Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo del documento
Intervalo de año de publicación
1.
Pathol Res Pract ; 256: 155278, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38574629

RESUMEN

BACKGROUND: Gliomas advance rapidly and are associated with a poor prognosis. Epithelial-mesenchymal transition (EMT) accelerates the progression of gliomas, exerting a pivotal role in glioma development. Proteasome subunit alpha type-2 (PSMA2) exhibits high expression levels in gliomas. however, its specific involvement in glioma progression and its correlation with EMT remain elusive. This study aims to elucidate the role of PSMA2 in glioma progression and its potential association with EMT. METHODS: Online tools were employed to analyze the expression patterns and survival curves of PSMA2 in gliomas. The relationship between PSMA2 and various characteristics of glioma patients was investigated using data from the TCGA and CGGA databases. In vitro, cell proliferation and migration were assessed through CCK-8, colony formation, and transwell assays. Furthermore, a tumor xenograft model in nude mice was established to evaluate in vivo tumorigenesis. Protein binding to PSMA2 was scrutinized using co-immunoprecipitation MS (co-IP MS). The potential biological functions and molecular pathways associated with PSMA2 were explored through GO analysis and KEGG analysis, and the correlation between PSMA2 and EMT was validated through correlation analysis and Western blot experiments. RESULTS: Bioinformatics analysis revealed a significant upregulation of PSMA2 across various cancers, with particularly heightened expression in gliomas. Moreover, elevated PSMA2 levels were correlated with advanced tumor stages and diminished survival rates among glioma patients. Inhibition of PSMA2 demonstrated a pronounced suppressive effect on glioma cell proliferation, both in vitro and in vivo. Knockdown of PSMA2 also impeded the migratory capacity of glioma cells. GO and KEGG enrichment analyses indicated that PSMA2-binding proteins (identified through Co-IP-MS) were associated with cell adhesion molecule binding and cadherin binding. Western blot results further confirmed the role of PSMA2 in promoting epithelial-mesenchymal transition (EMT) in glioma cells. CONCLUSION: Our study provides evidence supporting the role of PSMA2 as a regulatory factor in EMT and suggests its potential as a prognostic biomarker for glioma progression.


Asunto(s)
Glioma , Animales , Humanos , Ratones , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular/genética , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , Glioma/patología , Ratones Desnudos
2.
iScience ; 27(6): 109870, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38799573

RESUMEN

Autophagy enhancement in septic liver injury can play a protective role. Nerveless, the mechanism of autophagy-mediated septic liver injury needs further investigation. Our study demonstrated that in septic condition, GLI Family Zinc Finger 2 (GLI2) was elevated, whereas peroxisome-proliferator-activated receptor α (PPARα) was downregulated. Suppressing GLI2 or synovialapoptosis inhibitor 1 (SYVN1) in LPS-exposed cells increased PPARα levels, enhanced cell viability and autophagy, while inhibiting apoptosis. LPS enhanced the GLI2-SYVN1 promoter binding. SYVN1 fostered ubiquitin-mediated degradation of PPARα. IGF2BP3 stabilized GLI2 mRNA by targeting its m6A site. Silencing IGF2BP3 led to decreased GLI2 and SYVN1 but increased PPARα levels, promoting cell survival and autophagy, while repressing apoptosis. This was counteracted by SYVN1 overexpression. In cecal ligation and puncture mice, IGF2BP3, SYVN1, or GLI2 knockdown ameliorated liver damage and augmented autophagy. In summary, IGF2BP3 enhanced GLI2 stability, overexpressed GLI2 subsequent promoted SYVN1 levels by interacting with its promoter, leading to ubiquitinated degradation of PPARα, thereby inhibiting PPARα-mediated autophagy and then exacerbating liver injury in sepsis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA