Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Toxicol Appl Pharmacol ; 407: 115252, 2020 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-32987027

RESUMEN

Acute lung injury (ALI) is a severe disease for which effective drugs are still lacking at present. Forsythia suspensa is a traditional Chinese medicine commonly used to relieve respiratory symptoms in China, but its functional mechanisms remain unclear. Therefore, forsythoside A (FA), the active constituent of F. suspensa, was studied in the present study. Inflammation models of type II alveolar epithelial MLE-12 cells and BALB/c mice stimulated by lipopolysaccharide (LPS) were established to explore the effects of FA on ALI and the underlying mechanisms. We found that FA inhibited the production of monocyte chemoattractant protein-1 (MCP-1/CCL2) in LPS-stimulated MLE-12 cells in a dose-dependent manner. Moreover, FA decreased the adhesion and migration of monocytes to MLE-12 cells. Furthermore, miR-124 expression was upregulated after FA treatment. The luciferase report assay showed that miR-124 mimic reduced the activity of CCL2 in MLE-12 cells. However, the inhibitory effects of FA on CCL2 expression and monocyte adhesion and migration to MLE-12 cells were counteracted by treatment with a miR-124 inhibitor. Critically, FA ameliorated LPS-induced pathological damage, decreased the serum levels of tumor necrosis factor-α and interleukin-6, and inhibited CCL2 secretion and macrophage infiltration in lungs in ALI mice. Meanwhile, administration of miR-124 inhibitor attenuated the protective effects of FA. The present study suggests that FA attenuates LPS-induced adhesion and migration of monocytes to type II alveolar epithelial cells though upregulating miR-124, thereby inhibiting the expression of CCL2. These findings indicate that the potential application of FA is promising and that miR-124 mimics could also be used in the treatment of ALI.


Asunto(s)
Lesión Pulmonar Aguda/prevención & control , Adhesión Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Glicósidos/farmacología , MicroARNs/biosíntesis , Monocitos/efectos de los fármacos , Alveolos Pulmonares/citología , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/patología , Animales , Quimiocina CCL2/antagonistas & inhibidores , Quimiocina CCL2/biosíntesis , Relación Dosis-Respuesta a Droga , Glicósidos/uso terapéutico , Lipopolisacáridos , Ratones , Ratones Endogámicos BALB C , MicroARNs/genética , Alveolos Pulmonares/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
3.
Front Pharmacol ; 11: 748, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32536866

RESUMEN

BACKGROUND: Malignant melanoma is an extremely aggressive and metastatic cancer, and highly resistant to conventional therapies. Signal transducer and activator of transcription 3 (STAT3) signaling promotes melanoma development and progression, which has been validated as an effective target in melanoma treatment. Natural naphthoquinone shikonin is reported to exert anti-melanoma effects. However, the underlying mechanisms have not been fully elucidated. PURPOSE: This study aims to evaluate the anti-melanoma activities of shikonin and explore the involvement of STAT3 signaling in these effects. METHODS: Zebrafish tumor model was established to evaluate the anti-human melanoma effects of shikonin in vivo. MTT assay and colony formation assay were employed to investigate the anti-proliferative effects of shikonin on human melanoma A375 and A2058 cells. Flow cytometry was used to analyze cell cycle distribution and apoptosis induction. Wound healing assay and Transwell chamber assay were conducted to examine the cell migratory and invasive abilities. Immunofluorescence assay was used to observe F-actin, Tubulin, and STAT3 localization. Western blotting was used to determine the expression levels of proteins associated with apoptosis and key proteins in the STAT3 signaling pathway. Immunoblotting was performed in DSS cross-linked cells to determine the homo-dimerization of STAT3. Gelatin zymography was employed to evaluate the enzymatic activity of MMP-2 and MMP-9. Transient transfection was used to overexpress STAT3 in cell models. RESULTS: Shikonin suppressed melanoma growth in cultured cells and in zebrafish xenograft models. Shikonin induced melanoma cells apoptosis, inhibited cell migration and invasion. Mechanistic study indicated that shikonin inhibited the phosphorylation and homo-dimerization of STAT3, thus reduced its nuclear localization. Further study showed that shikonin decreased the levels of STAT3-targeted genes Mcl-1, Bcl-2, MMP-2, vimentin, and Twist, which are involved in melanoma survival, migration, and invasion. More importantly, overexpression of constitutively active STAT3 partially abolished the anti-proliferative, anti-migratory, and anti-invasive effects of shikonin. CONCLUSION: The anti-melanoma activity of shikonin is at least partially attributed to the inhibition on STAT3 signaling. These findings provide new insights into the anti-melanoma molecular mechanisms of shikonin, suggesting its potential in melanoma treatment.

4.
Int J Clin Exp Med ; 8(8): 13634-8, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26550306

RESUMEN

BACKGROUND: To study the lung protective effects of heme oxygenase-1 (HO-1) expression and sevoflurane preconditioning in patients with lobectomy. METHODS: 30 patients receiving lobectomy were divided into two groups: propofol intravenous anesthesia group (Pro group) and sevoflurane preconditioning group (Sev group). In Pro group, propofol was used for intravenous anesthetic. In Sev group, 1%-2% sevoflurane was used during anesthesia induction to one lung ventilation (OLV). Venous blood was taken before OLV (T1), at the end of OLV (T2) and at 30 min after lung ventilation (T3) to measure the concentration of serum malondialdehyde (MDA) in two groups. HO-1 protein and mRNA expression in resected lung tissue were measured with PT-PCR and Western blot technique. Oxygenation index was detected at 2 hours after operation. RESULTS: HO-1 protein (2.88±0.23 ng/ml) and mRNA expression in Sev group were significantly higher compared to protein (1.89±0.12 ng/ml)and mRNA expression in Pro group (P<0.05). Difference was not found in MDA concentration at T1 compared to T2 (P>0.05), however, at T3, MDA concentration was higher in Pro group than that in Sev group (P<0.05). oxygenation index in Sev group was 380±67 mmHg, which was significantly different from that in Pro group (290±56 mmHg) (P<0.05). CONCLUSION: Sevoflurane preconditioning can reduce oxidative stress injury induced by OLV and protect lung tissue by increasing HO-1 expression in lung tissue.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA