Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Food Chem ; 367: 130668, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34343814

RESUMEN

A novel polynomial correction method, order-adaptive polynomial correction (OAPC), was proposed to correct reflectance spectra with operator differences, and convolutional neural network (CNN) was used to develop analysis model to predict behenic acid in edible oils. With application of OAPC, CNN performed well with coefficient of determination of correction (R2cor) of 0.8843 and root mean square error of correction (RMSEcor) of 0.1182, outperforming partial least squares regression, support vector regression and random forest with OAPC, as well as the cases without OAPC. Based on 16 effective wavelengths selected by combination of bootstrapping soft shrinkage, random frog and Pearson's correlation, CNN and OAPC exhibited excellent performance with R2cor of 0.9560 and RMSEcor of 0.0730. Meanwhile, only 5% correction samples were selected by Kennard-Stone for OAPC. Overall, the proposed method could alleviate the impact of operator differences on spectral analysis, thereby providing potential to correct differences from measurement instruments or environments.


Asunto(s)
Aceites de Plantas , Máquina de Vectores de Soporte , Ácidos Grasos , Redes Neurales de la Computación , Análisis Espectral , Verduras
2.
Food Chem ; 385: 132651, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35287109

RESUMEN

Electronic nose (E-nose) and hyperspectral image (HSI) were combined to evaluate mutton total volatile basic nitrogen (TVB-N), which is a comprehensive index of freshness. The response values of 10 E-nose sensors were collected, and seven responsive sensors were screened via histogram statistics. Reflectance spectra and image features were extracted from HSI images, and the effective variables were selected through random frog and Pearson correlation analyses. With multi-source features, an input-modified convolution neural network (IMCNN) was constructed to predict TVB-N. The seven E-nose sensors, spectra of effective wavelengths (EWs), and five important image features were combined with IMCNN to achieve the best result, with the root mean square error, correlation coefficient, and ratio of performance deviation of the prediction set of 3.039 mg/100 g, 0.920, and 3.59, respectively. Hence, the proposed method furnishes an approach to accurately analyze mutton freshness and provide a technical basis for investigation of other meat qualities.


Asunto(s)
Nariz Electrónica , Carne Roja , Imágenes Hiperespectrales , Carne/análisis , Redes Neurales de la Computación , Nitrógeno/análisis , Carne Roja/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA