Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Small ; : e2404231, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38943438

RESUMEN

Conductive flexible hydrogels have attracted immense attentions recently due to their wide applications in wearable sensors. However, the poor mechanical properties of most conductive polymer limit their utilizations. Herein, a double network hydrogel is fabricated via a self-sorting process with cationic polyacrylamide as the first flexible network and the lantern[33]arene-based hydrogen organic framework nanofibers as the second rigid network. This hydrogel is endowed with good conductivity (0.25 S m-1) and mechanical properties, such as large Young's modulus (31.9 MPa), fracture elongation (487%) and toughness (6.97 MJ m-3). The stretchability of this hydrogel is greatly improved after the kirigami cutting, which makes it can be used as flexible strain sensor for monitoring human motions, such as bending of fingers, wrist and elbows. This study not only provides a valuable strategy for the construction of double network hydrogels by lanternarene, but also expands the application of the macrocycle hydrogels to flexible electronics.

2.
BMC Genomics ; 24(1): 144, 2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-36964498

RESUMEN

BACKGROUND: The growth and development of leaves and petioles have a significant effect on photosynthesis. Understanding the molecular mechanisms underlying leaf and petiole development is necessary for improving photosynthetic efficiency, cultivating varieties with high photosynthetic efficiency, and improving the yield of crops of which the leaves are foodstuffs. This study aimed to identify the mRNAs, long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs) related to leaf and petiole development in Chinese cabbage (Brassica campestris L. ssp. pekinensis). The data were used to construct a competitive endogenous RNA (ceRNA) network to obtain insights into the mechanisms underlying leaf and petiole development. RESULTS: The leaves and petioles of the 'PHL' inbred line of Chinese cabbage were used as research materials for whole transcriptome sequencing. A total of 10,646 differentially expressed (DE) mRNAs, 303 DElncRNAs, 7 DEcircRNAs, and 195 DEmiRNAs were identified between leaves and petioles. Transcription factors and proteins that play important roles in leaf and petiole development were identified, including xyloglucan endotransglucosylase/hydrolase, expansion proteins and their precursors, transcription factors TCP15 and bHLH, lateral organ boundary domain protein, cellulose synthase, MOR1-like protein, and proteins related to plant hormone biosynthesis. A ceRNA regulatory network related to leaf and petiole development was constructed, and 85 pairs of ceRNA relationships were identified, including 71 DEmiRNA-DEmRNA, 12 DEmiRNA-DElncRNA, and 2 DEmiRNA-DEcircRNA pairs. Three LSH genes (BrLSH1, BrLSH2 and BrLSH3) with significant differential expression between leaves and petioles were screened from transcriptome data, and their functions were explored through subcellular localization analysis and transgenic overexpression verification. BrLSH1, BrLSH2 and BrLSH3 were nuclear proteins, and BrLSH2 inhibited the growth and development of Arabidopsis thaliana. CONCLUSIONS: This study identifies mRNAs and non-coding RNAs that may be involved in the development of leaves and petioles in Chinese cabbage, and establishes a ceRNA regulatory network related to development of the leaves and petioles, providing valuable genomic resources for further research on the molecular mechanisms underlying leaf and petiole development in this crop species.


Asunto(s)
Brassica , MicroARNs , Brassica/genética , Brassica/metabolismo , Perfilación de la Expresión Génica , MicroARNs/genética , MicroARNs/metabolismo , Transcriptoma , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , ARN Mensajero/genética , Factores de Transcripción/genética , Redes Reguladoras de Genes
3.
BMC Plant Biol ; 23(1): 408, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37658308

RESUMEN

BACKGROUND: Epidermal wax covers the surfaces of terrestrial plants to resist biotic and abiotic stresses. Wax-less flowering Chinese cabbage (Brassica campestris L. ssp. chinesis var. utilis tsen et lee) has the charateristics of lustrous green leaves and flower stalks, which are of high commercial value. RESULTS: To clarify the mechanism of the wax deficiency, the wax-less flowering Chinese cabbage doubled-haploid (DH) line 'CX001' and Chinese cabbage DH line 'FT', obtained from isolated microspore culture, were used in the experiments. Genetic analysis showed that the wax-less phenotype of 'CX001' was controlled by a recessive nuclear gene, named wlm1 (wax-less mutation 1), which was fine-mapped on chromosome A09 by bulked segregant analysis sequencing (BSA-seq) of B.rapa genome V3.0. There was only one gene (BraA09g066480.3C) present in the mapping region. The homologous gene in Arabidopsis thaliana is AT1G02205 (CER1) that encodes an aldehyde decarboxylase in the epidermal wax metabolism pathway. Semi-quantitative reverse transcription PCR and transcriptome analysis indicated that BraA09g066480.3C was expressed in 'FT' but not in 'CX001'. BraA09g066480.3C was lost in the CXA genome to which 'CX001' belonged. CONCLUSION: The work presented herein demonstrated that BraA09g066480.3C was the causal gene for wax-less flowering Chinese cabbage 'CX001'. This study will lay a foundation for further research on the molecular mechanism of epidermal wax synthesis in flowering Chinese cabbage.


Asunto(s)
Arabidopsis , Brassica , Alelos , Aldehídos , Brassica/genética , Fenotipo
4.
Theor Appl Genet ; 136(10): 216, 2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37776330

RESUMEN

KEY MESSAGE: BrKCS6 encoding 3-ketoacyl-CoA synthases was cloned through MutMap and KASP analysis, and its function was verified via allelic mutants in Chinese cabbage. Bright and glossy green appearance is an attractive commodity character for leafy vegetables and is mainly caused by the absence of epicuticular wax crystals. In this study, two allelic epicuticular wax crystal deficiency mutants, wdm9 and wdm10, were obtained from an EMS mutagenesis population of Chinese cabbage (Brassica rapa L. ssp. pekinensis). Genetic analysis revealed that the mutant phenotype was controlled by a recessive nuclear gene. BrKCS6 encoding 3-ketoacyl-CoA synthases was identified as the candidate gene by MutMap and KASP analysis. A SNP (G to A) on BrKCS6 in wdm9 led to the amino acid substitution from serine (S) to phenylalanine (F), and another SNP (G to A) in wdm10 resulted in the amino acid substitution from serine (S) to leucine (L). Both SNPs are located in the ACP_syn_III_C conserved domain, corresponding to two highly conserved sites among BrKCS6 and its homologs. These two amino acid substitutions changed the secondary structure and the three-dimensional structure of BrKCS6 protein. qRT-PCR results showed that the relative expression of BrKCS6 significantly decreased in the flower, stem, and leaves in mutant, and the relative expressions of the downstream key genes of BrKCS6 were down-regulated in mutant. We were the first to clone the precious glossy bright gene BrKCS6 which has a great potential for commodity quality breeding in Chinese cabbage.

5.
BMC Genomics ; 22(1): 819, 2021 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-34773977

RESUMEN

BACKGROUND: The transition from vegetative growth to reproductive growth involves various pathways. Vernalization is a crucial process for floral organ formation and regulation of flowering time that is widely utilized in plant breeding. In this study, we aimed to identify the global landscape of mRNAs, microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) related to vernalization in Chinese cabbage. These data were then used to construct a competitive endogenous RNA (ceRNA) network that provides valuable information to better understand the vernalization response. RESULTS: In this study, seeds sampled from the Chinese cabbage doubled haploid (DH) line 'FT' with or without vernalization treatment were used for whole-transcriptome sequencing. A total of 2702 differentially expressed (DE) mRNAs, 151 DE lncRNAs, 16 DE circRNAs, and 233 DE miRNAs were identified in the vernalization-treated seeds. Various transcription factors, such as WRKY, MYB, NAC, bHLH, MADS-box, zinc finger protein CONSTANS-like gene, and B3 domain protein, and regulatory proteins that play important roles in the vernalization pathway were identified. Additionally, we constructed a vernalization-related ceRNA-miRNA-target gene network and obtained 199 pairs of ceRNA relationships, including 108 DEmiRNA‒DEmRNA, 67 DEmiRNA‒DElncRNA, and 12 DEmiRNA‒DEcircRNA interactions, in Chinese cabbage. Furthermore, several important vernalization-related genes and their interacting lncRNAs, circRNAs, and miRNAs, which are involved in the regulation of flowering time, floral organ formation, bolting, and flowering, were identified. CONCLUSIONS: Our results reveal the potential mRNA and non-coding RNAs involved in vernalization, providing a foundation for further studies on the molecular mechanisms underlying vernalization in Chinese cabbage.


Asunto(s)
Brassica , MicroARNs , ARN Largo no Codificante , Brassica/genética , China , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , MicroARNs/genética , Fitomejoramiento , ARN Largo no Codificante/genética , ARN de Planta/genética , Transcriptoma
6.
Entropy (Basel) ; 23(11)2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34828111

RESUMEN

In this paper, the optimization of network performance to support the deployment of federated learning (FL) is investigated. In particular, in the considered model, each user owns a machine learning (ML) model by training through its own dataset, and then transmits its ML parameters to a base station (BS) which aggregates the ML parameters to obtain a global ML model and transmits it to each user. Due to limited radio frequency (RF) resources, the number of users that participate in FL is restricted. Meanwhile, each user uploading and downloading the FL parameters may increase communication costs thus reducing the number of participating users. To this end, we propose to introduce visible light communication (VLC) as a supplement to RF and use compression methods to reduce the resources needed to transmit FL parameters over wireless links so as to further improve the communication efficiency and simultaneously optimize wireless network through user selection and resource allocation. This user selection and bandwidth allocation problem is formulated as an optimization problem whose goal is to minimize the training loss of FL. We first use a model compression method to reduce the size of FL model parameters that are transmitted over wireless links. Then, the optimization problem is separated into two subproblems. The first subproblem is a user selection problem with a given bandwidth allocation, which is solved by a traversal algorithm. The second subproblem is a bandwidth allocation problem with a given user selection, which is solved by a numerical method. The ultimate user selection and bandwidth allocation are obtained by iteratively compressing the model and solving these two subproblems. Simulation results show that the proposed FL algorithm can improve the accuracy of object recognition by up to 16.7% and improve the number of selected users by up to 68.7%, compared to a conventional FL algorithm using only RF.

7.
Transgenic Res ; 29(5-6): 587-598, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33170439

RESUMEN

Precise gene editing of model organisms is required for accurately modeling human diseases and deciphering gene functions. In this study, we used a pair of guide RNAs (sgRNAs), which in vitro transcribed along with other CRISPR RNA components, to generate two cleavage sites flanking pig GJB2 (pGJB2) CDS. By using long single-stranded DNAs (lssDNA) as homology-directed repair (HDR) templates, we efficiently obtained two gene-edited pigs, of which GJB2 CDS replaced with CDSs containing human GJB2 c.235delC mutation and orthologous human p.V37I mutation, respectively. These mutations were commonly observed in patients with hearing loss. Genetic analysis of the two gene-edited pigs showed that the HDR-derived gene-editing efficiency were as high as 80% (4/5) and 50% (2/4), respectively. While no mutation was observed in the group of single cutting with one sgRNA covering the 235th nucleotide C in pGJB2 CDS, using a short single-stranded oligo DNA containing c.235delC mutation as HDR template. Extra experiments proved that the intended mutations were successfully transmitted to offspring or extensively integrated into various tissues including gonad of founder pigs. Our work indicated that the new "double cutting with lssDNA template" gene editing method can expand sgRNA selection scope and avoids direct cutting of gene CDS. Additionally, can introduce precise mutations into mammalian genomic sites, especially those with unavailable proper protospacer sequence or being resistant to gene editing. Moreover, this method can be performed with CRISPR RNA reagents instead of CRISPR ribonucleoproteins applied in previous reports.


Asunto(s)
Animales Modificados Genéticamente/genética , Conexina 26/genética , Mutación , Porcinos Enanos/genética , Alelos , Animales , Sistemas CRISPR-Cas , ADN de Cadena Simple , Femenino , Edición Génica/métodos , Humanos , Masculino , Porcinos , Cigoto
8.
Hum Mutat ; 37(1): 110-8, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26442986

RESUMEN

Precise genetic mutation of model animals is highly valuable for functional investigation of human mutations. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9)-induced homology-directed repair (HDR) is usually used for precise genetic mutation, being limited by the relatively low efficiency compared with that of non-homologous end joining (NHEJ). Although inhibition of NHEJ was shown to enhance HDR-derived mutation, in this work, without inhibition of NHEJ, we first generated gene-modified pigs harboring precise orthologous human mutation (Sox10 c.A325>T) via CRISPR/Cas9-induced HDR in zygotes using single-strand oligo DNA (ssODN) as template with an efficiency as high as 80%, indicating that pig zygotes exhibited high activities of HDR relative to NHEJ and were highly amendable to genetic mutation via CIRSPR/Cas9-induced HDR. Besides, we found a higher concentration of ssODN remarkably reduced HDR-derived mutation in pig zygotes, suggesting a possible balance for optimal HDR-derived mutation in zygotes between the excessive accessibility to HDR templates and the activities of HDR relative to NHEJ which appeared to be negatively correlated to ssODN concentration. In addition, the HDR-derived mutation, as well as those from NHEJ, extensively integrated into various tissues including gonad of founder pig without detected off-targeting, suggesting CRISPR/Cas9-induced HDR in zygotes is a reliable approach for precise genetic mutation in pigs.


Asunto(s)
Animales Modificados Genéticamente , Sistemas CRISPR-Cas , Recombinación Homóloga , Cigoto , Alelos , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Orden Génico , Marcación de Gen , Datos de Secuencia Molecular , Mosaicismo , Mutación , Oligonucleótidos , ARN Guía de Kinetoplastida , Factores de Transcripción SOXE/genética , Alineación de Secuencia
9.
Front Plant Sci ; 14: 1161181, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37324687

RESUMEN

Introduction: The cuticle wax covering the plant surface is a whitish hydrophobic protective barrier in Chinese cabbage, and the epicuticular wax crystal deficiency normally has higher commodity value for a tender texture and glossy appearance. Herein, two allelic epicuticular wax crystal deficiency mutants, wdm1 and wdm7, were obtained from the EMS mutagenesis population of a Chinese cabbage DH line 'FT'. Methods: The cuticle wax morphology was observed by Cryo-scanning electron microscopy (Cryo-SEM) and the composition of wax was determined by GC-MS. The candidate mutant gene was found by MutMap and validated by KASP. The function of candidate gene was verified by allelic variation. Results: The mutants had fewer wax crystals and lower leaf primary alcohol and ester content. Genetic analysis revealed that the epicuticular wax crystal deficiency phenotype was controlled by a recessive nuclear gene, named Brwdm1. MutMap and KASP analyses indicated that BraA01g004350.3C, encoding an alcohol-forming fatty acyl-CoA reductase, was the candidate gene for Brwdm1. A SNP 2,113,772 (C to T) variation in the 6th exon of Brwdm1 in wdm1 led to the 262nd amino acid substitution from threonine (T) to isoleucine (I), which existed in a rather conserved site among the amino acid sequences from Brwdm1 and its homologs. Meanwhile, the substitution changed the three-dimensional structure of Brwdm1. The SNP 2,114,994 (G to A) in the 10th exon of Brwdm1 in wdm7 resulted in the change of the 434th amino acid from valine (V) to isoleucine (I), which occurred in the STERILE domain. KASP genotyping showed that SNP 2,114,994 was co-segregated with glossy phenotype. Compared with the wild type, the relative expression of Brwdm1 was significantly decreased in the leaves, flowers, buds and siliques of wdm1. Discussion: These results indicated that Brwdm1 was indispensable for the wax crystals formation and its mutation resulted in glossy appearance in Chinese cabbage.

10.
Protoplasma ; 260(1): 117-129, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35476157

RESUMEN

Isolated Microspore Culture (IMC) is an efficient method to obtain the homozygous strain; however, it is difficult to apply in ornamental kale due to its low rate of microspore embryogenesis. Histone acetylation is an important epigenetic mechanism and may affect the changes of the microspore development pathway, promoting microspore embryogenesis. Here, microspores from three cut-flower ornamental kales, namely Crane Feather Queen (CFQ), Crane Pink (CP), and Crane Bicolor (CB), were treated with the histone deacetylase (HDAC) inhibitor suberoylanilide hydroxamic acid (SAHA) to induce embryogenesis. The haploid 'CFQ' microspore plantlets were doubled with colchicine. The results for 'CFQ' revealed that, the appropriate concentration of SAHA was 0.03 µM and obtained 17.27 embryos per bud. For 'CP,' the appropriate concentration of SAHA was 0.045 µM and obtained 11.19 embryos per bud. For 'CB,' the appropriate concentration of SAHA was 0.045 µM and obtained 6.10 embryos per bud. Haploid 'CFQ' microspore plantlets were treated with 75 mg/L colchicine for 7 d and the doubling rate was 41.7%. Haploid 'CFQ' plantlets were treated with 1000 mg/L colchicine by root-soaking for 4 h and the doubling rate was 64.3%. SAHA could promote microspore embryogenesis, and colchicine root soaking was more effective than adding colchicine to the medium for haploid plantlet doubling in cut-flower ornamental kale.


Asunto(s)
Brassica , Vorinostat/farmacología , Haploidia , Desarrollo Embrionario , Colchicina/farmacología
11.
Chem Sci ; 13(19): 5718-5725, 2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35694331

RESUMEN

The pre-assembly and post-assembly approaches in the functionalization of a polyoxovanadate-organic cuboid, [{V6S}8(QPTC)8{V3}2]10-, are discussed. We have shown that the two pathways have led to distinctly different systems, with either an expanded or contracted interior void space, when phenylphosphonate is introduced at different stages of the self-assembly. One leaves the cuboid framework largely intact, whereas the other results in a compact, twisted cuboid. Kinetic factors will have to be considered in the equilibrium of these complex processes. Furthermore, the exceptional stability of these polyoxometalate-organic systems facilitates mass spectrometric characterization, which confirms the composition of the complexes and also indicates that the methoxide groups on the vanadium cluster nodes are labile. The results will help deepen the mechanistic understanding of the formation mechanisms of polyoxovanadate-based metal-organic cages and other functionalized polyoxovanadate clusters in general.

12.
Sci Rep ; 12(1): 2667, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35177672

RESUMEN

Anther development is precisely regulated by a complex gene network, which is of great significance to plant breeding. However, the molecular mechanism of anther development in Chinese cabbage is unclear. Here, we identified microRNAs (miRNAs), mRNAs, long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) related to anther development in Chinese cabbage (Brassica campestris L. ssp. pekinensis) to construct competitive endogenous RNA (ceRNA) regulatory networks and provide valuable knowledge on anther development. Using whole-transcriptome sequencing, 9055, 585, 1344, and 165 differentially expressed mRNAs (DEmRNAs), miRNAs (DEmiRNAs), lncRNAs (DElncRNAs), and circRNAs (DEcircRNAs) were identified, respectively, in the anthers of Chinese cabbage compared with those in samples of the vegetative mass of four true leaves. An anther-related ceRNA regulatory network was constructed using miRNA targeting relationships, and 450 pairs of ceRNA relationships, including 97 DEmiRNA-DEmRNA, 281 DEmiRNA-DElncRNA, and 23 DEmiRNA-DEcircRNA interactions, were obtained. We identified important genes and their interactions with lncRNAs, circRNAs, and miRNAs involved in microsporogenesis, tapetum and callose layer development, pollen wall formation, and anther dehiscence. We analyzed the promoter activity of six predominant anther expression genes, which were expressed specifically in the anthers of Arabidopsis thaliana, indicating that they may play an important role in anther development of Chinese cabbage. This study lays the foundation for further research on the molecular mechanisms of anther growth and development in Chinese cabbage.


Asunto(s)
Brassica , Regulación de la Expresión Génica de las Plantas , ARN de Planta , Transcriptoma/fisiología , Brassica/genética , Brassica/metabolismo , Estudio de Asociación del Genoma Completo , ARN de Planta/biosíntesis , ARN de Planta/genética
13.
Chem Sci ; 12(21): 7361-7368, 2021 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-34163825

RESUMEN

Introducing functionalities into the interior of metal-organic cage complexes can confer properties and utilities (e.g. catalysis, separation, drug delivery, and guest recognition) that are distinct from those of unfunctionalized cages. Endohedral functionalization of such cage molecules, for decades, has largely relied on modifying their organic linkers to covalently append targeted functional groups to the interior surface. We herein introduce an effective coordination method to bring in functionalities at the metal sites instead, for a set of polyhedral cages where the nodes are in situ formed polyoxovanadate clusters, [VIV 6O6(OCH3)9(µ6-SO4)(COO)3]2-. Replacing the central sulfates of these hexavanadate clusters with more strongly coordinating phosphonate groups allows the installation of functionalities within the cage cavities. Organophosphonates with phenyl, biphenyl, and terphenyl tails were examined for internalization. Depending on the size/shape of the cavities, small phosphonates can fit into the molecular containers whereas larger ones inhibit or transform the framework architecture, whereby the first non-cage complex was isolated from a reaction that otherwise would lead to entropically favored regular polyhedra cages. The results highlight the complex and dynamic nature of the self-assembly process involving polyoxometalates and the scope of molecular variety accessible by the introduction of endo functional groups.

14.
Front Cell Dev Biol ; 9: 672216, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34178998

RESUMEN

OBJECTIVE: To describe and study the population statistics, hearing phenotype, and pathological changes of a porcine congenital single-sided deafness (CSSD) pedigree. METHODS: Click auditory brainstem response (ABR), full-frequency ABR, and distortion product otoacoustic emission (DPOAE) were used to assess the hearing phenotype of the strain. Tympanogram was used to assess the middle ear function since birth. Celloidin embedding-hematoxylin-eosin (CE-HE) stain and scanning electron microscopy (SEM) were used to study the pathological changes of cochlear microstructures. Chi-square analysis was used to analyze the relation between hearing loss and other phenotypes. RESULTS: The mating mood of CSSD with CSSD was most efficient in breeding-targeted CSSD phenotype (47.62%), and the prevalence of CSSD reached 46.67% till the fifth generation, where 42.22% were bilateral hearing loss (BHL) and 9.00% were normal hearing (NH) individuals. Hearing loss was proved to have no relation with coat color (P = 0.0841 > 0.05) and gender (P = 0.4621 > 0.05) by chi-square analysis. The deaf side of CSSD offspring in the fifth generation had no relation with that of their maternal parent (P = 0.2387 > 0.05). All individuals in this strain exhibited congenital severe to profound sensorineural hearing loss with no malformation and dysfunction of the middle ear. The good hearing ear of CSSD stayed stable over age. The deaf side of CSSD and BHL presented cochlear and saccular degeneration, and the hair cell exhibited malformation since birth and degenerated from the apex to base turn through time. The pathology in BHL cochlea progressed more rapidly than CSSD and till P30, the hair cell had been totally gone. The stria vascularis (SV) was normal since birth and degenerated through time and finally exhibited disorganization of three layers of cells. CONCLUSION: This inbred porcine strain exhibited high and stable prevalence of CSSD, which highly resembled human non-syndromic CSSD disease. This porcine model could be used to further explore the etiology of CSSD and serve as an ideal tool for the studies of the effects of single-sided hearing deprivation on neural, cognitive, and behavioral developments and the benefits brought by CI in CSSD individuals.

15.
J Genet Genomics ; 47(12): 770-780, 2020 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-33766494

RESUMEN

SOX10 is a causative gene of Waardenburg syndrome (WS) that is a rare genetic disorder characterized by hearing loss and pigment disturbance. More than 100 mutations of SOX10 have been found in patients with Type 2 WS (WS2), Type 4 WS (WS4), and more complex syndromes. However, no mutation hotspot has been detected in SOX10, and most cases are sporadic, making it difficult to establish a correlation between the high phenotypic and genetic variability. In this study, a duplication of the 321th cytosine (c.321dupC) was introduced into SOX10 in pigs, which induced premature termination of the translation of SOX10 (p.K108QfsX45). The premature stop codon in Exon 3 triggered the degradation of mutant mRNA through nonsense-mediated mRNA decay. However, SOX10c.321dupC induced a highly similar phenotype of WS2 with heterogeneous inner ear malformation compared with its adjacent missense mutation SOX10c.325A>T. In addition, a site-saturation mutation analysis of the SOX10 N-terminal nuclear localization signal (n-NLS), where these two mutations located, revealed the correlation between SOX10 haploinsufficiency and WS by an in vitro reporter assay. The analysis combining the in vitro assay with clinical cases may provide a clue to clinical diagnoses.


Asunto(s)
Factores de Transcripción SOXE/genética , Síndrome de Waardenburg/genética , Animales , Codón sin Sentido/genética , Modelos Animales de Enfermedad , Exones/genética , Haploinsuficiencia/genética , Humanos , Mutación/genética , Degradación de ARNm Mediada por Codón sin Sentido/genética , Fenotipo , Porcinos , Síndrome de Waardenburg/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA