Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38838168

RESUMEN

Molecular self-assembly is a widely recognized approach for fabricating biomimetic functional nanostructures. Here, we report the synthesis of two giant hollow coronoid-like supramolecular hexagons, H1 and H2. These hexagons feature large cavities, showcasing unique inner and outer hexagons fixed by specific connectivities for enhanced stability and high metal center density. H1 exhibits properties that can be transformed through the thermodynamic conversion of the metallopolymer formed by L1 and L2. With an edge length of 6.8 nm, H2 is one of the largest hexagons reported to date. 1D and 2D NMR, TEM, ESI-MS, and TWIM-MS experiments provided conclusive evidence for the composition and structure of the assembled hexagons. This work demonstrates the feasibility of constructing giant supramolecular architectures with precise control over their size and shape, opening up new possibilities for the design and synthesis of sophisticated supramolecules and nonbiological materials.

2.
Inorg Chem ; 63(9): 4152-4159, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38372260

RESUMEN

The template-directed strategy has been extensively employed for the construction of supramolecular architectures. However, with the increase in the size and complexity of these structures, the synthesis difficulty of the templates escalates exponentially, thereby impeding the widespread application of this strategy. In this study, two truncated triangles T1 and T2 were successfully self-assembled through a novel segmented template strategy by segmenting the core triangular template into portions. Two metallo-organic ligands L2 and L3 were designed and synthesized by dividing the central stable triangle into three separate parts and incorporating them into the precursor ligands, which served as templates to guide the self-assembly process with ligands L1 and L4, respectively. The assembled structures were unambiguously characterized by multidimensional and multinuclear NMR (1H, COSY, NOESY), multidimensional mass spectrometry analysis (ESI-MS and TWIM-MS), and transmission electron microscopy (TEM). Moreover, we observed the formation of fiberlike nanotubes from single-molecule triangles by hierarchical self-assembly.

3.
Inorg Chem ; 63(16): 7442-7454, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38606439

RESUMEN

As electrocatalysts, molecular catalysts with large aromatic systems (such as terpyridine, porphyrin, or phthalocyanine) have been widely applied in the CO2 reduction reaction (CO2RR). However, these monomeric catalysts tend to aggregate due to strong π-π interactions, resulting in limited accessibility of the active site. In light of these challenges, we present a novel strategy of active site isolation for enhancing the CO2RR. Six Ru(Tpy)2 were integrated into the skeleton of a metallo-organic supramolecule by stepwise self-assembly in order to form a rhombus-fused six-pointed star R1 with active site isolation. The turnover frequency (TOF) of R1 was as high as 10.73 s-1 at -0.6 V versus reversible hydrogen electrode (vs RHE), which is the best reported value so far at the same potential to our knowledge. Furthermore, by increasing the connector density on R1's skeleton, a more stable triangle-fused six-pointed star T1 was successfully synthesized. T1 exhibits exceptional stability up to 126 h at -0.4 V vs RHE and excellent TOF values of CO. The strategy of active site isolation and connector density increment significantly enhanced the catalytic activity by increasing the exposure of the active site. This work provides a starting point for the design of molecular catalysts and facilitates the development of a new generation of catalysts with a high catalytic performance.

4.
Epidemiol Infect ; 152: e75, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38634450

RESUMEN

This paper retrospectively analysed the prevalence of macrolide-resistant Mycoplasma pneumoniae (MRMP) in some parts of China. Between January 2013 and December 2019, we collected 4,145 respiratory samples, including pharyngeal swabs and alveolar lavage fluid. The highest PCR-positive rate of M. pneumoniae was 74.5% in Beijing, the highest resistance rate was 100% in Shanghai, and Gansu was the lowest with 20%. The highest PCR-positive rate of M. pneumoniae was 74.5% in 2013, and the highest MRMP was 97.4% in 2019; the PCR-positive rate of M. pneumoniae for adults in Beijing was 17.9% and the MRMP was 10.48%. Among the children diagnosed with community-acquired pneumonia (CAP), the PCR-positive and macrolide-resistant rates of M. pneumoniae were both higher in the severe ones. A2063G in domain V of 23S rRNA was the major macrolide-resistant mutation, accounting for more than 90%. The MIC values of all MRMP to erythromycin and azithromycin were ≥ 64 µg/ml, and the MICs of tetracycline and levofloxacin were ≤ 0.5 µg/ml and ≤ 1 µg/ml, respectively. The macrolide resistance varied in different regions and years. Among inpatients, the macrolide-resistant rate was higher in severe pneumonia. A2063G was the common mutation, and we found no resistance to tetracycline and levofloxacin.


Asunto(s)
Antibacterianos , Farmacorresistencia Bacteriana , Macrólidos , Mycoplasma pneumoniae , Neumonía por Mycoplasma , Mycoplasma pneumoniae/efectos de los fármacos , Mycoplasma pneumoniae/genética , Mycoplasma pneumoniae/aislamiento & purificación , Humanos , China/epidemiología , Macrólidos/farmacología , Estudios Retrospectivos , Niño , Antibacterianos/farmacología , Preescolar , Adolescente , Adulto , Femenino , Masculino , Neumonía por Mycoplasma/epidemiología , Neumonía por Mycoplasma/microbiología , Neumonía por Mycoplasma/tratamiento farmacológico , Persona de Mediana Edad , Adulto Joven , Pruebas de Sensibilidad Microbiana , Anciano , Lactante , Prevalencia , ARN Ribosómico 23S/genética , Anciano de 80 o más Años
5.
Pestic Biochem Physiol ; 202: 105947, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38879334

RESUMEN

Until recently, chemical pesticides were one of the most effective means of controlling agricultural pests; therefore, the search for insecticide targets for agricultural pests has been an ongoing problem. Estrogen-related receptors (ERRs) are transcription factors that regulate cellular metabolism and energy homeostasis in animals. Silkworms are highly sensitive to chemical pesticides, making them ideal models for pesticide screening and evaluation. In this study, we detected ERR expression in key organs involved in pesticide metabolism in silkworms (Bombyx mori), including the fat body and midgut. Using ChIP-seq technology, many estrogen- related response elements were identified in the 2000-bp promoter region upstream of metabolism-related genes, almost all of which were potential ERR target genes. The ERR inhibitor, XCT-790, and the endocrine disruptor, bisphenol A, significantly inhibited expression of the ERR target genes, BmTreh-1, BmTret-1, BmPK, BmPFK, and BmHK, in the fat bodies of silkworms, resulting in pupation difficulties in silkworm larvae that ultimately lead to death. In addition, based on the clarification that the ERR can bind to XCT-790, as observed through biofilm interferometry, its three-dimensional spatial structure was predicted, and using molecular docking techniques, small-molecule compounds with a stronger affinity for the ERR were identified. In summary, utilizing the powerful metabolic regulatory function of ERR in Lepidoptera pests, the developed small molecule inhibitors of ERR can be used for future control of Lepidoptera pests.


Asunto(s)
Bombyx , Simulación del Acoplamiento Molecular , Fenoles , Receptores de Estrógenos , Animales , Receptores de Estrógenos/metabolismo , Receptores de Estrógenos/genética , Bombyx/metabolismo , Bombyx/genética , Bombyx/efectos de los fármacos , Fenoles/farmacología , Compuestos de Bencidrilo/farmacología , Larva/metabolismo , Larva/efectos de los fármacos , Larva/genética , Insecticidas/farmacología , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Cuerpo Adiposo/metabolismo , Cuerpo Adiposo/efectos de los fármacos , Disruptores Endocrinos/farmacología , Disruptores Endocrinos/metabolismo , Nitrilos , Tiazoles
6.
Angew Chem Int Ed Engl ; 63(6): e202318029, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38087428

RESUMEN

Coordination-driven self-assembly has been extensively employed for the bottom-up construction of discrete metallo-macrocycles. However, the prevalent use of benzene rings as the backbone limits the formation of large metallo-macrocycles with more than six edges. Herein, by embedding metal nodes into the ligand backbone, we successfully regulated the ligand arm angle and assembled two giant heptagonal metallo-macrocycles with precise control. The angle between two arms at position 4 of the central terpyridine (tpy) extended after complexation with metal ions, leading to ring expansion of the metallo-macrocycle. The assembled structures were straightforwardly identified through multi-dimensional NMR spectroscopy (1 H, COSY, NOESY), multidimensional mass spectrometry analysis (ESI-MS and TWIM-MS), transmission electron microscopy (TEM), as well as scanning tunneling microscopy (STM). In addition, the catalytic performances of metallo-macrocycles in the oxidation of thioanisole were studied, with both supramolecules exhibiting good conversion rates. Furthermore, fiber-like nanostructures were observed from single-molecule heptagons by hierarchical self-assembly.

7.
Angew Chem Int Ed Engl ; 63(4): e202317674, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38055187

RESUMEN

Coordinative supramolecular cages with adjustable cavities have found extensive applications in various fields, but the cavity modification strategies for multi-functional structures are still challenging. Here, we present a tension-driven self-expansion strategy for construction of multi-cavity cages with high structural complexity. Under the regulation of strain-induced capping ligands, unprecedented heteromorphosis triple-cavity cages S2 /S4 were obtained based on a metallo-organic ligand (MOL) scaffold. The heteromorphosis cages exhibited significant higher cavity diversity than the homomorphous double-cavity cages S1 /S3 ; all of the cages were thoroughly characterized through various analytical techniques including (1D and 2D) NMR, ESI-MS, TWIM-MS, AFM, and SAXS analyses. Furthermore, the encapsulation of porphyrin in the cavities of these multi-cavity cages were investigated. This research opens up new possibilities for the architecture of heteromorphosis supramolecular cages via precisely controlled "scaffold-capping" assembly with preorganized ligands, which could have potential applications in the development of multifunctional structures with higher complexity.

8.
NMR Biomed ; 36(11): e5005, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37547964

RESUMEN

Deep learning based parallel imaging (PI) has made great progress in recent years to accelerate MRI. Nevertheless, it still has some limitations: for example, the robustness and flexibility of existing methods are greatly deficient. In this work, we propose a method to explore the k-space domain learning via robust generative modeling for flexible calibrationless PI reconstruction, coined the weighted k-space generative model (WKGM). Specifically, WKGM is a generalized k-space domain model, where the k-space weighting technology and high-dimensional space augmentation design are efficiently incorporated for score-based generative model training, resulting in good and robust reconstructions. In addition, WKGM is flexible and thus can be synergistically combined with various traditional k-space PI models, which can make full use of the correlation between multi-coil data and realize calibrationless PI. Even though our model was trained on only 500 images, experimental results with varying sampling patterns and acceleration factors demonstrate that WKGM can attain state-of-the-art reconstruction results with the well learned k-space generative prior.

9.
Langmuir ; 39(21): 7337-7344, 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37194972

RESUMEN

In recent years, radioactive iodine capture has played an important role in nuclear waste treatment. However, most of the adsorbents possess low economic efficiency and undesirable reutilization in practical application. In this work, a terpyridine-based porous metallo-organic cage was assembled for iodine adsorption. Through synchrotron X-ray analysis, the metallo-cage was found to have a porous hierarchical packing mode with inherent cavity and packing channel. By taking advantage of polycyclic aromatic units and charged ⟨tpy-Zn2+-tpy⟩ (tpy = terpyridine) coordination sites in the structure, this nanocage exhibits an excellent ability to capture iodine in both the gas phase and aqueous medium, and the crystal state of the nanocage shows an ultrafast kinetic process of capturing I2 in aqueous solution within 5 min. The calculated maximum sorption capacities for I2 based on the Langmuir isotherm models are 1731 and 1487 mg g-1 for amorphous and crystalline nanocages, which is noticeably higher than most of the reported iodine sorbent materials in the aqueous phase. This work not only provides a rare example of iodine adsorption by a terpyridyl-based porous cage but also expands the applications of terpyridine coordination systems into iodine capture.

10.
Inorg Chem ; 62(29): 11500-11509, 2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37436175

RESUMEN

Supramolecular architectures with multiple emissive units are especially appealing due to their desired properties, such as artificial light harvesting and white-light emission. But fully achieving multi-wavelength photoluminescence in a single supramolecular architecture remains a challenge. In this paper, functionalized supramolecular architectures containing twelve metal centers and six pyrene moieties were nearly quantitatively synthesized by multi-component self-assembly and fully characterized by 1D and 2D nuclear magnetic resonance, dynamic light scattering, electrospray ionization mass spectrometry, traveling-wave ion mobility mass spectrometry, and transmission electron microscopy. Moreover, the hierarchical nano-assemblies were prepared by introducing anionic dyes to the positively charged self-assembled framework, which contained three luminescence centers, namely, pyrene, tpy-Cd coordination parts, and Sulforhodamine B anions. Such a hierarchically assembled system displayed tunable emission by taking full advantage of aggregation-induced emission enhancement, aggregation-caused quenching, and fluorescence resonance energy transfer effects and showed the diverse emission colors. This research provides a new insight for constructing multiple emissive metallo-supramolecular assemblies.

11.
Inorg Chem ; 62(23): 8923-8930, 2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37246851

RESUMEN

As a result of their optical and redox properties, bipyridyl (bpy) and terpyridyl (tpy) ruthenium complexes play vital roles in numerous domains. Herein, the design and synthesis of two bipyridyl and terpyridyl ruthenium(II) building units L1 and L2 are explained. A [Ru(bpy)3]2+ functionalized triangle S1 and a Sierpinski triangle S2 were synthesized in almost quantitative yields by the self-assembly of L1 with Zn2+ ions and by the heteroleptic self-assembly of L1 and L2 with Zn2+ ions, respectively. The Sierpinski triangle S2 contains the coordination metals [Ru(bpy)3]2+, [Ru(tpy)2]2+, and [Zn(tpy)2]2+. According to research on the catalytic activity of amine oxidation on supramolecules S1 and S2, the benzylamine substrates were nearly entirely transformed to N-benzylidenebenzylamine derivatives after 1 h under a Xe lamp. Furthermore, the observed ruthenium-containing terpyridyl supramolecule S2 maintains high luminous performance at ambient temperature. This discovery opens up new possibilities for the rational molecular design of terpyridyl ruthenium fluorescent materials and catalytic functional materials.

12.
Sensors (Basel) ; 23(22)2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-38005534

RESUMEN

With the advancement of neural networks, more and more neural networks are being applied to structural health monitoring systems (SHMSs). When an SHMS requires the integration of numerous neural networks, high-performance and low-latency networks are favored. This paper focuses on damage detection based on vibration signals. In contrast to traditional neural network approaches, this study utilizes a stochastic configuration network (SCN). An SCN is an incrementally learning network that randomly configures appropriate neurons based on data and errors. It is an emerging neural network that does not require predefined network structures and is not based on gradient descent. While SCNs dynamically define the network structure, they essentially function as fully connected neural networks that fail to capture the temporal properties of monitoring data effectively. Moreover, they suffer from inference time and computational cost issues. To enable faster and more accurate operation within the monitoring system, this paper introduces a stochastic convolutional feature extraction approach that does not rely on backpropagation. Additionally, a random node deletion algorithm is proposed to automatically prune redundant neurons in SCNs, addressing the issue of network node redundancy. Experimental results demonstrate that the feature extraction method improves accuracy by 30% compared to the original SCN, and the random node deletion algorithm removes approximately 10% of neurons.

13.
Int J Mol Sci ; 24(19)2023 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-37833932

RESUMEN

Energy metabolism is a fundamental process in all organisms. During silkworm (Bombyx mori) embryonic development, there is a high demand for energy due to continuous cell proliferation and differentiation. Estrogen-related receptors (ERRs) are transcriptional regulatory factors that play crucial roles in mammalian energy storage and expenditure. Although most insects have one ERR gene, it also participates in the regulation of energy metabolism, including carbohydrate metabolism in Drosophila, Aphid, and Silkworm. However, no study has reported the direct impact of energy metabolism on embryonic development in silkworms. In this study, we used transgenic technology to increase silkworm (B. mori; Bm) BmERR expression during embryonic development and explored the impact of energy on embryonic development. We found no significant change in the quality of silkworm eggs compared to that of wild-type silkworms. However, there was an increase in the consumption of vitellin, a major nutrient in embryos. This resulted in a decrease in glucose content and a significant increase in ATP content. These findings provide evidence that the acceleration of energy metabolism promotes embryonic development and enhances the motility of hatched silkworms. In addition, these results provide a novel perspective on the relationship between energy metabolism and embryonic development in other insects.


Asunto(s)
Bombyx , Receptores de Estrógenos , Animales , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Bombyx/metabolismo , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Desarrollo Embrionario/genética , Factores de Transcripción/metabolismo , Estrógenos/metabolismo , Mamíferos/metabolismo
14.
Angew Chem Int Ed Engl ; 62(1): e202214237, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36323638

RESUMEN

Fractal structures with self-similarity are of fundamental importance in the fields of aesthetic, chemistry and mathematics. Here, by taking advantage of constructs the rational geometry-directed precursor design, we report the construction of two fascinating Platonic solids, the Sierpinski tetrahedron ST-T and the Sierpinski octahedron ST-O, in which each possesses a fractal Sierpinski triangle on their independent faces. These two discrete complexes are formed in near-quantitative yield from the multi-component self-assembly of truncated Sierpinski triangular kernel L1 with tribenzotriquinacene-based hexatopic and anthracene-based tetratopic terpyridine ligands (L3 and L4 ) in the presence of metal ions, respectively. The enhanced stabilities of the 3D discrete structures were investigated by gradient tandem mass spectrometry (gMS2 ). This work provides new constructs for the imitation of complex virus assemblies and for the molecular encapsulation of giant guest molecules.


Asunto(s)
Espectrometría de Masas en Tándem , Ligandos
15.
J Cell Physiol ; 237(3): 1686-1710, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34913163

RESUMEN

N6 -methyladenosine (m6 A), the sixth N methylation of adenylate (A) in RNA, is the most abundant transcriptome modification in eukaryotic messenger RNA (mRNAs). m6 A modification exists in both coding mRNA and noncoding RNAs, and its functions are controlled by methyltransferase, demethylase, and m6 A reading proteins. Methylation modification of m6 A can regulate RNA cleavage, transport, stability, and expression. This review summarizes the enzymes involved in RNA m6 A methylation and the commonly used detection methods. The role of m6 A modification in physiological processes is described, and its impact on tumorigenesis, viral infection, and diabetes is further highlighted. Moreover, up-to-date knowledge of the implications of RNA m6 A modification in ocular diseases such as uveal melanoma and diabetic retinopathy is introduced. Clarifying the mechanism of RNA m6 A methylation will help elucidate the pathogenesis of various diseases, providing options for subsequent treatment.


Asunto(s)
Adenosina , Oftalmopatías , Metiltransferasas , ARN , Adenosina/análogos & derivados , Adenosina/metabolismo , Oftalmopatías/metabolismo , Humanos , Metilación , Metiltransferasas/metabolismo , ARN/metabolismo , ARN Mensajero
16.
Inorg Chem ; 61(13): 5343-5351, 2022 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-35324194

RESUMEN

In an effort to construct molecules with distinct shapes and functions, the design and synthesis of multitopic ligands are often able to play an important role. Here, we report the synthesis of a novel tetratopic organic ligand LA, which can be viewed as a bis-tenon with successive angular orientations in space. The particular ligand has been treated with different tailored metal-organic ligands to afford new members of the molecular wheel family (multi-rhomboidal-shaped wheel and bis-trapezium-shaped wheel) that show enhanced stability. Two-dimensional (2D) diffusion nuclear magnetic resonance (NMR) spectroscopy (DOSY), electrospray ionization (ESI) mass spectrometry, traveling wave ion mobility (TWIM), and gradient tandem mass spectrometry (gMS2) experiments, as well as molecular modeling, have been employed to provide structural information and differentiate the isomeric separation process. In addition, considering that LA has rotational properties, it is expected to open the door to functional supramolecules and stimuli-responsive materials.

17.
Eur J Pediatr ; 181(9): 3429-3438, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35831682

RESUMEN

The purpose of this study is to explore risk factors of acute placental inflammatory lesions and the potential postnatal serum biomarkers for predicting the severity of intrauterine infection in preterm infants. We performed a retrospective analysis of premature infants with or without acute placental inflammatory lesions and their mothers by chart review for clinical data and placental histopathology. The preterm infants with acute placental inflammatory lesions had a higher rate of premature rupture of membranes (PROM), a longer duration of PROM, and a higher level of serum sialic acid (SIA) than those of the non-inflammation group (all p < 0.001). According to the different inflammatory histological structures, preterm infants with funisitis had a dominant longer duration of PROM than others (p < 0.05), and their gestational age was youngest among all the infants (p < 0.05). Furthermore, they had the highest content of serum SIA above other groups. The preterm infants in the acute histological chorioamnionitis group showed a similar trend of clinical manifestation and laboratory parameters with the funisitis group. Moreover, the closer the placental lesions were to the fetus, the lower the gestational age of preterm infants was, and the higher the serum SIA content was. CONCLUSION: We utilized a simple and precise anatomically category method of placental inflammatory histopathology for pediatricians to distinguish the extent of fetal inflammatory response for representing early-onset infectious diseases of preterm infants. SIA might be one of the potential early-stage serum biomarkers to reflect the severe intrauterine infections and could guide the postnatal anti-infection treatment. WHAT IS KNOWN: • Acute placental inflammatory lesion contributes to preterm birth and a series of complications in preterm infants. • C-reactive protein and interleukin-6 in neonatal blood can be used as biomarkers for potential early-onset sepsis, but they are influenced by the postnatal physiological changes of preterm infants. WHAT IS NEW: • The value of serum sialic acids of preterm infants within 1-hour afterbirth may be one of the rapid postnatal biomarkers for evaluating the severity of intra-amniotic infection. • The closer the placental lesions are to the fetus, the higher the content of serum sialic acid is.


Asunto(s)
Corioamnionitis , Enfermedades Transmisibles , Rotura Prematura de Membranas Fetales , Nacimiento Prematuro , Biomarcadores , Corioamnionitis/diagnóstico , Corioamnionitis/patología , Femenino , Rotura Prematura de Membranas Fetales/diagnóstico , Rotura Prematura de Membranas Fetales/patología , Humanos , Recién Nacido , Recien Nacido Prematuro , Ácido N-Acetilneuramínico , Placenta/patología , Embarazo , Estudios Retrospectivos , Factores de Riesgo
18.
J Am Chem Soc ; 143(6): 2537-2544, 2021 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-33378184

RESUMEN

Nanosized cage-within-cage compounds represent a synergistic molecular self-assembling form of three-dimensional architecture that has received particular research focus. Building multilayered ultralarge cages to simulate complicated virus capsids is believed to be a tough synthetic challenge. Here, we synthesize two large double-shell supramolecular cages by facile self-assembly of presynthesized metal-organic hexatopic terpyridine ligands with metal ions. Differing from the mixture of prisms formed from the inner tritopic ligand, the redesigned metal-organic hexatopic ligands bearing high geometric constraints that led to the exclusive formation of discrete double-shell structures. These two unique nested cages are composed of inner cubes (5.1 nm) and outer huge truncated cubes (12.0 and 13.2 nm) with six large bowl-shape subcages distributed on six faces. The results with molecular weights of 75 232 and 77 667 Da were among the largest synthetic cage-in-cage supramolecules reported to date. The composition, size and shape were unambiguously characterized by a combination of 1H NMR, DOSY, ESI-MS, TWIM-MS, TEM, AFM, and SAXS. This work provides an interesting model for functional recognition, delivery, and detection of various guest molecules in the field of supramolecular materials.

19.
J Am Chem Soc ; 142(52): 21691-21701, 2020 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-33206521

RESUMEN

Developing a methodology to build target structures is one of the major themes of synthetic chemistry. However, it has proven to be immensely challenging to achieve multilevel elaborate molecular architectures in a predictable way. Herein, we describe the self-assembly of a series of pinwheel-shaped starlike supramolecules through three rationally preorganized metalloligands L1-L3. The key octa-uncomplexed terpyridine (tpy) metalloligand L3, synthesized with an 8-fold Suzuki coupling reaction to metal-containing complexes, has four different types of terpyridines connected with three ⟨tpy-Ru2+-tpy⟩ units, making this the most subunits known so far for a preorganized module. Based on the principle of geometric complementation and the high "density of coordination sites", these metalloligands were assembled with Zn2+ ions to form a pinwheel-shaped star trigon P1, pentagram P2, and hexagram P3 with precisely controlled shapes in nearly quantitative yields. With molecular weights ranging from 16756 to 56053 Da and diameters of 6.7-13.6 nm, the structural composition, shape, and rigidity of these pinwheel-shaped architectures have been fully characterized by 1D and 2D (NMR), electrospray ionization mass spectrometry, traveling-wave ion mobility mass spectrometry, and transmission electron microscopy.

20.
J Am Chem Soc ; 142(16): 7690-7698, 2020 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-32208693

RESUMEN

By a precise metallo-ligand design, the advanced coordination-driven self-assembly could succeed in the preparation of giant molecular weight of the metallo-architectures. However, the synthesis of a single discrete high-molecular-weight (>100 K Da) structure has not been demonstrated due to the insurmountable synthetic challenge. Herein, we present a two-dimensional wheel structure (W1) and a gigantic three-dimensional dodecagonal prism-like architecture (P1), which were generated by multicomponent self-assembly of two similar metallo-organic ligands and a core ligand with metal ions, respectively. The giant 2D-suprastructure W1 with six hexagonal metallacycles that fused to the central spoke wheel was first achieved in nearly quantitative yield, and then, directed by introducing a meta-substituted coordination site into the key ligand, the supercharged (36 Ru2+ and 48 Cd2+ ions) double-decker prismatic structure P1 with two wheel structure W1s serve as the surfaces and 12 connectivities serve as the edges, where a molecular weight up to 119 498.18 Da was accomplished. The expected molecular composition and size morphology was unequivocally characterized by nuclear magnetic resonance, mass spectrometry, and transmission electron microscopy investigations. The introduction of a wheel structure is able to add considerable stability and complexity to the final architecture. These well-defined scaffolds are expected to play an important role in the functional materials field, such as molecular encapsulation and medicine sustained release.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA