Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Stem Cells ; 41(4): 384-399, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-36648299

RESUMEN

Although electroacupuncture (EA) stimulation is a widely used therapy for chronic pain and comorbid psychiatric disorders, its long-term effects on chronic neuropathic pain-induced depression and the underlying mechanisms remain elusive. In the present study, we found that EA stimulation was able to restore adult neurogenesis in the ventral dentate gyrus (DG), by both increasing neuronal differentiation and restoring the normal morphology of newborn dendrites, in mice with spared nerve injury surgery. By ablating the Nestin+ neural stem cells (NSCs) via diphtheria toxin fragment A expression, we further proved that neurogenesis in the ventral DG was crucial to the long-term, but not the immediate antidepressant effect of EA, nor was it associated with nociception. Furthermore, we found that the restoration of neurogenesis was dependent on Tet1-mediated epigenetic modification upon EA treatment. Tet1 could bind to the promoter of the Prox1 gene, thus catalyzing its demethylation and facilitating its expression, which finally contributed to the restoration of neurogenesis and amelioration of depression-like behaviors induced by chronic neuropathic pain. Thus, we conclude that EA stimulation restores inhibited Tet1 expression in hippocampal NSCs of mice with chronic neuropathic pain, and increased Tet1 expression ameliorates hypermethylation of Prox1 and restores normal adult neurogenesis in the ventral DG, which contributes to the long-term antidepressant effect of EA.


Asunto(s)
Electroacupuntura , Neuralgia , Ratones , Animales , Depresión/complicaciones , Depresión/terapia , Neurogénesis , Hipocampo/metabolismo , Neuralgia/terapia , Neuralgia/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo
2.
Acta Pharmacol Sin ; 45(5): 945-958, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38326624

RESUMEN

Glutamatergic neurons in ventral pallidum (VPGlu) were recently reported to mediate motivational and emotional behavior, but its role in opioid addiction still remains to be elucidated. In this study we investigated the function of VPGlu in the context-dependent heroin taking and seeking behavior in male rats under the ABA renewal paradigm. By use of cell-type-specific fiber photometry, we showed that the calcium activity of VPGlu were inhibited during heroin self-administration and context-induced relapse, but activated after extinction in a new context. The drug seeking behavior was accompanied by the decreased calcium signal of VPGlu. Chemogenetic manipulation of VPGlu bidirectionally regulated heroin taking and seeking behavior. Anterograde tracing showed that the lateral habenula, one of the epithalamic structures, was the major output region of VPGlu, and its neuronal activity was consistent with VPGlu in different phases of heroin addiction and contributed to the motivation for heroin. VPGlu axon terminals in LHb exhibited dynamic activity in different phases of heroin addiction. Activation of VPGlu-LHb circuit reduced heroin seeking behavior during context-induced relapse. Furthermore, the balance of excitation/inhibition from VP to LHb was shifted to enhanced glutamate transmission after extinction of heroin seeking motivation. Overall, the present study demonstrated that the activity of VPGlu was involved in the regulation of heroin addiction and identified the VPGlu-LHb pathway as a potential intervention to reduce heroin seeking motivation.


Asunto(s)
Prosencéfalo Basal , Ácido Glutámico , Dependencia de Heroína , Neuronas , Ratas Sprague-Dawley , Animales , Masculino , Dependencia de Heroína/metabolismo , Dependencia de Heroína/psicología , Prosencéfalo Basal/metabolismo , Ácido Glutámico/metabolismo , Neuronas/metabolismo , Comportamiento de Búsqueda de Drogas , Heroína , Ratas , Autoadministración , Habénula/metabolismo
3.
Neurochem Res ; 48(5): 1531-1542, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36525124

RESUMEN

Our previous study found that activation of adenosine A1 receptor (A1R) induced phosphorylation of delta opioid receptor (DOR) and desensitization of its downstream signaling molecules, cAMP and Akt. To further investigate the effect of A1R agonist on DOR signaling and the underlying mechanism, we examined the effect of A1R activation upon binding of its agonist N6-cyclohexyl-adenosine (CHA) on DOR-mediated Raf-1/MEK/ERK activation, and found that prolonged CHA exposure resulted in downregulation of DOR-mediated Raf-1/MEK/ERK signaling pathway. CHA-treatment time dependently attenuated Raf-1-Ser338 phosphorylation induced by [D-Pen2,5] enkephalin (DPDPE), a specific agonist of DOR, and further caused downregulation of the Raf-1/MEK/ERK signaling pathway activated by DOR agonist. Moreover, CHA exposure time-dependently induced the phosphorylation of Raf-1-Ser289/296/301, the inhibitory phosphorylation sites that were regulated by negative feedback, thereby inhibiting activation of the MEK/ERK pathway, and this effect could be blocked by MEK inhibitor U0126. Finally, we proved that the heterologous desensitization of the Raf-1/MEK/ERK cascade was essential in the regulation of anti-nociceptive effect of DOR agonists by confirming that such effect was inhibited by pretreatment of CHA. Therefore, we conclude that the activation of A1R inhibits DOR-mediated MAPK signaling pathway via heterologous desensitization of the Raf-1/MEK/ERK cascade, which is a result of ERK-mediated Raf-1-Ser289/296/301 phosphorylation mediated by activation of A1R.


Asunto(s)
Receptor de Adenosina A1 , Receptores Opioides delta , Fosforilación , Receptor de Adenosina A1/metabolismo , Receptores Opioides delta/metabolismo , Analgésicos Opioides/farmacología , Retroalimentación , Transducción de Señal , Sistema de Señalización de MAP Quinasas , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo
4.
Acta Pharmacol Sin ; 44(3): 538-545, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36127507

RESUMEN

Aversive emotion of opioid withdrawal generates motivational state leading to compulsive drug seeking and taking. Kappa opioid receptor (KOR) and its endogenous ligand dynorphin have been shown to participate in the regulation of aversive emotion. In the present study, we investigated the role of dynorphin/KOR system in the aversive emotion following opioid withdrawal in acute morphine-dependent mice. We found that blockade of KORs before pairing by intracerebroventricular injection of KOR antagonist norBNI (20, 40 µg) attenuated the development of morphine withdrawal-induced conditioned place aversion (CPA) behavior. We further found that morphine withdrawal increased dynorphin A expression in the dorsal hippocampus, but not in the amygdala, prefrontal cortex, nucleus accumbens, and thalamus. Microinjection of norBNI (20 µg) into the dorsal hippocampus significantly decreased morphine withdrawal-induced CPA behavior. We further found that p38 MAPK was significantly activated in the dorsal hippocampus after morphine withdrawal, and the activation of p38 MAPK was blocked by pretreatment with norBNI. Accordingly, microinjection of p38 MAPK inhibitor SB203580 (5 µg) into the dorsal hippocampus significantly decreased morphine withdrawal-produced CPA behavior. This study demonstrates that upregulation of dynorphin/KOR system in the dorsal hippocampus plays a critical role in the formation of aversive emotion associated with morphine withdrawal, suggesting that KOR antagonists may have therapeutic value for the treatment of opioid withdrawal-induced mood-related disorders.


Asunto(s)
Dinorfinas , Síndrome de Abstinencia a Sustancias , Ratones , Animales , Dinorfinas/metabolismo , Receptores Opioides kappa , Morfina , Analgésicos Opioides/farmacología , Regulación hacia Arriba , Antagonistas de Narcóticos/farmacología , Hipocampo/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
5.
Addict Biol ; 28(9): e13323, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37644896

RESUMEN

Chronic exposure to methamphetamine (METH) causes severe and persistent cognitive impairment. The present study aimed to investigate the role of dynorphin/κ opioid receptor (KOR) system in the development of METH-induced cognitive impairment. We found that mice showed significant cognitive impairment in the novel object recognition test (NOR) following daily injections of METH (10 mg/kg) for seven consecutive days. Systemic blockade of KOR prevented METH-induced cognitive impairment by pretreatment of the selective KOR antagonist norBNI (10 mg/kg, i.p.) or KOR deletion. Then, significant increased dynorphin and KOR mRNA were observed exclusively in prelimbic cortex (PL) other than infralimbic cortex. Finally, microinjection with norBNI into PL also improved cognitive memory in METH-treated mice using NOR and spontaneous alternation behaviour test. Our results demonstrated that dynorphin/KOR system activation in PL may be a possible mechanism for METH-induced cognitive impairment and shed light on KOR antagonists as a potential neuroprotective agent against the cognitive deficits induced by drug abuse.


Asunto(s)
Trastornos del Conocimiento , Disfunción Cognitiva , Metanfetamina , Animales , Ratones , Dinorfinas , Receptores Opioides kappa , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/prevención & control , Metanfetamina/farmacología , Antagonistas de Narcóticos
6.
Biochem Biophys Res Commun ; 614: 219-224, 2022 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-35636221

RESUMEN

Cepharanthine is an alkaloid that isolated from Stephania cepharantha Hayata, however,its analgesic properties are unclear and the molecular targets that mediating Cepharanthine-induced analgesia are not explored yet. In the current study, mice pain models including hot plate, acetic acid-induced writhing and formalin tests were conducted to evaluate the antinociceptive actions of Cepharanthine. [3H]-ligand competitive binding assay was applied to determine the binding affinity and selectivity of Cepharanthine at κ, µ and δ opioid receptors. Cepharanthine-induced constipation was investigated using the small intestinal transit test. The results showed that intraperitoneal injection of Cepharanthine produced potent antinociception with an ED50 value of 24.5 mg/kg in the acetic acid-induced writhing test. In the formalin test, Cepharanthine produced moderate antinociception with the maximum analgesic activity of 42.6 ± 11.3% in phase I and 60.1 ± 7.7% in phase Ⅱ, respectively. Cepharanthine had no effects in the hot plate test. In vitro radioligand binding assay, Cepharanthine exhibited a high affinity for µ opioid receptors with a Ki value of 80 nM, without binding to κ and δ opioid receptors. Correspondingly, Cepharanthine-mediated antinociceptive effects were antagonized by pretreatment with opioid receptor antagonist naloxone. Cepharanthine also decreased the small intestine propulsion rates in the small intestinal transit test. Together, this study firstly demonstrates that Cepharanthine produces potent antinociception in acetic acid-induced visceral pain and moderate antinociception in formalin-induced inflammatory pain, and its mechanism of action may be through activation of µ opioid receptors.


Asunto(s)
Receptores Opioides delta , Receptores Opioides mu , Acetatos , Analgésicos/farmacología , Analgésicos/uso terapéutico , Analgésicos Opioides/farmacología , Animales , Bencilisoquinolinas , Modelos Animales de Enfermedad , Ratones , Dolor/tratamiento farmacológico , Receptores Opioides kappa/metabolismo
7.
Mol Psychiatry ; 26(4): 1162-1177, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-31576007

RESUMEN

Compelling evidence suggests that synaptic structural plasticity, driven by remodeling of the actin cytoskeleton, underlies addictive drugs-induced long-lasting behavioral plasticity. However, the signaling mechanisms leading to actin cytoskeleton remodeling remain poorly defined. DNA methylation is a critical mechanism used to control activity-dependent gene expression essential for long-lasting synaptic plasticity. Here, we provide evidence that DNA methyltransferase DNMT3a is degraded by the E2 ubiquitin-conjugating enzyme Ube2b-mediated ubiquitination in dorsal hippocampus (DH) of rats that repeatedly self-administrated heroin. DNMT3a degradation leads to demethylation in CaMKK1 gene promotor, thereby facilitating CaMKK1 expression and consequent activation of its downstream target CaMKIα, an essential regulator of spinogenesis. CaMKK1/CaMKIα signaling regulates actin cytoskeleton remodeling in the DH and behavioral plasticity by activation of Rac1 via acting Rac guanine-nucleotide-exchange factor ßPIX. These data suggest that Ube2b-dependent degradation of DNMT3a relieves a transcriptional brake on CaMKK1 gene and thus activates CaMKK1/CaMKIα/ßPIX/Rac1 cascade, leading to drug use-induced actin polymerization and behavior plasticity.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas , Alcaloides Opiáceos , Enzimas Ubiquitina-Conjugadoras , Animales , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina , ADN Metiltransferasa 3A , Factores de Intercambio de Guanina Nucleótido , Hipocampo , Plasticidad Neuronal/genética , Ratas , Transducción de Señal
8.
Mol Psychiatry ; 26(11): 6218-6236, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33963280

RESUMEN

Exposure to drugs of abuse induces alterations of dendritic spine morphology and density that has been proposed to be a cellular basis of long-lasting addictive memory and heavily depend on remodeling of its underlying actin cytoskeleton by the actin cytoskeleton regulators. However, the actin cytoskeleton regulators involved and the specific mechanisms whereby drugs of abuse alter their expression or function are largely unknown. Twinfilin (Twf1) is a highly conserved actin-depolymerizing factor that regulates actin dynamics in organisms from yeast to mammals. Despite abundant expression of Twf1 in mammalian brain, little is known about its importance for brain functions such as experience-dependent synaptic and behavioral plasticity. Here we show that conditioned morphine withdrawal (CMW)-induced synaptic structure and behavior plasticity depends on downregulation of Twf1 in the amygdala of rats. Genetically manipulating Twf1 expression in the amygdala bidirectionally regulates CMW-induced changes in actin polymerization, spine density and behavior. We further demonstrate that downregulation of Twf1 is due to upregulation of miR101a expression via a previously unrecognized mechanism involving CMW-induced increases in miR101a nuclear processing via phosphorylation of MeCP2 at Ser421. Our findings establish the importance of Twf1 in regulating opioid-induced synaptic and behavioral plasticity and demonstrate its value as a potential therapeutic target for the treatment of opioid addiction.


Asunto(s)
Analgésicos Opioides , Proteínas de Microfilamentos/metabolismo , Síndrome de Abstinencia a Sustancias , Citoesqueleto de Actina/metabolismo , Actinas , Analgésicos Opioides/metabolismo , Analgésicos Opioides/farmacología , Animales , Espinas Dendríticas/metabolismo , Ratas , Síndrome de Abstinencia a Sustancias/metabolismo , Sinapsis/metabolismo
9.
Acta Pharmacol Sin ; 43(7): 1646-1657, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34737418

RESUMEN

Dezocine, a synthetic opioid, introduced in 1970s as an analgesic, was redeveloped for relieving moderate to severe pain by Yangtze River Pharmaceutical Group in China in 2009. To date, dezocine occupies 45% of China's opioid analgesic market. Along with dezocine being a dominated painkiller, a certain amount of research was conducted to elucidate dezocine's action. In this review we summarize the current knowledge on the receptor, preclinical and clinical pharmacology of dezocine. Briefly, preclinical data show that dezocine is effective under varying pain conditions, particularly chronic neuropathic pain and cancer pain, through activation of opioid receptors, and inhibition of norepinephrine reuptake. Clinical data establish the effectiveness of dezocine either as a primary analgesic for postoperative pain management or a supplement for balanced analgesia. The receptor profile of dezocine is different from known pure µ agonists, and allows it to be used in combination with other opioids for additivity in efficacy or lower incidence of adverse effects.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes , Tetrahidronaftalenos , Analgésicos/farmacología , Analgésicos/uso terapéutico , Analgésicos Opioides/farmacología , Analgésicos Opioides/uso terapéutico , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/uso terapéutico , Humanos , Dolor , Tetrahidronaftalenos/farmacología , Tetrahidronaftalenos/uso terapéutico
10.
Acta Pharmacol Sin ; 43(3): 577-587, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34035484

RESUMEN

Major depression disorder is a severe and recurrent neuropsychological disorder characterized by lowered mood and social activity and cognitive impairment. Owing to unclear molecular mechanisms of depression, limited interventions are available in clinic. In this study we investigated the role of dynorphin/κ opioid receptor system in the development of depression. Mice were subjected to chronic social defeat stress for 14 days. Chronic social defeat stress induced significant social avoidance in mice characterized by decreased time duration in the interaction zone and increased time duration in the corner zone. Pre-administration of a κ opioid receptor antagonist norBNI (10 mg/kg, i.p.) could prevent the development of social avoidance induced by chronic social defeat stress. Social avoidance was not observed in κ opioid receptor knockout mice subjected to chronic social defeat stress. We further revealed that social defeat stress activated c-fos and ERK signaling in the amygdala without affecting the NAc, hippocampus and hypothalamus, and ERK activation was blocked by systemic injection of norBNI. Finally, the expression of dynorphin A, the endogenous ligand of κ opioid receptor, was significantly increased in the amygdala following social defeat stress; microinjection of norBNI into the amygdala prevented the development of depressive-like behaviors caused by social defeat stress. The present study demonstrates that upregulated dynorphin/κ opioid receptor system in the amygdala leads to the emergence of depression following chronic social defeat stress, and sheds light on κ opioid receptor antagonists as potential therapeutic agents for the prevention and treatment of depression following chronic stress.


Asunto(s)
Amígdala del Cerebelo/metabolismo , Trastorno Depresivo Mayor/patología , Dinorfinas/metabolismo , Receptores Opioides kappa/antagonistas & inhibidores , Conducta Social , Derrota Social , Animales , Conducta Animal , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Naltrexona/análogos & derivados , Naltrexona/farmacología , Proteínas Proto-Oncogénicas c-fos/metabolismo
11.
Acta Pharmacol Sin ; 43(6): 1372-1382, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34493813

RESUMEN

SLL-039 (N-cyclopropylmethyl-7α-4'-(N'-benzoyl) amino-phenyl-6,14-endoethano-tetrahydronorthebaine) and SLL-1206 (N-cyclopropylmethyl-7α-3'-(p-methoxybenzyl) amino-phenyl-6,14-endoethano-tetrahydronorthebaine) are two 4,5-epoxymorphinan-based high selective κ receptor agonists that we recently discovered. In the present study we characterized their pharmacological properties in comparison with arylacetamide-based typical κ agonist U50,488H. We showed that both SLL-039 and SLL-1206 produced potent and long-lasting antinociceptive actions in three different rodent models of pain via activation of κ opioid receptor. In hot-plate assay, the antinociceptive potency of SLL-039 and SLL-1206 increased about 11-and 17.3-fold compared to U50,488H and morphine, respectively, with ED50 values of 0.4 mg/kg. Following repeated administration, SLL-1206, SLL-039, and U50,488H all developed analgesic tolerance tested in hot-plate assay. U50,488H and SLL-039 produced antipruritic effects in a dose-dependent manner, whereas SLL-1206 displayed some antipruritic effects only at very low doses. In addition, SLL-1206 was capable of decreasing morphine-induced physical dependence. More importantly, SLL-039 and SLL-1206 at effective analgesic doses did not cause sedation and conditioned place aversion (CPA), whereas U50,488H did. In comparison with SLL-039, SLL-1206 caused similar antinociceptive responses, but fewer sedation and CPA. In conclusion, our results suggest that SLL-039 and SLL-1206 have potential to be developed as novel analgesic agents, and 4,5-expoxymorphinan scaffold is an attractive structure for the development of selective κ agonists with fewer side effects.


Asunto(s)
Antipruriginosos , Receptores Opioides kappa , 3,4-Dicloro-N-metil-N-(2-(1-pirrolidinil)-ciclohexil)-bencenacetamida, (trans)-Isómero/farmacología , Analgésicos/farmacología , Analgésicos/uso terapéutico , Bencilaminas , Morfinanos , Morfina/farmacología , Receptores Opioides kappa/agonistas , Tebaína/análogos & derivados
12.
J Neurosci ; 38(15): 3823-3839, 2018 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-29540548

RESUMEN

Itch is an unpleasant sensation that initiates scratching behavior. The itch-scratch reaction is a complex phenomenon that implicates supraspinal structures required for regulation of sensory, emotional, cognitive, and motivational aspects. However, the central mechanisms underlying the processing of itch and the interplay of the supraspinal regions and spinal cord in regulating itch-scratch processes are poorly understood. Here, we have shown that the neural projections from anterior cingulate cortex (ACC) to dorsal medial striatum (DMS) constitute a critical circuit element for regulating itch-related behaviors in the brains of male C57BL/6J mice. Moreover, we demonstrate that ACC-DMS projections selectively modulate histaminergic, but not nonhistaminergic, itch-related behavior. Furthermore, photoactivation of ACC-DMS projections has also no significant effects on pain behavior induced by thermal, mechanical, and chemical stimuli except for a relief on inflammatory pain evoked by formalin and complete Freund's adjuvant. We further demonstrate that the dorsal spinal cord exerts an inhibitory effect on itch signal from ACC-DMS projections through B5-I neurons, which represent a population of spinal inhibitory interneurons that mediate the inhibition of itch. Therefore, this study presents the first evidence that the ACC-DMS projections modulate histaminergic itch-related behavior and reveals an interplay between the supraspinal and spinal levels in histaminergic itch regulation.SIGNIFICANCE STATEMENT This study reveals that the projections from anterior cingulate cortex (ACC) to dorsal medial striatum (DMS) constitute a supraspinal circuit for modulation of histaminergic, but not nonhistaminergic, itch. Manipulation of ACC-DMS projections has no effect on acute pain sensation. Furthermore, the dorsal spinal cord exerts an inhibitory effect on itch signal from ACC-DMS projections through B5-I neurons. Understanding the supraspinal itch circuits is of great significance in the development of new therapies for chronic itch-related intractable diseases.


Asunto(s)
Cuerpo Estriado/fisiología , Giro del Cíngulo/fisiología , Histamina/metabolismo , Neuronas/fisiología , Prurito/fisiopatología , Animales , Cuerpo Estriado/citología , Giro del Cíngulo/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Nocicepción
13.
J Neurosci ; 37(30): 7096-7110, 2017 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-28630256

RESUMEN

Extinction of aversive memories has been a major concern in neuropsychiatric disorders, such as anxiety disorders and drug addiction. However, the mechanisms underlying extinction of aversive memories are not fully understood. Here, we report that extinction of conditioned place aversion (CPA) to naloxone-precipitated opiate withdrawal in male rats activates Rho GTPase Rac1 in the ventromedial prefrontal cortex (vmPFC) in a BDNF-dependent manner, which determines GABAA receptor (GABAAR) endocytosis via triggering synaptic translocation of activity-regulated cytoskeleton-associated protein (Arc) through facilitating actin polymerization. Active Rac1 is essential and sufficient for GABAAR endocytosis and CPA extinction. Knockdown of Rac1 expression within the vmPFC of rats using Rac1-shRNA suppressed GABAAR endocytosis and CPA extinction, whereas expression of a constitutively active form of Rac1 accelerated GABAAR endocytosis and CPA extinction. The crucial role of GABAAR endocytosis in the LTP induction and CPA extinction is evinced by the findings that blockade of GABAAR endocytosis by a dynamin function-blocking peptide (Myr-P4) abolishes LTP induction and CPA extinction. Thus, the present study provides first evidence that Rac1-dependent GABAAR endocytosis plays a crucial role in extinction of aversive memories and reveals the sequence of molecular events that contribute to learning experience modulation of synaptic GABAAR endocytosis.SIGNIFICANCE STATEMENT This study reveals that Rac1-dependent GABAAR endocytosis plays a crucial role in extinction of aversive memories associated with drug withdrawal and identifies Arc as a downstream effector of Rac1 regulations of synaptic plasticity as well as learning and memory, thereby suggesting therapeutic targets to promote extinction of the unwanted memories.


Asunto(s)
Reacción de Prevención/fisiología , Endocitosis/fisiología , Extinción Psicológica/fisiología , Memoria/fisiología , Corteza Prefrontal/fisiología , Receptores de GABA-A/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Animales , Masculino , Recuerdo Mental/fisiología , Ratas , Ratas Sprague-Dawley , Represión Psicológica
14.
Bioorg Med Chem ; 26(14): 4254-4263, 2018 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-30054192

RESUMEN

With the purpose of identifying novel selective κ opioid receptor (KOR) antagonists as potential antidepressants from nepenthone analogues, starting from N-nor-N-cyclopropylmethyl-nepenthone (SLL-020ACP), a highly selective and potent KOR agonist, a series of 7ß-methyl-nepenthone analogues was conceived, synthesized and assayed on opioid receptors based on the concept of hybridization. According to the pharmacological results, the functional reversal observed in orvinol analogues by introduction of 7ß-methyl substituent could not be reproduced in nepenthone analogues. Alternatively, introduction of 7ß-methyl substituent was associated with substantial loss of both subtype selectivity and potency but not efficacy for nepenthone analogues, which was not found in 7ß-methyl orvinol analogues. Surprisingly, SLL-603, a 7ß-methyl analogue of SLL-020ACP, was identified to be a KOR full agonist. The possible molecular mechanism for the heterogeneity in activity cliff was also investigated. In conclusion, 7ß-methyl substituent was a structural locus associated with activity cliff and demonstrated as a pharmacological heterogeneity between nepenthone and orvinol analogues that warrants further investigations.


Asunto(s)
Morfinanos/farmacología , Receptores Opioides kappa/agonistas , Animales , Células CHO , Células Cultivadas , Cricetulus , Relación Dosis-Respuesta a Droga , Modelos Moleculares , Estructura Molecular , Morfinanos/síntesis química , Morfinanos/química , Relación Estructura-Actividad
16.
Addict Biol ; 22(6): 1731-1742, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27549397

RESUMEN

Addiction is characterized by drug craving, compulsive drug taking and relapse, which is attributed to aberrant neuroadaptation in brain regions implicated in drug addiction, induced by changes in gene and protein expression in these regions after chronic drug exposure. Accumulating evidence suggests that the dorsal hippocampus (DH) plays an important role in mediating drug-seeking and drug-taking behavior and relapse. However, the molecular mechanisms underlying these effects of the DH are unclear. In the present study, we employed a label-free quantitative proteomic approach to analyze the proteins altered in the DH of heroin self-administering rats. A total of 4015 proteins were quantified with high confidence, and 361 proteins showed significant differences compared with the saline control group. Among them, cyclin-dependent kinase 5 (CDK5) and ras homolog family member B (RhoB) were up-regulated in rats with a history of extended access to heroin. Functionally, inhibition of CDK5 in the DH enhanced heroin self-administration, indicating that CDK5 signaling in the DH acts as a homeostatic compensatory mechanism to limit heroin-taking behavior, whereas blockade of the Rho-Rho kinase (ROCK) pathway attenuated context-induced heroin relapse, indicating that RhoB signaling in the DH is required for the retrieval (recall) of addiction memory. Our findings suggest that manipulation of CDK5 signaling in the DH may be essential in determining vulnerability to opiate taking, whereas manipulation of RhoB signaling in the DH may be essential in determining vulnerability to relapse. Overall, the present study suggests that the DH can exert dissociative effects on heroin addiction through CDK5 and RhoB signaling.


Asunto(s)
Quinasa 5 Dependiente de la Ciclina/metabolismo , Dependencia de Heroína/fisiopatología , Heroína/farmacología , Hipocampo/metabolismo , Transducción de Señal/efectos de los fármacos , Proteína de Unión al GTP rhoB/metabolismo , Animales , Conducta Animal/efectos de los fármacos , Quinasa 5 Dependiente de la Ciclina/efectos de los fármacos , Quinasa 5 Dependiente de la Ciclina/genética , Modelos Animales de Enfermedad , Comportamiento de Búsqueda de Drogas/efectos de los fármacos , Heroína/administración & dosificación , Dependencia de Heroína/genética , Dependencia de Heroína/metabolismo , Hipocampo/efectos de los fármacos , Masculino , Narcóticos/administración & dosificación , Narcóticos/farmacología , Proteómica/métodos , Ratas , Ratas Sprague-Dawley , Recurrencia , Autoadministración , Proteína de Unión al GTP rhoB/efectos de los fármacos , Proteína de Unión al GTP rhoB/genética
17.
Org Biomol Chem ; 13(20): 5656-73, 2015 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-25895552

RESUMEN

A novel series of 1-(pyrrolidin-1-ylmethyl)-2-[(3-oxo-indan)-formyl]-1,2,3,4-tetrahydroisoquinoline derivatives maj-3a-maj-3u were synthesized and evaluated in vitro for their binding affinity at κ-opioid receptors. Maj-3c displayed the highest affinity for κ-opioid receptors (Ki = 0.033 nM) among all the compounds evaluated. Furthermore, all four stereoisomers of compound 3c were prepared, and (1S,18S)-3c was identified as the most potent (Ki = 0.0059 nM) κ-opioid receptor agonist among the four stereoisomers. Maj-3c produced significant antinociception (ED50 = 0.000406 mg kg(-1)) compared to U-50,488H and original BRL 52580 in the acetic acid writhing assay, but its strong sedative effect (ED50 = 0.000568 mg kg(-1)) observed in the mouse rotation test reduced its druggability. To minimize the central nervous system side effects, a series of hydroxyl-containing analogs of maj-3c were synthesized, and maj-11a was found to be a potent κ-opioid receptor agonist (Ki = 35.13 nM). More importantly, the dose for the sedative effect (ED50 = 9.29 mg kg(-1)) of maj-11a was significantly higher than its analgesic dose (ED50 = 0.392 mg kg(-1)), which made it a promising peripheral analgesic candidate compound with weak sedative side effects.


Asunto(s)
Analgésicos/química , Analgésicos/farmacología , Descubrimiento de Drogas , Indanos/química , Indanos/farmacología , Sistema Nervioso Periférico/efectos de los fármacos , Receptores Opioides kappa/agonistas , Receptores Opioides mu/metabolismo , Tetrahidroisoquinolinas/química , Ácido Acético/metabolismo , Analgésicos/farmacocinética , Animales , Indanos/farmacocinética , Masculino , Ratones , Dimensión del Dolor , Ratas , Ratas Sprague-Dawley , Estereoisomerismo , Tetrahidroisoquinolinas/farmacocinética , Tetrahidroisoquinolinas/farmacología , Distribución Tisular
18.
Acta Pharmacol Sin ; 36(7): 783-90, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25982631

RESUMEN

Anxiety disorders are the most common and prevalent forms of psychiatric disease, although the biological basis of anxiety is not well understood. The dynorphin/κ opioid receptor system is widely distributed in the central nervous system and has been shown to play a critical role in modulating mood and emotional behaviors. In the present review, we summarize current literature relating to the role played by the dynorphin/κ opioid receptor system in anxiety and κ opioid receptor antagonists as potential therapeutic agents for the treatment of anxiety disorders.


Asunto(s)
Ansiedad/tratamiento farmacológico , Ansiedad/metabolismo , Dinorfinas/metabolismo , Receptores Opioides kappa/metabolismo , Animales , Ansiedad/psicología , Dinorfinas/antagonistas & inhibidores , Humanos , Antagonistas de Narcóticos/farmacología , Antagonistas de Narcóticos/uso terapéutico , Receptores Opioides kappa/antagonistas & inhibidores
19.
Acta Pharmacol Sin ; 36(12): 1437-43, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26567727

RESUMEN

AIM: Brain-derived neurotrophic factor (BDNF) plays an important role in learning and memory in multiple brain areas. In the present study, we investigated the roles of BDNF in aversive memories associated with conditioned drug withdrawal in acute morphine-dependent rats. METHODS: Conditioned place aversion (CPA) was induced in male SD rats exposed to a single dose of morphine (10 mg/kg, sc) followed by naloxone (0.3 mg/kg, sc). In some rats, BDNF receptor antagonist K252a (8.5 ng per side) or BDNF scavenger TrkB-FC (0.65 µg per side) was bilaterally microinjected into amygdala before naloxone injection. BDNF mRNA and protein expression levels in amygdala were detected after the behavior testing. RESULTS: CPA behavior was induced in rats by the naloxone-precipitated morphine withdrawal, which was accompanied by significantly increased levels of BDNF mRNA and protein in the amygdala. Bilateral microinjection of TrkB-FC or K252a into the amygdala completely blocked CPA behavior in the rats. CONCLUSION: Formation of aversive memories associated with conditioned drug withdrawal in acute morphine-dependent rats requires BDNF expression in the amygdala.


Asunto(s)
Amígdala del Cerebelo/efectos de los fármacos , Dependencia de Morfina/genética , Dependencia de Morfina/terapia , Naloxona/uso terapéutico , Antagonistas de Narcóticos/uso terapéutico , Receptor trkB/genética , Síndrome de Abstinencia a Sustancias/genética , Amígdala del Cerebelo/metabolismo , Amígdala del Cerebelo/fisiopatología , Animales , Terapia Aversiva , Masculino , Morfina/efectos adversos , Dependencia de Morfina/fisiopatología , Narcóticos/efectos adversos , ARN Mensajero/genética , Ratas Sprague-Dawley , Síndrome de Abstinencia a Sustancias/fisiopatología , Regulación hacia Arriba
20.
Acta Pharmacol Sin ; 36(7): 887-94, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26051109

RESUMEN

AIM: Tramadol is an atypical opioid analgesic with low potential for tolerance and addiction. However, its opioid activity is much lower than classic opiates such as morphine. To develop novel analgesic and further explore the structure activity relationship (SAR) of tramadol skeleton. METHODS: Based on a three-dimensional (3D) structure superimposition and molecular docking study, we found that M1 (the active metabolite of tramadol) and morphine have common pharmacophore features and similar binding modes at the µ opioid receptor in which the substituents on the nitrogen atom of both compounds faced a common hydrophobic pocket formed by Trp2936.48 and Tyr3267.43. In this study, N-phenethylnormorphine was docked to the µ opioid receptor. It was found that the N-substituted group of N-phenethylnormorphine extended into a hydrophobic pocket formed by Trp2936.48 and Tyr3267.43. This hydrophobic interaction may contribute to the improvement of its opioid activities as compared with morphine. The binding modes of M1, morphine and N-phenethylnormorphine overlapped, indicating that the substituent on the nitrogen atoms of the three compounds may adopt common orientations. A series of N-phenylalkyl derivatives from the tramadol scaffold were designed, synthesized and assayed in order to generate a new type of analgesics. RESULTS: As a result, compound 5b was identified to be an active candidate from these compounds. Furthermore, the binding modes of 5b and morphine derivatives in the µ opioid receptor were comparatively studied. CONCLUSION: Unlike morphine-derived structures in which bulky N-substitution is associated with improved opioid-like activities, there seems to be a different story for tramadol, suggesting the potential difference of SAR between these compounds. A new type of interaction mechanism in tramadol analogue (5b) was discovered, which will help advance potent tramadol-based analgesic design.


Asunto(s)
Diseño de Fármacos , Receptores Opioides mu/metabolismo , Tramadol/análogos & derivados , Tramadol/metabolismo , Animales , Sitios de Unión/fisiología , Células CHO , Cricetinae , Cricetulus , Evaluación Preclínica de Medicamentos/métodos , Humanos , Ligandos , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA