Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 891
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Trends Immunol ; 45(4): 274-287, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38494365

RESUMEN

Lipopolysaccharide (LPS), a key component of the outer membrane in Gram-negative bacteria (GNB), is widely recognized for its crucial role in mammalian innate immunity and its link to mortality in intensive care units. While its recognition via the Toll-like receptor (TLR)-4 receptor on cell membranes is well established, the activation of the cytosolic receptor caspase-11 by LPS is now known to lead to inflammasome activation and subsequent induction of pyroptosis. Nevertheless, a fundamental question persists regarding the mechanism by which LPS enters host cells. Recent investigations have identified at least four primary pathways that can facilitate this process: bacterial outer membrane vesicles (OMVs); the spike (S) protein of SARS-CoV-2; host-secreted proteins; and host extracellular vesicles (EVs). These delivery systems provide new avenues for therapeutic interventions against sepsis and infectious diseases.


Asunto(s)
Inmunidad Innata , Lipopolisacáridos , Animales , Humanos , Inflamasomas/metabolismo , Caspasas/metabolismo , Mamíferos
2.
Proc Natl Acad Sci U S A ; 121(9): e2319894121, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38377200

RESUMEN

Nickel-iron oxy/hydroxides (NiFeOxHy) emerge as an attractive type of electrocatalysts for alkaline water oxidation reaction (WOR), but which encounter a huge challenge in stability, especially at industrial-grade large current density due to uncontrollable Fe leakage. Here, we tailor the Fe coordination by a MXene-mediated reconfiguration strategy for the resultant NiFeOxHy catalyst to alleviate Fe leakage and thus reinforce the WOR stability. The introduction of ultrafine MXene with surface dangling bonds in the electrochemical reconfiguration over Ni-Fe Prussian blue analogue induces the covalent hybridization of NiFeOxHy/MXene, which not only accelerates WOR kinetics but also improves Fe oxidation resistance against segregation. As a result, the NiFeOxHy coupled with MXene exhibits an extraordinary durability at ampere-level current density over 1,000 h for alkaline WOR with an ultralow overpotential of only 307 mV. This work provides a broad avenue and mechanistic insights for the development of nickel-iron catalysts toward industrial applications.

3.
Proc Natl Acad Sci U S A ; 120(40): e2303878120, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37748061

RESUMEN

AMPA receptors (AMPARs) play a critical role in synaptic plasticity and learning and memory, and dysfunction or dysregulation of AMPARs could lead to various neurological and psychiatric disorders, such as Alzheimer's disease (AD). However, the dynamics and/or longitudinal changes of AMPARs in vivo during AD pathogenesis remain elusive. Here, employing 5xFAD SEP-GluA1 KI mice, we investigated endogenous AMPA receptor dynamics in a whisker deflection-associated Go/No-go learning paradigm. We found a significant increase in synaptosomal AMPA receptor subunits GluA1 in WT mice after learning, while no such changes were detected in 7-mo-old 5xFAD mice. Daily training led to an increase in endogenous spine surface GluA1 in Control mice, while this increase was absent in 5xFAD-KI mice which correlates with its learning defects in Go/No-go paradigm. Furthermore, we demonstrated that the onset of abnormal AMPAR dynamics corresponds temporally with microglia and astrocyte overactivation. Our results have shown that impairments in endogenous AMPA receptor dynamics play an important role in learning deficits in 5xFAD mice and AD pathogenesis.


Asunto(s)
Enfermedad de Alzheimer , Receptores AMPA , Humanos , Animales , Ratones , Aprendizaje , Astrocitos , Microglía
4.
EMBO J ; 40(16): e107403, 2021 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-34223653

RESUMEN

Excessive deposition of extracellular matrix, mainly collagen protein, is the hallmark of organ fibrosis. The molecular mechanisms regulating fibrotic protein biosynthesis are unclear. Here, we find that chemoattractant receptor homologous molecule expressed on TH2 cells (CRTH2), a plasma membrane receptor for prostaglandin D2, is trafficked to the endoplasmic reticulum (ER) membrane in fibroblasts in a caveolin-1-dependent manner. ER-anchored CRTH2 binds the collagen mRNA recognition motif of La ribonucleoprotein domain family member 6 (LARP6) and promotes the degradation of collagen mRNA in these cells. In line, CRTH2 deficiency increases collagen biosynthesis in fibroblasts and exacerbates injury-induced organ fibrosis in mice, which can be rescued by LARP6 depletion. Administration of CRTH2 N-terminal peptide reduces collagen production by binding to LARP6. Similar to CRTH2, bumetanide binds the LARP6 mRNA recognition motif, suppresses collagen biosynthesis, and alleviates bleomycin-triggered pulmonary fibrosis in vivo. These findings reveal a novel anti-fibrotic function of CRTH2 in the ER membrane via the interaction with LARP6, which may represent a therapeutic target for fibrotic diseases.


Asunto(s)
Autoantígenos/metabolismo , Colágeno/antagonistas & inhibidores , Cirrosis Hepática/prevención & control , Fibrosis Pulmonar/prevención & control , Receptores Inmunológicos/metabolismo , Receptores de Prostaglandina/metabolismo , Ribonucleoproteínas/metabolismo , Animales , Bleomicina , Tetracloruro de Carbono , Células Cultivadas , Colágeno/biosíntesis , Colágeno/genética , Retículo Endoplásmico/metabolismo , Fibroblastos/metabolismo , Membranas Intracelulares/metabolismo , Isoproterenol , Hígado/metabolismo , Hígado/patología , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Pulmón/metabolismo , Pulmón/patología , Masculino , Ratones Transgénicos , Miocardio/metabolismo , Miocardio/patología , Unión Proteica , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología , Receptores Inmunológicos/genética , Receptores de Prostaglandina/genética , Antígeno SS-B
5.
FASEB J ; 38(2): e23373, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38217376

RESUMEN

Fatigue is a common phenomenon closely related to physical discomfort and numerous diseases, which is severely threatening the life quality and health of people. However, the exact mechanisms underlying fatigue are not fully characterized. Herein, we demonstrate that oxaloacetic acid (OAA), a crucial tricarboxylic acid cycle intermediate, modulates the muscle fatigue. The results showed that serum OAA level was positively correlated with fatigue state of mice. OAA-treated induced muscle fatigue impaired the exercise performance of mice. Mechanistically, OAA increased the c-Jun N-terminal kinase (JNK) phosphorylation and uncoupling protein 2 (UCP2) levels in skeletal muscle, which led to decreased energy substrate and enhanced glycolysis. On the other hand, OAA boosted muscle mitochondrial oxidative phosphorylation uncoupled with energy production. In addition, either UCP2 knockout or JNK inhibition totally reversed the effects of OAA on skeletal muscle. Therein, JNK mediated UCP2 activation with OAA-treated. Our studies reveal a novel role of OAA in skeletal muscle metabolism, which would shed light on the mechanism of muscle fatigue and weakness.


Asunto(s)
Mitocondrias , Ácido Oxaloacético , Humanos , Ratones , Animales , Ácido Oxaloacético/metabolismo , Ácido Oxaloacético/farmacología , Mitocondrias/metabolismo , Fosforilación Oxidativa , Ciclo del Ácido Cítrico , Músculo Esquelético/metabolismo , Proteína Desacopladora 2/genética , Proteína Desacopladora 2/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Proteína Desacopladora 3/metabolismo , Metabolismo Energético
6.
FASEB J ; 38(13): e23802, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38979944

RESUMEN

Intercellular adhesion molecule 1 (ICAM1) is a cell surface adhesion glycoprotein in the immunoglobulin supergene family. It is associated with several epithelial tumorigenesis processes, as well as with inflammation. However, the function of ICAM1 in the prognosis of tumor immunity is still unclear. This study aimed to examine the immune function of ICAM1 in 33 tumor types and to investigate the prognostic value of tumors. Using datasets from the Cancer Genome Atlas (TCGA), Genotype Tissue Expression (GTEx), Cancer Cell Lines Encyclopedia (CCLE), Human Protein Atlas (HPA), and cBioPortal, we investigated the role of ICAM1 in tumors. We explored the potential correlation between ICAM1 expression and tumor prognosis, gene mutations, microsatellite instability, and tumor immune cell levels in various cancers. We observed that ICAM1 is highly expressed in multiple malignant tumors. Furthermore, ICAM1 is negatively or positively associated with different malignant tumor prognoses. The expression levels of ICAM1 were correlated with the tumor mutation burden (TMB) in 11 tumors and with MSI in eight tumors. ICAM1 is a gene associated with immune infiltrating cells, such as M1 macrophages and CD8+ T cells in gastric and colon cancer. Meanwhile, the expression of ICAM1 is associated with several immune-related functions and immune-regulation-related signaling pathways, such as the chemokine signaling pathway. Our study shows that ICAM1 can be used as a prognostic biomarker in many cancer types because of its function in tumorigenesis and malignant tumor immunity.


Asunto(s)
Biomarcadores de Tumor , Molécula 1 de Adhesión Intercelular , Neoplasias , Humanos , Molécula 1 de Adhesión Intercelular/metabolismo , Molécula 1 de Adhesión Intercelular/genética , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Pronóstico , Neoplasias/inmunología , Neoplasias/genética , Neoplasias/metabolismo , Mutación , Regulación Neoplásica de la Expresión Génica , Inestabilidad de Microsatélites , Microambiente Tumoral/inmunología
7.
J Immunol ; 211(4): 518-526, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37549395

RESUMEN

Immunometabolism is an interdisciplinary field that focuses on the relationship between metabolic pathways and immune responses. Dysregulated immunometabolism contributes to many pathological settings, such as cytokine storm or immune tolerance. Aconitate decarboxylase 1 (ACOD1, also known as immunoresponsive gene 1), the mitochondrial enzyme responsible for catalyzing itaconate production, was originally identified as a bacterial LPS-inducible gene involved in innate immunity in mouse macrophages. We now know that the upregulation of ACOD1 expression in immune or nonimmune cells plays a context-dependent role in metabolic reprogramming, signal transduction, inflammasome regulation, and protein modification. The emerging function of ACOD1 in inflammation and infection is a double-edged sword. In this review, we discuss how ACOD1 regulates anti-inflammatory or proinflammatory responses in an itaconate-dependent or -independent manner. Further understanding of ACOD1 expression and function may pave the way for the development of precision therapies for inflammatory diseases.


Asunto(s)
Macrófagos , Succinatos , Animales , Ratones , Inmunidad Innata , Inflamación
8.
Nano Lett ; 24(11): 3548-3556, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38457277

RESUMEN

After spinal cord injury (SCI), successive systemic administration of microtubule-stabilizing agents has been shown to promote axon regeneration. However, this approach is limited by poor drug bioavailability, especially given the rapid restoration of the blood-spinal cord barrier. There is a pressing need for long-acting formulations of microtubule-stabilizing agents in treating SCI. Here, we conjugated the antioxidant idebenone with microtubule-stabilizing paclitaxel to create a heterodimeric paclitaxel-idebenone prodrug via an acid-activatable, self-immolative ketal linker and then fabricated it into chondroitin sulfate proteoglycan-binding nanomedicine, enabling drug retention within the spinal cord for at least 2 weeks and notable enhancement in hindlimb motor function and axon regeneration after a single intraspinal administration. Additional investigations uncovered that idebenone can suppress the activation of microglia and neuronal ferroptosis, thereby amplifying the therapeutic effect of paclitaxel. This prodrug-based nanomedicine simultaneously accomplishes neuroprotection and axon regeneration, offering a promising therapeutic strategy for SCI.


Asunto(s)
Axones , Traumatismos de la Médula Espinal , Ubiquinona/análogos & derivados , Animales , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , Excipientes/farmacología , Excipientes/uso terapéutico , Nanomedicina , Regeneración Nerviosa , Traumatismos de la Médula Espinal/terapia
9.
Carcinogenesis ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39008332

RESUMEN

Alkaliptosis, a form of regulated cell death, is characterized by lysosomal dysfunction and intracellular pH alkalinization. The pharmacological induction of alkaliptosis using the small molecule compound JTC801 has emerged as a promising anticancer strategy in various types of cancers, particularly pancreatic ductal adenocarcinoma (PDAC). In this study, we investigate a novel mechanism by which macropinocytosis, an endocytic process involving the uptake of extracellular material, promotes resistance to alkaliptosis in human PDAC cells. Through lipid metabolomics analysis and functional studies, we demonstrate that the inhibition of alkaliptosis by fatty acids, such as oleic acid, is not dependent on endogenous synthetic pathways but rather on exogenous uptake facilitated by macropinocytosis. Consequently, targeting macropinocytosis through pharmacological approaches (e.g., using EIPA or EHoP-016) or genetic interventions (e.g., RAC1 knockdown) effectively enhances JTC801-induced alkaliptosis in human PDAC cells. These findings provide compelling evidence that the modulation of macropinocytosis can increase the sensitivity of cancer cells to alkaliptosis inducers.

10.
Mol Cancer ; 23(1): 89, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702722

RESUMEN

Ferroptosis is a type of regulated cell death characterized by iron accumulation and uncontrolled lipid peroxidation, leading to plasma membrane rupture and intracellular content release. Originally investigated as a targeted therapy for cancer cells carrying oncogenic RAS mutations, ferroptosis induction now exhibits potential to complement chemotherapy, immunotherapy, and radiotherapy in various cancer types. However, it can lead to side effects, including immune cell death, bone marrow impairment, liver and kidney damage, cachexia (severe weight loss and muscle wasting), and secondary tumorigenesis. In this review, we discuss the advantages and offer an overview of the diverse range of documented side effects. Furthermore, we examine the underlying mechanisms and explore potential strategies for side effect mitigation.


Asunto(s)
Ferroptosis , Neoplasias , Humanos , Neoplasias/terapia , Neoplasias/etiología , Neoplasias/metabolismo , Neoplasias/patología , Neoplasias/genética , Ferroptosis/genética , Ferroptosis/efectos de los fármacos , Animales , Antineoplásicos/efectos adversos , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología
11.
Mol Cancer ; 23(1): 84, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38678239

RESUMEN

The cell cycle is a crucial biological process that is involved in cell growth, development, and reproduction. It can be divided into G1, S, G2, and M phases, and each period is closely regulated to ensure the production of two similar daughter cells with the same genetic material. However, many obstacles influence the cell cycle, including the R-loop that is formed throughout this process. R-loop is a triple-stranded structure, composed of an RNA: DNA hybrid and a single DNA strand, which is ubiquitous in organisms from bacteria to mammals. The existence of the R-loop has important significance for the regulation of various physiological processes. However, aberrant accumulation of R-loop due to its limited resolving ability will be detrimental for cells. For example, DNA damage and genomic instability, caused by the R-loop, can activate checkpoints in the cell cycle, which in turn induce cell cycle arrest and cell death. At present, a growing number of factors have been proven to prevent or eliminate the accumulation of R-loop thereby avoiding DNA damage and mutations. Therefore, we need to gain detailed insight into the R-loop resolution factors at different stages of the cell cycle. In this review, we review the current knowledge of factors that play a role in resolving the R-loop at different stages of the cell cycle, as well as how mutations of these factors lead to the onset and progression of diseases.


Asunto(s)
Ciclo Celular , Daño del ADN , Estructuras R-Loop , Humanos , Ciclo Celular/genética , Animales , Inestabilidad Genómica , Neoplasias/patología , Neoplasias/metabolismo , Neoplasias/genética , Mutación
12.
Cancer Sci ; 115(4): 1170-1183, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38287874

RESUMEN

Platinum-based therapies have revolutionized the treatment of high-grade serous ovarian cancer (HGSOC). However, high rates of disease recurrence and progression remain a major clinical concern. Impaired mitochondrial function and dysregulated reactive oxygen species (ROS), hallmarks of cancer, hold potential as therapeutic targets for selectively sensitizing cisplatin treatment. Here, we uncover an oncogenic role of the palmitoyltransferase ZDHHC12 in regulating mitochondrial function and ROS homeostasis in HGSOC cells. Analysis of The Cancer Genome Atlas (TCGA) ovarian cancer data revealed significantly elevated ZDHHC12 expression, demonstrating the strongest positive association with ROS pathways among all ZDHHC enzymes. Transcriptomic analysis of independent ovarian cancer datasets and the SNU119 cell model corroborated this association, highlighting a strong link between ZDHHC12 expression and signature pathways involving mitochondrial oxidative metabolism and ROS regulation. Knockdown of ZDHHC12 disrupted this association, leading to increased cellular complexity, ATP levels, mitochondrial activity, and both mitochondrial and cellular ROS. This dysregulation, achieved by the siRNA knockdown of ZDHHC12 or treatment with the general palmitoylation inhibitor 2BP or the fatty acid synthase inhibitor C75, significantly enhanced cisplatin cytotoxicity in 2D and 3D spheroid models of HGSOC through ROS-mediated mechanisms. Markedly, ZDHHC12 inhibition significantly augmented the anti-tumor activity of cisplatin in an ovarian cancer xenograft tumor model, as well as in an ascites-derived organoid line of platinum-resistant ovarian cancer. Our data suggest the potential of ZDHHC12 as a promising target to improve the outcome of HGSOCs in response to platinum-based chemotherapy.


Asunto(s)
Cisplatino , Neoplasias Ováricas , Humanos , Femenino , Cisplatino/farmacología , Cisplatino/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Resistencia a Antineoplásicos , Recurrencia Local de Neoplasia/tratamiento farmacológico , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Carcinoma Epitelial de Ovario/tratamiento farmacológico , Línea Celular Tumoral
13.
Mol Carcinog ; 63(8): 1515-1527, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38751020

RESUMEN

Paclitaxel serves as the cornerstone chemotherapy for ovarian cancer, yet its prolonged administration frequently culminates in drug resistance, presenting a substantial challenge. Here we reported that inducing alkaliptosis, rather than apoptosis or ferroptosis, effectively overcomes paclitaxel resistance. Mechanistically, ATPase H+ transporting V0 subunit D1 (ATP6V0D1), a key regulator of alkaliptosis, plays a pivotal role by mediating the downregulation of ATP-binding cassette subfamily B member 1 (ABCB1), a multidrug resistance protein. Both ATP6V0D1 overexpression through gene transfection and pharmacological enhancement of ATP6V0D1 protein stability using JTC801 effectively inhibit ABCB1 upregulation, resulting in growth inhibition in drug-resistant cells. Additionally, increasing intracellular pH to alkaline (pH 8.5) via sodium hydroxide application suppresses ABCB1 expression, whereas reducing the pH to acidic conditions (pH 6.5) with hydrochloric acid amplifies ABCB1 expression in drug-resistant cells. Collectively, these results indicate a potentially effective therapeutic strategy for targeting paclitaxel-resistant ovarian cancer by inducing ATP6V0D1-dependent alkaliptosis.


Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP , Resistencia a Antineoplásicos , Neoplasias Ováricas , Paclitaxel , ATPasas de Translocación de Protón Vacuolares , Humanos , Femenino , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/patología , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Paclitaxel/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Línea Celular Tumoral , ATPasas de Translocación de Protón Vacuolares/genética , ATPasas de Translocación de Protón Vacuolares/metabolismo , ATPasas de Translocación de Protón Vacuolares/antagonistas & inhibidores , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Concentración de Iones de Hidrógeno , Proliferación Celular/efectos de los fármacos
14.
J Transl Med ; 22(1): 371, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637802

RESUMEN

Platelets not only participate in thrombosis and hemostasis but also interact with tumor cells and protect them from mechanical damage caused by hemodynamic shear stress and natural killer cell lysis, thereby promoting their colonization and metastasis to distant organs. Platelets can affect the tumor microenvironment via interactions between platelet-related factors and tumor cells. Metastasis is a key event in cancer-related death and is associated with platelet-related factors in lung, breast, and colorectal cancers. Although the factors that promote platelet expression vary slightly in terms of their type and mode of action, they all contribute to the overall process. Recognizing the correlation and mechanisms between these factors is crucial for studying the colonization of distant target organs and developing targeted therapies for these three types of tumors. This paper reviews studies on major platelet-related factors closely associated with metastasis in lung, breast, and colorectal cancers.


Asunto(s)
Neoplasias Colorrectales , Trombosis , Humanos , Plaquetas/metabolismo , Hemostasis , Trombosis/patología , Neoplasias Colorrectales/patología , Metástasis de la Neoplasia , Microambiente Tumoral
15.
New Phytol ; 242(5): 1996-2010, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38571393

RESUMEN

The conquest of land by plants was concomitant with, and possibly enabled by, the evolution of three-dimensional (3D) growth. The moss Physcomitrium patens provides a model system for elucidating molecular mechanisms in the initiation of 3D growth. Here, we investigate whether the phytohormone ethylene, which is believed to have been a signal before land plant emergence, plays a role in 3D growth regulation in P. patens. We report ethylene controls 3D gametophore formation, based on results from exogenously applied ethylene and genetic manipulation of PpEIN2, which is a central component in the ethylene signaling pathway. Overexpression (OE) of PpEIN2 activates ethylene responses and leads to earlier formation of gametophores with fewer gametophores produced thereafter, phenocopying ethylene-treated wild-type. Conversely, Ppein2 knockout mutants, which are ethylene insensitive, show initially delayed gametophore formation with more gametophores produced later. Furthermore, pharmacological and biochemical analyses reveal auxin levels are decreased in the OE lines but increased in the knockout mutants. Our results suggest that evolutionarily, ethylene and auxin molecular networks were recruited to build the plant body plan in ancestral land plants. This might have played a role in enabling ancient plants to acclimate to the continental surfaces of the planet.


Asunto(s)
Bryopsida , Etilenos , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos , Proteínas de Plantas , Etilenos/metabolismo , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacología , Bryopsida/crecimiento & desarrollo , Bryopsida/genética , Bryopsida/efectos de los fármacos , Bryopsida/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Células Germinativas de las Plantas/metabolismo , Células Germinativas de las Plantas/crecimiento & desarrollo , Células Germinativas de las Plantas/efectos de los fármacos , Mutación/genética
16.
Opt Express ; 32(5): 7342-7355, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38439417

RESUMEN

Coherent superposition has been proposed to synthesize high-order quadrature amplitude modulation (QAM) by coherently superposing low-order QAMs in the optical domain. These approaches could effectively relax the digital-to-analog converter resolution and reduce the complexity of the driving electronics. However, in the superposition process, imperfect phase rotations (IPRs) in low-order QAMs will be transferred to the resultant high-order QAM. Importantly, the induced IPR cannot be compensated for by conventional linear equalizers and carrier recovery methods. To combat the induced IPR, herein, we propose a hierarchical blind phase search (HBPS) algorithm to compensate for the IPRs in synthesized high-order QAMs. The proposed HBPS can match the generation mechanism of the IPRs in coherent superposition, by tracing back and estimating the IPR in the QPSK-like constellation of each hierarchy and finally correcting the induced IPRs. Simulation and experimental results verify that this algorithm could effectively compensate for the IPR in the resultant 16-QAMs synthesized using coherent superposition approaches. The proposed HBPS shows significant optical signal-to-noise ratio (OSNR) gains compared to the conventional blind phase search (BPS) method for high-order QAMs coherently superposed using optical signal processing (OSP) and tandem modulators (TMs). Specifically, at the BER of 2.4e-2, the HBPS achieves a 1.5-dB OSNR sensitivity enhancement over the BPS in either OSP or TMs-based schemes, even with an imperfection rotation of up to 20∘.

17.
Cardiovasc Diabetol ; 23(1): 222, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926737

RESUMEN

BACKGROUND: Previous studies have shown that an elevated triglyceride-glucose (TyG) index was associated with all-cause mortality in both general adult individuals and critically ill adult patients. However, the relationship between the TyG index and clinical prognosis in pediatric patients admitted to the intensive care unit (ICU) remains unknown. We aimed to investigate the association of the TyG index with in-hospital all-cause mortality in critically ill pediatric patients. METHODS: A total of 5706 patients in the Pediatric Intensive Care database were enrolled in this study. The primary outcome was 30-day in-hospital all-cause mortality, and secondary outcome was 30-day in-ICU all-cause mortality. The restricted cubic spline (RCS) curves and two-piecewise multivariate Cox hazard regression models were performed to explore the relationship between the TyG index and outcomes. RESULTS: The median age of the study population was 20.5 [interquartile range (IQR): 4.8, 63.0] months, and 3269 (57.3%) of the patients were male. The mean TyG index level was 8.6 ± 0.7. A total of 244 (4.3%) patients died within 30 days of hospitalization during a median follow-up of 11 [7, 18] days, and 236 (4.1%) patients died in ICU within 30 days of hospitalization during a median follow-up of 6 [3, 11] days. The RCS curves indicated a U-shape association between the TyG index and 30-day in-hospital and in-ICU all-cause mortality (both P values for non-linear < 0.001). The risk of 30-day in-hospital all-cause mortality was negatively correlated with the TyG index until it bottoms out at 8.6 (adjusted hazard ratio [HR], 0.72, 95% confidence interval [CI] 0.55-0.93). However, when the TyG index was higher than 8.6, the risk of primary outcome increased significantly (adjusted HR, 1.51, 95% CI 1.16-1.96]). For 30-day in-ICU all-cause mortality, we also found a similar relationship (TyG < 8.6: adjusted HR, 0.75, 95% CI 0.57-0.98; TyG ≥ 8.6: adjusted HR, 1.42, 95% CI 1.08-1.85). Those results were consistent in subgroups and various sensitivity analysis. CONCLUSIONS: Our study showed that the association between the TyG index and 30-day in-hospital and in-ICU all-cause mortality was nonlinear U-shaped, with a cutoff point at the TyG index of 8.6 in critically ill pediatric patients. Our findings suggest that the TyG index may be a novel and important factor for the short-term clinical prognosis in pediatric patients.


Asunto(s)
Biomarcadores , Glucemia , Causas de Muerte , Enfermedad Crítica , Bases de Datos Factuales , Mortalidad Hospitalaria , Unidades de Cuidado Intensivo Pediátrico , Triglicéridos , Humanos , Masculino , Enfermedad Crítica/mortalidad , Femenino , Estudios Retrospectivos , Glucemia/metabolismo , Triglicéridos/sangre , Factores de Riesgo , Lactante , Preescolar , Factores de Tiempo , Medición de Riesgo , Biomarcadores/sangre , Pronóstico , Factores de Edad , Niño , Valor Predictivo de las Pruebas , Mortalidad del Niño
18.
Eur J Clin Invest ; 54(4): e14145, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38041600

RESUMEN

BACKGROUND: Evidence supports the observational correlations between human blood metabolites and sepsis. However, whether these associations represent a causal relationship is unknown. In this study, we applied two-sample Mendelian randomization (MR) analyses to examine causality between genetically proxied 486 blood metabolites and sepsis risk. METHODS: We used summary data from genome-wide association studies (GWAS) on 486 metabolites involving 7824 individuals as exposure and a sepsis GWAS including 11,643 cases and 474,841 controls as the outcome. The inverse-variance weighted (IVW) was the primary method to estimate the causal relationship between exposure and outcome, with MR-Egger and weighted median serving as supplements. Sensitivity analyses were implemented with Cochrane's Q test, MR-Egger intercept, MR-PRESSO and leave-one-out analysis. In addition, we performed replication MR, meta-analysis, Steiger test, linkage disequilibrium score (LDSC) regression and multivariable MR (MVMR) to thoroughly verify the causation. RESULTS: We identified that genetically determined high levels of 1-oleoylglycerophosphoethanolamine (odds ratio (OR) = .52, 95% confidence interval (CI): .31-.87, p = .0122), alpha-glutamyltyrosine (OR = .75, 95% CI: .60-.93, p = .0102), heptanoate (7:0) (OR = .51, 95% CI: .33-.81, p = .0041) and saccharin (OR = .84, 95% CI: .74-.94, p = .0036) were causally associated with a lower risk of sepsis. MVMR analysis demonstrated the independent causal effect of these metabolites on sepsis. CONCLUSIONS: These findings indicated that four blood metabolites have a protective impact on sepsis, thus providing novel perspectives into the metabolite-mediated development mechanism of sepsis by combining genomics and metabolomics.


Asunto(s)
Estudio de Asociación del Genoma Completo , Sepsis , Humanos , Análisis de la Aleatorización Mendeliana , Sepsis/genética , Suplementos Dietéticos , Nonoxinol
19.
Cell Commun Signal ; 22(1): 42, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-38233935

RESUMEN

Adenosine-to-inosine (A-to-I) editing of RNA, catalyzed by adenosine deaminase acting on RNA (ADAR) enzymes, is a prevalent RNA modification in mammals. It has been shown that A-to-I editing plays a critical role in multiple diseases, such as cardiovascular disease, neurological disorder, and particularly cancer. ADARs are the family of enzymes, including ADAR1, ADAR2, and ADAR3, that catalyze the occurrence of A-to-I editing. Notably, A-to-I editing is mainly catalyzed by ADAR1. Given the significance of A-to-I editing in disease development, it is important to unravel the complex roles of ADAR1 in cancer for the development of novel therapeutic interventions.In this review, we briefly describe the progress of research on A-to-I editing and ADARs in cancer, mainly focusing on the role of ADAR1 in cancer from both editing-dependent and independent perspectives. In addition, we also summarized the factors affecting the expression and editing activity of ADAR1 in cancer.


Asunto(s)
Neoplasias , Proteínas de Unión al ARN , Animales , Humanos , Proteínas de Unión al ARN/genética , Neoplasias/metabolismo , Adenosina Desaminasa/genética , ARN , Mamíferos/metabolismo
20.
Artículo en Inglés | MEDLINE | ID: mdl-38824049

RESUMEN

OBJECTIVES: The study was designed to identify the potential peripheral processes of circulating exosome in response to Tai Chi (TC) exercise and the possibility of its loaded cargos in mediating the effects of TC training on cognitive function among older adults with amnestic mild cognitive impairment (aMCI). DESIGN, SETTING, AND PARTICIPANTS: This was a multicenter randomized controlled trial. One hundred community-dwelling old adults with aMCI were randomly assigned (1:1) to experimental (n = 50) and control groups (n = 50). INTERVENTION: The experimental group participated in TC exercise 5 times/week, with each session lasting 60 minutes for 12 weeks. Both experimental and control groups received health education every 4 weeks. MEASUREMENTS: The primary outcome was global cognitive function. Neurocognitive assessments, MRI examination, and large-scale proteomics analysis of peripheric exosome were conducted at baseline and after 12-week training. Outcome assessors and statisticians were blinded to group allocation. RESULTS: A total of 96 participants (96%) completed all outcome measurements. TC training improved global cognitive function (adjusted mean difference [MD] = 1.9, 95%CI 0.93-2.87, p <0.001) and memory (adjusted MD = 6.42, 95%CI 2.09-10.74, p = 0.004), increased right hippocampus volume (adjusted MD = 88.52, 95%CI 13.63-163.4, p = 0.021), and enhanced rest state functional connectivity (rsFC) between hippocampus and cuneus, which mediated the group effect on global cognitive function (bootstrapping CIs: [0.0208, 1.2826], [0.0689, 1.2211]) and verbal delay recall (bootstrapping CI: [0.0002, 0.6277]). Simultaneously, 24 differentially expressed exosomal proteins were detected in tandem mass tag-labelling proteomic analysis. Of which, the candidate protein low-density lipoprotein receptor-related protein 1 (LRP1) was further confirmed by parallel reaction monitoring and ELISA. Moreover, the up-regulated LRP1 was both positively associated with verbal delay recall and rsFC (left hippocampus-right cuneus). CONCLUSION: TC promotes LRP1 release via exosome, which was associated with enhanced memory function and hippocampus plasticity in aMCI patients. Our findings provided an insight into potential therapeutic neurobiological targets focusing on peripheric exosome in respond to TC exercise.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA