-induced A549 cells increased, while the level of total antioxidation capability (T-AOC) decreased. On the other hand, the overexpression of Nrf2 decreased the levels of IL-6, IL-8, ROS, and MDA, while increasing T-AOC. The mRNA and protein levels of NOX1 were dramatically increased by TNF-α, while those changes were notably suppressed by Nrf2 overexpression. Further studies demonstrated that Nrf2 suppressed NOX1 transcription by binding to the -1199 to -1189 bp (ATTACACAGCA) region of the NOX1 promoter in TNF-α-stimulated A549 cells. Our study suggests that Nrf2 may bind to and regulate NOX1 expression to antagonize TNF-α-induced inflammatory reaction and oxidative stress in A549 cells.
Asunto(s)
NADPH Oxidasa 1 , Factor 2 Relacionado con NF-E2 , Factor de Necrosis Tumoral alfa , Humanos , Células A549 , Inflamación/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , NADPH Oxidasa 1/genética , NADPH Oxidasa 1/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , ARN Mensajero , ARN Interferente Pequeño/metabolismo , Factor de Necrosis Tumoral alfa/farmacologíaRESUMEN
T-box transcription factor T (TBXT; T) is required for mesodermal formation and axial skeletal development. Although it has been extensively studied in various model organisms, human congenital vertebral malformations (CVMs) involving T are not well established. Here, we report a family with 15 CVM patients distributed across 4 generations. All affected individuals carry a heterozygous mutation, T c.596A>G (p.Q199R), which is not found in unaffected family members, indicating co-segregation of the genotype and phenotype. In vitro assays show that T p.Q199R increases the nucleocytoplasmic ratio and enhances its DNA-binding affinity, but reduces its transcriptional activity compared to the wild-type. To determine the pathogenicity of this mutation in vivo, we generated a Q199R knock-in mouse model that recapitulates the human CVM phenotype. Most heterozygous Q199R mice show subtle kinked or shortened tails, while homozygous mice exhibit tail filaments and severe vertebral deformities. Overall, we show that the Q199R mutation in T causes CVM in humans and mice, providing previously unreported evidence supporting the function of T in the genetic etiology of human CVM.
RESUMEN
Infection represents a major clinical barrier that delays wound healing, while the overuse of antibiotics can lead to bacterial resistance. Hence, it is of particular important to develop a new type of dressing to combat bacterial resistance. Herein, a carbon nitride-polydopaminesilver complex (C3N4-PDA-Ag) was prepared using the photocatalyst C3N4 and silver nanoparticles (Ag NPs) to achieve a synergistic antimicrobial effect. The solution casting method was then employed to further modify the C3N4-PDA-Ag complex by compounding it with chitosan (CS), thereby forming a C3N4-PDA-Ag@CS film. The results revealed that the C3N4-PDA-Ag@CS film exhibits superior antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa compared to the CS group. The hemolysis, cytotoxicity, and in vivo implantation experiments indicated that the composite film possesses excellent in vitro and in vivo biocompatibility. In addition, the composite dressing promoted wound healing in infected mice by facilitating collagen deposition and accelerating epidermal regeneration. Collectively, the findings of this study clearly demonstrate that the C3N4-PDA-Ag@CS composite dressing has excellent antibacterial properties, biocompatibility, and enhances wound healing, thus providing a strategy for the application of photocatalytic materials for the treatment of infected wounds.
Asunto(s)
Infecciones Bacterianas , Quitosano , Nanopartículas del Metal , Ratones , Animales , Plata/farmacología , Cicatrización de Heridas , Antibacterianos/farmacología , VendajesRESUMEN
Introduction: With the increasingly serious problem of bacterial drug resistance caused by NDM-1, it is an important strategy to find effective inhibitors to assist ß-lactam antibiotic treatment against NDM-1 resistant bacteria. In this study, PHT427 (4-dodecyl-N-1,3,4-thiadiazol-2-yl-benzenesulfonamide) was identified as a novel NDM-1 inhibitor and restored the susceptibility of meropenem against Enterobacteriaceae producing NDM-1. Methods: We used a high throughput screening model to find NDM-1 inhibitor in the library of small molecular compounds. The interaction between the hit compound PHT427 and NDM-1 was analyzed by fluorescence quenching, surface plasmon resonance (SPR) assay, and molecular docking analysis. The efficacy of the compound in combination with meropenem was evaluated by determining the FICIs of Escherichia coli BL21(DE3)/pET30a(+)-bla NDM-1 and Klebsiella pneumoniae clinical strain C1928 (producing NDM-1). In addition, the mechanism of the inhibitory effect of PHT427 on NDM-1 was studied by site mutation, SPR, and zinc supplementation assays. Results: PHT427 was identified as an inhibitor of NDM-1. It could significantly inhibit the activity of NDM-1 with an IC50 of 1.42 µmol/L, and restored the susceptibility of meropenem against E. coli BL21(DE3)/pET30a(+)-bla NDM-1 and K. pneumoniae clinical strain C1928 (producing NDM-1) in vitro. The mechanism study indicated that PHT427 could act on the zinc ions at the active site of NDM-1 and the catalytic key amino acid residues simultaneously. The mutation of Asn220 and Gln123 abolished the affinity of NDM-1 by PHT427 via SPR assay. Discussion: This is the first report that PHT427 is a promising lead compound against carbapenem-resistant bacteria and it merits chemical optimization for drug development.
RESUMEN
We designed and synthesized aminated mesoporous silica (MSN-NH2), and functionally grafted alginate oligosaccharides (AOS) on its surface to get MSN-NH2-AOS nanoparticles as a delivery vehicle for the fat-soluble model drug curcumin (Cur). Dynamic light scattering, thermogravimetric analysis, and X-ray photoelectron spectroscopy were used to characterize the structure and performance of MSN-NH2-AOS. The nano-MSN-NH2-AOS preparation process was optimized, and the drug loading and encapsulation efficiencies of nano-MSN-NH2-AOS were investigated. The encapsulation efficiency of the MSN-NH2-Cur-AOS nanoparticles was up to 91.24 ± 1.23%. The pH-sensitive AOS coating made the total release rate of Cur only 28.9 ± 1.6% under neutral conditions and 67.5 ± 1% under acidic conditions. According to the results of in vitro anti-tumor studies conducted by MTT and cellular uptake assays, the MSN-NH2-Cur-AOS nanoparticles were more easily absorbed by colon cancer cells than free Cur, achieving a high tumor cell targeting efficiency. Moreover, when the concentration of Cur reached 50 µg/mL, MSN-NH2-Cur-AOS nanoparticles showed strong cytotoxicity against tumor cells, indicating that MSN-NH2-AOS might be a promising tool as a novel fat-soluble anticancer drug carrier.
RESUMEN
Acute lung injury causes severe inflammation and oxidative stress in lung tissues. In this study, we analyzed the potential regulatory role of nuclear factor erythroid-2-related factor 2 (Nrf2) on NADPH oxidase 1 (NOX1) in tumor necrosis factor-α (TNF-α)-induced inflammation and oxidative stress in human type II alveolar epithelial cells. In this study, A549 cells were transfected with Nrf2 siRNA and overexpression vectors for 6 h before being induced by TNF-α for 24 h. TNF-α upregulated the expression of NOX1 and Nrf2 in A549 cells. Furthermore, overexpression of Nrf2 could reduce TNF-α-induced NF-κB mRNA and protein expression after transfection with the Nrf2 siRNA vector, and the levels of IL-6, IL-8, ROS, and malondialdehyde (MDA) in TNF-α-induced A549 cells increased, while the level of total antioxidation capability (T-AOC) decreased. On the other hand, the overexpression of Nrf2 decreased the levels of IL-6, IL-8, ROS, and MDA, while increasing T-AOC. The mRNA and protein levels of NOX1 were dramatically increased by TNF-α, while those changes were notably suppressed by Nrf2 overexpression. Further studies demonstrated that Nrf2 suppressed NOX1 transcription by binding to the -1199 to -1189 bp (ATTACACAGCA) region of the NOX1 promoter in TNF-α-stimulated A549 cells. Our study suggests that Nrf2 may bind to and regulate NOX1 expression to antagonize TNF-α-induced inflammatory reaction and oxidative stress in A549 cells (AU)