Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 385
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Pathog ; 20(4): e1012153, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38598555

RESUMEN

Schistosomiasis is a fatal zoonotic parasitic disease that also threatens human health. The main pathological features of schistosomiasis are granulomatous inflammation and subsequent liver fibrosis, which is a complex, chronic, and progressive disease. Extracellular vesicles (EVs) derived from schistosome eggs are broadly involved in host-parasite communication and act as important contributors to schistosome-induced liver fibrosis. However, it remains unclear whether substances secreted by the EVs of Schistosoma japonicum, a long-term parasitic "partner" in the hepatic portal vein of the host, also participate in liver fibrosis. Here, we report that EVs derived from S. japonicum worms attenuated liver fibrosis by delivering sja-let-7 into hepatic stellate cells (HSCs). Mechanistically, activation of HSCs was reduced by targeting collagen type I alpha 2 chain (Col1α2) and downregulation of the TGF-ß/Smad signaling pathway both in vivo and in vitro. Overall, these results contribute to further understanding of the molecular mechanisms underlying host-parasite interactions and identified the sja-let-7/Col1α2/TGF-ß/Smad axis as a potential target for treatment of schistosomiasis-related liver fibrosis.


Asunto(s)
Vesículas Extracelulares , Cirrosis Hepática , Schistosoma japonicum , Esquistosomiasis Japónica , Animales , Vesículas Extracelulares/metabolismo , Cirrosis Hepática/parasitología , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Esquistosomiasis Japónica/metabolismo , Esquistosomiasis Japónica/parasitología , Esquistosomiasis Japónica/patología , Ratones , Interacciones Huésped-Parásitos/fisiología , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/parasitología , Células Estrelladas Hepáticas/patología , MicroARNs/metabolismo , MicroARNs/genética , Transducción de Señal , Humanos , Proteínas del Helminto/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Ratones Endogámicos C57BL
2.
Nat Chem Biol ; 20(7): 835-846, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38287154

RESUMEN

Synchronized ferroptosis contributes to nephron loss in acute kidney injury (AKI). However, the propagation signals and the underlying mechanisms of the synchronized ferroptosis for renal tubular injury remain unresolved. Here we report that platelet-activating factor (PAF) and PAF-like phospholipids (PAF-LPLs) mediated synchronized ferroptosis and contributed to AKI. The emergence of PAF and PAF-LPLs in ferroptosis caused the instability of biomembranes and signaled the cell death of neighboring cells. This cascade could be suppressed by PAF-acetylhydrolase (II) (PAFAH2) or by addition of antibodies against PAF. Genetic knockout or pharmacological inhibition of PAFAH2 increased PAF production, augmented synchronized ferroptosis and exacerbated ischemia/reperfusion (I/R)-induced AKI. Notably, intravenous administration of wild-type PAFAH2 protein, but not its enzymatically inactive mutants, prevented synchronized tubular cell death, nephron loss and AKI. Our findings offer an insight into the mechanisms of synchronized ferroptosis and suggest a possibility for the preventive intervention of AKI.


Asunto(s)
Lesión Renal Aguda , Ferroptosis , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/patología , Lesión Renal Aguda/tratamiento farmacológico , Ferroptosis/efectos de los fármacos , Animales , Ratones , Ratones Endogámicos C57BL , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Factor de Activación Plaquetaria/metabolismo , Ratones Noqueados , Humanos , Masculino
3.
Stem Cells ; 42(6): 567-579, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38469899

RESUMEN

Wnt/ß-catenin signaling plays a crucial role in the migration of mesenchymal stem cells (MSCs). However, our study has revealed an intriguing phenomenon where Dickkopf-1 (DKK1), an inhibitor of Wnt/ß-catenin signaling, promotes MSC migration at certain concentrations ranging from 25 to 100 ng/mL while inhibiting Wnt3a-induced MSC migration at a higher concentration (400 ng/mL). Interestingly, DKK1 consistently inhibited Wnt3a-induced phosphorylation of LRP6 at all concentrations. We further identified cytoskeleton-associated protein 4 (CKAP4), another DKK1 receptor, to be localized on the cell membrane of MSCs. Overexpressing the CRD2 deletion mutant of DKK1 (ΔCRD2), which selectively binds to CKAP4, promoted the accumulation of active ß-catenin (ABC), the phosphorylation of AKT (Ser473) and the migration of MSCs, suggesting that DKK1 may activate Wnt/ß-catenin signaling via the CKAP4/PI3K/AKT cascade. We also investigated the effect of the CKAP4 intracellular domain mutant (CKAP4-P/A) that failed to activate the PI3K/AKT pathway and found that CKAP4-P/A suppressed DKK1 (100 ng/mL)-induced AKT activation, ABC accumulation, and MSC migration. Moreover, CKAP4-P/A significantly weakened the inhibitory effects of DKK1 (400 ng/mL) on Wnt3a-induced MSC migration and Wnt/ß-catenin signaling. Based on these findings, we propose that DKK1 may activate the PI3K/AKT pathway via CKAP4 to balance the inhibitory effect on Wnt/ß-catenin signaling and thus regulate Wnt3a-induced migration of MSCs. Our study reveals a previously unrecognized role of DKK1 in regulating MSC migration, highlighting the importance of CKAP4 and PI3K/AKT pathways in this process.


Asunto(s)
Movimiento Celular , Péptidos y Proteínas de Señalización Intercelular , Células Madre Mesenquimatosas , Vía de Señalización Wnt , Animales , Humanos , beta Catenina/metabolismo , Movimiento Celular/efectos de los fármacos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Péptidos y Proteínas de Señalización Intercelular/farmacología , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/genética , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Vía de Señalización Wnt/efectos de los fármacos , Proteína Wnt3A/metabolismo , Ratas
4.
Stem Cells ; 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39269318

RESUMEN

Transplanted mesenchymal stem cells (MSCs) can significantly aid in repairing spinal cord injuries (SCI) by migrating to and settling at the injury site. However, this process is typically inefficient, as only a small fraction of MSCs successfully reach the target lesion area. During SCI, the increased expression and secretion of hepatocyte growth factor (HGF) act as a chemoattractant that guides MSC migration. Nonetheless, the precise mechanisms by which HGF influences MSC migration are not fully understood. This study focused on unraveling the molecular pathways that drive MSC migration towards the SCI site in response to HGF. It was found that HGF can activate ß-catenin signaling in MSCs either by phosphorylating LRP6 or by suppressing GSK3ß phosphorylation through the AKT and ERK1/2 pathways, or by enhancing the expression and nuclear translocation of TCF4. This activation leads to elevated Nedd9 expression, which promotes focal adhesion formation and F-actin polymerization, facilitating chemotactic migration. Transplanting MSCs during peak HGF expression in injured tissues substantially improves nerve regeneration, reduces scarring, and enhances hind limb mobility. Additionally, prolonging HGF release can further boost MSC migration and engraftment, thereby amplifying regenerative outcomes. However, inhibiting HGF/Met or interfering with ß-catenin or Nedd9 signaling significantly impairs MSC engraftment, obstructing tissue repair and functional recovery. Together, these findings provide a theoretical basis and practical strategy for MSC transplantation therapy in SCI, highlighting the specific molecular mechanisms by which HGF regulates ß-catenin signaling in MSCs, ultimately triggering their chemotactic migration.

5.
Mol Ther ; 32(10): 3729-3742, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39228125

RESUMEN

Allergen-crosslinked IgE triggers allergy by interacting with its receptor on basophils and mast cells. The anti-IgE monoclonal antibody omalizumab can alleviate allergy by competing with the receptor for IgE binding. However, along with neutralization, omalizumab also inhibits IgE degradation, which is clinically associated with high-dose and total IgE accumulation problems. In this study, we have developed an IgE-eliminating antibody on the basis of omalizumab, which has pH-dependent Fabs and an Fc with high affinity for FcγRIIb. In mice, the antibody rapidly eliminated total serum IgE to baseline levels and caused lower free IgE levels than omalizumab. At low dosages, the antibody also exhibited favorable IgE elimination effects. In addition, the antibody can degrade the corresponding allergen with the removal of IgE, addressing the allergy from its source. Introduction of the M252Y/S254T/T256E (YTE) mutation into this antibody prolongs its serum half-life without reducing potency. Thus, this engineered antibody holds a promising therapeutic option for allergy patients. Mechanistic insights are also included in this study.


Asunto(s)
Alérgenos , Inmunoglobulina E , Omalizumab , Receptores de IgG , Inmunoglobulina E/inmunología , Inmunoglobulina E/metabolismo , Receptores de IgG/metabolismo , Receptores de IgG/inmunología , Animales , Ratones , Omalizumab/farmacología , Humanos , Alérgenos/inmunología , Concentración de Iones de Hidrógeno , Hipersensibilidad/inmunología , Hipersensibilidad/tratamiento farmacológico , Unión Proteica , Antialérgicos/farmacología
6.
Neurobiol Dis ; 201: 106683, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39343249

RESUMEN

Parkinson's disease (PD) is a neurodegenerative disorder characterized by motor deficits due to the depletion of nigrostriatal dopamine. Stem cell differentiation therapy emerges as a promising treatment option for sustained symptom relief. In this study, we successfully developed a one-step differentiation system using the YFBP cocktail (Y27632, Forskolin, SB431542, and SP600125) to effectively convert human umbilical cord mesenchymal stem cells (hUCMSCs) into dopaminergic neurons without genetic modification. This approach addresses the challenge of rapidly and safely generating functional neurons on a large scale. After a 7-day induction period, over 80 % of the cells were double-positive for TUBB3 and NEUN. Transcriptome analysis revealed the dual roles of the cocktail in inducing fate erasure in mesenchymal stem cells and activating the neuronal program. Notably, these chemically induced cells (CiNs) did not express HLA class II genes, preserving their immune-privileged status. Further study indicated that YFBP significantly downregulated p53 signaling and accelerated the differentiation process when Pifithrin-α, a p53 signaling inhibitor, was applied. Additionally, Wnt/ß-catenin signaling was transiently activated within one day, but the prolonged activation hindered the neuronal differentiation of hUCMSCs. Upon transplantation into the striatum of mice, CiNs survived well and tested positive for dopaminergic neuron markers. They exhibited typical action potentials and sodium and potassium ion channel activity, demonstrating neuronal electrophysiological activity. Furthermore, CiNs treatment significantly increased the number of tyrosine hydroxylase-positive cells and the concentration of dopamine in the striatum, effectively ameliorating movement disorders in PD mice. Overall, our study provides a secure and reliable framework for cell replacement therapy for Parkinson's disease.


Asunto(s)
Diferenciación Celular , Neuronas Dopaminérgicas , Células Madre Mesenquimatosas , Cordón Umbilical , Neuronas Dopaminérgicas/metabolismo , Animales , Humanos , Cordón Umbilical/citología , Ratones , Diferenciación Celular/fisiología , Trasplante de Células Madre Mesenquimatosas/métodos , Enfermedad de Parkinson/terapia , Ratones Endogámicos C57BL , Masculino
7.
Mol Med ; 30(1): 64, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760723

RESUMEN

BACKGROUND: Insulin like growth factor II mRNA binding protein 3 (IGF2BP3) has been implicated in numerous inflammatory and cancerous conditions. However, its precise molecular mechanisms in endometriosis (EMs) remains unclear. The aim of this study is to examine the influence of IGF2BP3 on the occurrence and progression of EMs and to elucidate its underlying molecular mechanism. METHODS: Efects of IGF2BP3 on endometriosis were confrmed in vitro and in vivo. Based on bioinformatics analysis, RNA immunoprecipitation (RIP), RNA pull-down assays and Fluorescent in situ hybridization (FISH) were used to show the association between IGF2BP3 and UCA1. Single-cell spatial transcriptomics analysis shows the expression distribution of glutaminase 1 (GLS1) mRNA in EMs. Study the effect on glutamine metabolism after ectopic endometriotic stromal cells (eESCs) were transfected with Sh-IGF2BP3 and Sh-UCA1 lentivirus. RESULTS: Immunohistochemical staining have revealed that IGF2BP3 was upregulated in ectopic endometriotic lesions (EC) compared to normal endometrial tissues (EN). The proliferation and migration ability of eESCs were greatly reduced by downregulating IGF2BP3. Additionally, IGF2BP3 has been observed to interact with urothelial carcinoma associated 1 (UCA1), leading to increased stability of GLS1 mRNA and subsequently enhancing glutamine metabolism. Results also demonstrated that IGF2BP3 directly interacts with the 3' UTR region of GLS1 mRNA, influencing its expression and stability. Furthermore, UCA1 was able to bind with c-MYC protein, stabilizing c-MYC mRNA and consequently enhancing GLS1 expression through transcriptional promotion. CONCLUSION: These discoveries underscored the critical involvement of IGF2BP3 in the elevation and stability of GLS1 mRNA in the context of glutamine metabolism by interacting with UCA1 in EMs. The implications of our study extended to the identification of possible therapeutic targets for individuals with EMs.


Asunto(s)
Endometriosis , Glutaminasa , Glutamina , Estabilidad del ARN , ARN Largo no Codificante , Proteínas de Unión al ARN , Femenino , Humanos , Glutaminasa/metabolismo , Glutaminasa/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Endometriosis/metabolismo , Endometriosis/genética , Endometriosis/patología , Glutamina/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Proliferación Celular , Adulto , ARN Mensajero/genética , ARN Mensajero/metabolismo , Regulación de la Expresión Génica , Unión Proteica
8.
Chemistry ; : e202403349, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39380168

RESUMEN

Asymmetric synthesis of spiro[indoline-3,4-pyrrolo [3,4-b]pyridines] derivatives was first developed through organocatalytic cascade Knoevenagel/Michael/cyclization reaction using a quinidine -derived squaramide. Under the optimized conditions, the three-component reaction of isatins, cyanoacetates, and 3-aminomaleimides yield the desired heterocycle-fused spirooxindoles in good yields (78-91%) with 53-99% enantiomer excess (ee). Notably, this reaction enabled a broad substrate scope under mild conditions, and provided a convenient method for enantioselective construction of diverse spirooxindoles combined with dihydropyridine and maleimide skeleton, which brought great potential to build new bioactive chemical entities.

9.
Nanotechnology ; 36(4)2024 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-39395441

RESUMEN

Magnetic nanoparticles (MNPs) represent a class of small particles typically with diameters ranging from 1 to 100 nanometers. These nanoparticles are composed of magnetic materials such as iron, cobalt, nickel, or their alloys. The nanoscale size of MNPs gives them unique physicochemical (physical and chemical) properties not found in their bulk counterparts. Their versatile nature and unique magnetic behavior make them valuable in a wide range of scientific, medical, and technological fields. Over the past decade, there has been a significant surge in MNP-based applications spanning biomedical uses, environmental remediation, data storage, energy storage, and catalysis. Given their magnetic nature and small size, MNPs can be manipulated and guided using external magnetic fields. This characteristic is harnessed in biomedical applications, where these nanoparticles can be directed to specific targets in the body for imaging, drug delivery, or hyperthermia treatment. Herein, this roadmap offers an overview of the current status, challenges, and advancements in various facets of MNPs. It covers magnetic properties, synthesis, functionalization, characterization, and biomedical applications such as sample enrichment, bioassays, imaging, hyperthermia, neuromodulation, tissue engineering, and drug/gene delivery. However, as MNPs are increasingly explored forin vivoapplications, concerns have emerged regarding their cytotoxicity, cellular uptake, and degradation, prompting attention from both researchers and clinicians. This roadmap aims to provide a comprehensive perspective on the evolving landscape of MNP research.


Asunto(s)
Nanopartículas de Magnetita , Nanomedicina , Nanomedicina/métodos , Humanos , Nanopartículas de Magnetita/química , Animales , Sistemas de Liberación de Medicamentos/métodos
10.
Cell Mol Biol (Noisy-le-grand) ; 70(8): 104-109, 2024 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-39262256

RESUMEN

This study investigated the role of Poly (ADP-ribose) Polymerase (PARP) in myocardial ischemia-reperfusion injury (MIRI) in elderly mice. It involves 30 elderly male KM mice divided into three groups: Sham, MIRI, and DPQ, where the MIRI and DPQ groups undergo myocardial ischemia-reperfusion with the DPQ group also receiving DPQ for PARP-1 inhibition. Over three weeks, assessments include histological analysis of myocardial lesions, left ventricular ejection fraction (LVEF) measurements, and evaluations of serum cardiac enzymes and inflammatory markers. This approach aims to understand the protective effects of DPQ in MIRI, focusing on its impact on cardiac health and inflammation via the JAK2/STAT3 pathway. The findings suggest that PARP activation exacerbates cardiac dysfunction and inflammation in MIRI by possibly modulating the JAK2/STAT3 signaling pathway. Inhibition of PARP-1 with DPQ mitigates these effects, as indicated by reduced myocardial lesions and inflammatory infiltration, improved LVEF, and altered levels of inflammatory markers and signaling molecules. However, the differences in STAT3 and p-STAT3 protein expression between the DPQ and MIRI groups were not statistically significant, suggesting that while PARP inhibition affects many aspects of MIRI pathology, its impact on the JAK2/STAT3 pathway may not fully explain the observed benefits. This study contributes to our understanding of the complex mechanisms underlying myocardial ischemia-reperfusion injury, particularly in the context of aging. It highlights the potential of PARP inhibition as a therapeutic strategy to attenuate cardiac dysfunction and inflammation in MIRI, though further research is necessary to fully elucidate the underlying molecular pathways and to explore the clinical relevance of these findings in humans.


Asunto(s)
Janus Quinasa 2 , Daño por Reperfusión Miocárdica , Miocardio , Factor de Transcripción STAT3 , Transducción de Señal , Animales , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Masculino , Ratones , Janus Quinasa 2/metabolismo , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/efectos de los fármacos , Miocardio/patología , Miocardio/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Envejecimiento , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Inflamación/patología , Inflamación/metabolismo , Función Ventricular Izquierda/efectos de los fármacos
11.
Phys Chem Chem Phys ; 26(8): 6638-6645, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38221873

RESUMEN

The photochemical isomerization and nonradiative decay processes of hexafluorobenzene (HFB) were investigated theoretically to gain insights into its photochemical mechanism and the perfluoro effect. A complete mechanistic scheme is presented through the characterization of all the possible minima and transition states of the S0, S1, and S2 states at the CASPT2/6-311G**//CAS(6,7)/6-31G* level. On the S0 potential energy surface, HFB could isomerize to three different products [Dewar-HFB (S0-P1), benzvalene-HFB (S0-P2), and fulvene-HFB (S0-P3)]. Following excitation to the S2 state with the perpendicular π → σ* transition, a chair-type minimum with Cs symmetry was found on the S2 potential energy surface. The adjacent S2/S1 conical intersection was immediately accessible from the S2 minimum. The nature of the S1 state was confirmed to have a π → π* character. Both the S2 and S1 photochemistries of HFB yielded Dewar-HFB via the S1/S0 conical intersection. The regeneration of the S0 state from the S1 and T2 states via intersystem crossing or internal conversion was also revealed.

12.
J Asthma ; 61(11): 1554-1560, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38880950

RESUMEN

OBJECTIVE: To investigate the clinical utility of small airway function indices for early identification of GOLD stage 0 chronic obstructive pulmonary disease (COPD). METHODS: This retrospective study enrolled 137 participants at our institution between January 2017 and December 2018, comprising 40 healthy controls, 46 individuals with GOLD stage 0 COPD, and 51 patients with established COPD. Pulmonary function was assessed using the PowerCube spirometry system (GANSHORN, Germany). Parameters evaluated included forced vital capacity (FVC), forced expiratory volume in 1 s (FEV1), FEV1/FVC ratio, and small airway function indicators. RESULTS: The COPD cohort exhibited significantly lower values across all lung function measures compared to the other two groups, particularly for dynamic lung volume parameters such as FEV1%predicted and FEV1/FVC%. Small airway function indices, including FEV3%predicted, FEF75%predicted, FEF50%predicted, FEF25%predicted, and MMEF%predicted, were markedly decreased in the COPD group (all p-values <0.001). Receiver operating characteristic (ROC) curve analysis demonstrated that MMEF/FVC% and FEV3/FVC% had high diagnostic accuracy for COPD, with MMEF/FVC% exhibiting the optimal sensitivity and specificity. CONCLUSION: Small airway function indices, especially MMEF/FVC%, can serve as effective tools for early identification of GOLD stage 0 COPD. Incorporation of these findings into clinical practice may facilitate early diagnosis and intervention, thereby improving treatment outcomes and patient quality of life.


Asunto(s)
Diagnóstico Precoz , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Masculino , Femenino , Estudios Retrospectivos , Persona de Mediana Edad , Anciano , Pruebas de Función Respiratoria , Capacidad Vital , Espirometría , Índice de Severidad de la Enfermedad , Volumen Espiratorio Forzado , Curva ROC
13.
J Chem Phys ; 161(3)2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39007369

RESUMEN

We propose a scheme for achieving basic quantum gates using ultracold polar molecules in pendular states. The qubits are encoded in the YbF molecules trapped in an electric field with a certain gradient and coupled by the dipole-dipole interaction. The time-dependent control sequences consisting of multiple pulses are considered to interact with the pendular qubits. To achieve high-fidelity quantum gates, we map the control problem for the coupled molecular system into a Markov decision process and deal with it using the techniques of deep reinforcement learning (DRL). By training the agents over multiple episodes, the optimal control pulse sequences for the two-qubit gates of NOT, controlled NOT, and Hadamard are discovered with high fidelities. Moreover, the population dynamics of YbF molecules driven by the discovered gate sequences are analyzed in detail. Furthermore, by combining the optimal gate sequences, we successfully simulate the quantum circuit for entanglement. Our findings could offer new insights into efficiently controlling molecular systems for practical molecule-based quantum computing using DRL.

14.
Intern Med J ; 54(8): 1292-1301, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38563467

RESUMEN

BACKGROUND AND AIMS: Sleep-disordered breathing (SDB) and nocturnal hypoxemia were known to be present in patients with chronic thromboembolic pulmonary hypertension (CTEPH), but the difference between SDB and nocturnal hypoxemia in patients who have chronic thromboembolic pulmonary disease (CTEPD) with or without pulmonary hypertension (PH) at rest remains unknown. METHODS: Patients who had CTEPH (n = 80) or CTEPD without PH (n = 40) and who had undergone sleep studies from July 2020 to October 2022 at Shanghai Pulmonary Hospital were enrolled. Nocturnal mean SpO2 (Mean SpO2) <90% was defined as nocturnal hypoxemia, and the percentage of time with a saturation below 90% (T90%) exceeding 10% was used to evaluate the severity of nocturnal hypoxemia. Logistic and linear regression analyses were performed to investigate the difference and potential predictor of SDB or nocturnal hypoxemia between CTEPH and CTEPD without PH. RESULTS: SDB was similarly prevalent in CTEPH and CTEPD without PH (P = 0.104), both characterised by obstructive sleep apnoea (OSA). Twenty-two patients with CTEPH were diagnosed with nocturnal hypoxemia, whereas only three were diagnosed with CTEPD without PH (P = 0.021). T90% was positively associated with mean pulmonary arterial pressure (mPAP) and pulmonary vascular resistance in patients with CTEPH and CTEPD without PH (P < 0.001); T90% was also negatively related to cardiac output in these patients. Single-breath carbon monoxide diffusing capacity, sex and mPAP were all correlated with nocturnal hypoxemia in CTEPH and CTEPD without PH (all P < 0.05). CONCLUSION: Nocturnal hypoxemia was worse in CTEPD with PH; T90%, but not SDB, was independently correlated with the hemodynamics in CTEPD with or without PH.


Asunto(s)
Hipertensión Pulmonar , Hipoxia , Embolia Pulmonar , Síndromes de la Apnea del Sueño , Humanos , Femenino , Masculino , Persona de Mediana Edad , Hipoxia/etiología , Embolia Pulmonar/complicaciones , Embolia Pulmonar/fisiopatología , Anciano , Síndromes de la Apnea del Sueño/complicaciones , Síndromes de la Apnea del Sueño/fisiopatología , Hipertensión Pulmonar/fisiopatología , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/complicaciones , Enfermedad Crónica , China/epidemiología , Polisomnografía
15.
BMC Pulm Med ; 24(1): 199, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654208

RESUMEN

BACKGROUND: Fractional exhaled nitric oxide (FeNO) has been extensively studied in various causes of pulmonary hypertension (PH), but its utility as a noninvasive marker remains highly debated. The objective of our study was to assess FeNO levels in patients with idiopathic pulmonary arterial hypertension (IPAH) and mixed connective tissue disease complicating pulmonary hypertension (MCTD-PH), and to correlate them with respiratory functional data, disease severity, and cardiopulmonary function. METHODS: We collected data from 54 patients diagnosed with IPAH and 78 patients diagnosed with MCTD-PH at the Shanghai Pulmonary Hospital Affiliated to Tongji University. Our data collection included measurements of brain natriuretic peptide (pro-BNP), cardiopulmonary exercise test (CPET), pulmonary function test (PFT), impulse oscillometry (IOS), and FeNO levels. Additionally, we assessed World Health Organization functional class (WHO-FC) of each patient. RESULTS: (1) The fractional exhaled concentration of nitric oxide was notably higher in patients with IPAH compared to those with MCTD-PH. Furthermore, within the IPAH group, FeNO levels were found to be lower in cases of severe IPAH compared to mild IPAH (P = 0.024); (2) In severe pulmonary hypertension as per the WHO-FC classification, FeNO levels in IPAH exhibited negative correlations with FEV1/FVC (Forced Expiratory Velocity at one second /Forced Vital Capacity), MEF50% (Maximum Expiratory Flow at 50%), MEF25%, and MMEF75/25% (Maximum Mid-expiratory Flow between 75% and 25%), while in severe MCTD-PH, FeNO levels were negatively correlated with R20% (Resistance at 20 Hz); (3) ROC (Receiving operator characteristic curve) analysis indicated that the optimal cutoff value of FeNO for diagnosing severe IPAH was 23ppb; (4) While FeNO levels tend to be negatively correlated with peakPETO2(peak end-tidal partial pressure for oxygen) in severe IPAH, in mild IPAH they had a positive correlation to peakO2/Heart rate (HR). An interesting find was observed in cases of severe MCTD-PH, where FeNO levels were negatively correlated with HR and respiratory exchange ratio (RER), while positively correlated with O2/HR throughout the cardiopulmonary exercise test. CONCLUSION: FeNO levels serve as a non-invasive measure of IPAH severity. Although FeNO levels may not assess the severity of MCTD-PH, their significant makes them a valuable tool when assessing severe MCTD-PH.


Asunto(s)
Prueba de Esfuerzo , Hipertensión Pulmonar Primaria Familiar , Enfermedad Mixta del Tejido Conjuntivo , Óxido Nítrico , Humanos , Femenino , Masculino , Persona de Mediana Edad , Adulto , Enfermedad Mixta del Tejido Conjuntivo/complicaciones , Óxido Nítrico/análisis , Óxido Nítrico/metabolismo , Hipertensión Pulmonar Primaria Familiar/fisiopatología , Hipertensión Pulmonar Primaria Familiar/diagnóstico , Hipertensión Pulmonar Primaria Familiar/complicaciones , Biomarcadores/análisis , Biomarcadores/metabolismo , Pruebas de Función Respiratoria , Prueba de Óxido Nítrico Exhalado Fraccionado , Índice de Severidad de la Enfermedad , Hipertensión Pulmonar/fisiopatología , Hipertensión Pulmonar/diagnóstico , Péptido Natriurético Encefálico/metabolismo , China , Anciano
16.
Int J Mol Sci ; 25(13)2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-39000343

RESUMEN

Mesenchymal stem cells (MSCs) have shown great potential for the treatment of liver injuries, and the therapeutic efficacy greatly depends on their homing to the site of injury. In the present study, we detected significant upregulation of hepatocyte growth factor (HGF) in the serum and liver in mice with acute or chronic liver injury. In vitro study revealed that upregulation of miR-9-5p or miR-221-3p promoted the migration of human MSCs (hMSCs) toward HGF. Moreover, overexpression of miR-9-5p or miR-221-3p promoted hMSC homing to the injured liver and resulted in significantly higher engraftment upon peripheral infusion. hMSCs reduced hepatic necrosis and inflammatory infiltration but showed little effect on extracellular matrix (ECM) deposition. By contrast, hMSCs overexpressing miR-9-5p or miR-221-3p resulted in not only less centrilobular necrosis and venous congestion but also a significant reduction of ECM deposition, leading to obvious improvement of hepatocyte morphology and alleviation of fibrosis around central vein and portal triads. Further studies showed that hMSCs inhibited the activation of hepatic stellate cells (HSCs) but could not decrease the expression of TIMP-1 upon acute injury and the expression of MCP-1 and TIMP-1 upon chronic injury, while hMSCs overexpressing miR-9-5p or miR-221-3p led to further inactivation of HSCs and downregulation of all three fibrogenic and proinflammatory factors TGF-ß, MCP-1, and TIMP-1 upon both acute and chronic injuries. Overexpression of miR-9-5p or miR-221-3p significantly downregulated the expression of α-SMA and Col-1α1 in activated human hepatic stellate cell line LX-2, suggesting that miR-9-5p and miR-221-3p may partially contribute to the alleviation of liver injury by preventing HSC activation and collagen expression, shedding light on improving the therapeutic efficacy of hMSCs via microRNA modification.


Asunto(s)
Células Estrelladas Hepáticas , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , MicroARNs , MicroARNs/genética , MicroARNs/metabolismo , Humanos , Células Madre Mesenquimatosas/metabolismo , Células Estrelladas Hepáticas/metabolismo , Animales , Ratones , Trasplante de Células Madre Mesenquimatosas/métodos , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/terapia , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Masculino , Tetracloruro de Carbono/efectos adversos , Factor de Crecimiento de Hepatocito/metabolismo , Factor de Crecimiento de Hepatocito/genética , Ratones Endogámicos C57BL , Movimiento Celular
17.
Semin Cancer Biol ; 82: 150-161, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-33631296

RESUMEN

Cancer initiating/ stem cells (CSCs) undergo self-renewal and differentiation that contributes to tumor initiation, recurrence and metastasis in colorectal cancer (CRC). Targeting of colorectal cancer stem cells (CCSCs) holds significant promise in eradicating cancer cells and ultimately curing patients with cancer. In this review, we will introduce the current progress of CCSC studies, including the specific surface markers of CCSCs, the intrinsic signaling pathways that regulate the stemness and differentiation characteristics of CCSCs, and the tumor organoid model for CCSC research. We will focus on how these studies will lead to the progress in targeting specific surface markers or signaling pathways on CCSCs by monoclonal antibodies, or by natural or synthetic compounds, or by immunotherapy. As CSCs are highly heterogeneous and plastic, we suggest that combinatory approaches that target the stemness network may represent an important strategy for eradicating cancers.


Asunto(s)
Neoplasias Colorrectales , Línea Celular Tumoral , Transformación Celular Neoplásica/metabolismo , Humanos , Inmunoterapia , Células Madre Neoplásicas/metabolismo
18.
Radiology ; 307(5): e222488, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37191488

RESUMEN

Background Germline mutation in the BMPR2 gene is common in patients with pulmonary arterial hypertension (PAH). However, its association with imaging findings in these patients is, to the knowledge of the authors, unknown. Purpose To characterize distinctive pulmonary vascular abnormalities at CT and pulmonary artery angiography in patients with and without BMPR2 mutation. Materials and Methods In this retrospective study, chest CT scans, pulmonary artery angiograms, and genetic test data were acquired for patients diagnosed with idiopathic PAH (IPAH) or heritable PAH (HPAH) between January 2010 and December 2021. Perivascular halo, neovascularity, centrilobular ground-glass opacity (GGO), and panlobular GGO were evaluated at CT and graded on a four-point severity scale by four independent readers. Clinical characteristics and imaging features between patients with BMPR2 mutation and noncarriers were analyzed using the Kendall rank-order coefficient and the Kruskal-Wallis test. Results This study included 82 patients with BMPR2 mutation (mean age, 38 years ± 15 [SD]; 34 men; 72 patients with IPAH and 10 patients with HPAH) and 193 patients without the mutation, all with IPAH (mean age, 41 years ± 15; 53 men). A total of 115 patients (42%; 115 of 275) had neovascularity, and 56 patients (20%; 56 of 275) had perivascular halo at CT, and so-called frost crystals were observed on pulmonary artery angiograms in 14 of 53 (26%) patients. Compared with patients without BMPR2 mutation, patients with BMPR2 mutation more frequently showed two distinctive radiographic manifestations, perivascular halo and neovascularity (38% [31 of 82] vs 13% [25 of 193] in perivascular halo [P < .001] and 60% [49 of 82] vs 34% [66 of 193] in neovascularity [P < .001], respectively). "Frost crystals" were more frequent in patients with BMPR2 mutation compared with noncarriers (53% [10 of 19] vs 12% [four of 34]; P < .01). Severe perivascular halo frequently coexisted with severe neovascularity in patients with BMPR2 mutation. Conclusion Patients with PAH with BMPR2 mutation showed distinctive features at CT, specifically perivascular halo and neovascularity. This suggested a link between the genetic, pulmonary, and systemic manifestations that underly the pathogenesis of PAH. © RSNA, 2023 Supplemental material is available for this article.


Asunto(s)
Hipertensión Pulmonar , Hipertensión Arterial Pulmonar , Masculino , Humanos , Adulto , Hipertensión Pulmonar/diagnóstico por imagen , Hipertensión Pulmonar/genética , Estudios Retrospectivos , Mutación/genética , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/genética
19.
Small ; 19(36): e2301745, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37156743

RESUMEN

Freshwater scarcity crisis threatens human life and economic security. Collecting water from the fog seems to be an effective method to defuse this crisis. Nonetheless, the existing fog collection methods have the limitations of the low fog collection rate and efficiency because of their gravity-based droplet shedding. Here, the aforementioned limitations are resolved by proposing a new fog collection method based on the self-driven jet phenomenon of the mini fog droplets. A prototype fog collector (PFC) composed of a square container that is filled with water is first designed. Both sides of the PFC are superhydrophobic but covered with superhydrophilic pore array. The mini fog droplets touching the side wall are easily captured and spontaneously and rapidly penetrate into the pores to form jellyfish-like jets, which greatly increases the droplet shedding frequency, guaranteeing a higher fog collection rate and efficiency compared with the existing fog collection methods. Based on this, a more practical super-fast fog collector is finally successfully designed and fabricated which is assembled by several PFCs. This work is hoping to resolve the water crisis in some arid but foggy regions.

20.
Respir Res ; 24(1): 156, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37312153

RESUMEN

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is one of the world's leading causes of death and a major chronic respiratory disease. Aerobic exercise, the cornerstone of pulmonary rehabilitation, improves prognosis of COPD patients; however, few studies have comprehensively examined the changes in RNA transcript levels and the crosstalk between various transcripts in this context. This study identified the expression of RNA transcripts in COPD patients who engaged in aerobic exercise training for 12 weeks, and further constructions of the possible RNAs networks were made. METHODS: Peripheral blood samples for all four COPD patients who benefited from 12 weeks of PR were collected pre- and post-aerobic exercises and evaluated for the expression of mRNA, miRNA, lncRNA, and circRNA with high-throughput RNA sequencing followed by GEO date validation. In addition, enrichment analyses were conducted on different expressed mRNAs. LncRNA-mRNA and circRNA-mRNA coexpression networks, as well as lncRNA-miRNA-mRNA and circRNA-miRNA-mRNA competing expression networks (ceRNAs) in COPD were constructed. RESULTS: We identified and analyzed the differentially expressed mRNAs and noncoding RNAs in the peripheral blood of COPD patients' post-exercise. Eighty-six mRNAs, 570 lncRNAs, 8 miRNAs, and 2087 circRNAs were differentially expressed. Direct function enrichment analysis and Gene Set Variation Analysis showed that differentially expressed RNAs(DE-RNAs) correlated with several critical biological processes such as chemotaxis, DNA replication, anti-infection humoral response, oxidative phosphorylation, and immunometabolism, which might affect the progression of COPD. Some DE-RNAs were validated by Geo databases and RT-PCR, and the results were highly correlated with RNA sequencing. We constructed ceRNA networks of DE-RNAs in COPD. CONCLUSIONS: The systematic understanding of the impact of aerobic exercise on COPD was achieved using transcriptomic profiling. This research offers a number of potential candidates for clarifying the regulatory mechanisms that exercise has on COPD, which could ultimately help in understanding the pathophysiology of COPD.


Asunto(s)
MicroARNs , Enfermedad Pulmonar Obstructiva Crónica , ARN Largo no Codificante , Humanos , Proyectos Piloto , Transcriptoma , ARN Circular/genética , ARN Largo no Codificante/genética , MicroARNs/genética , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Enfermedad Pulmonar Obstructiva Crónica/genética , Enfermedad Pulmonar Obstructiva Crónica/terapia , ARN Mensajero/genética , Ejercicio Físico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA