Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 602(7898): 606-611, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35197620

RESUMEN

Two-dimensional materials with monolayer thickness and extreme aspect ratios are sought for their high surface areas and unusual physicochemical properties1. Liquid exfoliation is a straightforward and scalable means of accessing such materials2, but has been restricted to sheets maintained by strong covalent, coordination or ionic interactions3-10. The exfoliation of molecular crystals, in which repeat units are held together by weak non-covalent bonding, could generate a greatly expanded range of two-dimensional crystalline materials with diverse surfaces and structural features. However, at first sight, these weak forces would seem incapable of supporting such intrinsically fragile morphologies. Against this expectation, we show here that crystals composed of discrete supramolecular coordination complexes can be exfoliated by sonication to give free-standing monolayers approximately 2.3 nanometres thick with aspect ratios up to approximately 2,500:1, sustained purely by apolar intermolecular interactions. These nanosheets are characterized by atomic force microscopy and high-resolution transmission electron microscopy, confirming their crystallinity. The monolayers possess complex chiral surfaces derived partly from individual supramolecular coordination complex components but also from interactions with neighbours. In this respect, they represent a distinct type of material in which molecular components are all equally exposed to their environment, as if in solution, yet with properties arising from cooperation between molecules, because of crystallinity. This unusual nature is reflected in the molecular recognition properties of the materials, which bind carbohydrates with strongly enhanced enantiodiscrimination relative to individual molecules or bulk three-dimensional crystals.


Asunto(s)
Microscopía de Fuerza Atómica , Microscopía Electrónica de Transmisión
2.
J Am Chem Soc ; 146(17): 11855-11865, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38634945

RESUMEN

Creating structural defects in a controlled manner within metal-organic frameworks (MOFs) poses a significant challenge for synthesis, and concurrently, identifying the types and distributions of these defects is also a formidable task for characterization. In this study, we demonstrate that by employing 2-sulfonylterephthalic acid as the ligand for synthesizing Zr (or Hf)-based MOFs, a crystal phase transformation from the common fcu topology to the rare jmt topology can be easily facilitated using a straightforward mixed-solvent strategy. The jmt phase, characterized by an extensively open framework, can be considered a derivative of the fcu phase, generated through the introduction of missing-cluster defects. We have explicitly identified both MOF phases, their intermediate states, and the novel core-shell structures they form using ultralow-dose high-resolution transmission electron microscopy. In addition to facilitating phase engineering, the incorporation of sulfonic groups in MOFs imparts ionic selectivity, making them applicable for osmotic energy harvesting through mixed matrix membrane fabrication. The membrane containing the jmt-phase MOF exhibits an exceptionally high peak power density of 10.08 W m-2 under a 50-fold salinity gradient (NaCl: 0.5 M|0.01 M), which surpasses the threshold of 5 W m-2 for commercial applications and can be attributed to the combination of large pore size, extensive porosity, and abundant sulfonic groups in this novel MOF material.

3.
Angew Chem Int Ed Engl ; 63(26): e202405553, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38594220

RESUMEN

Oxime ethers are attractive compounds in medicinal scaffolds due to the biological and pharmaceutical properties, however, the crucial and widespread step of industrial oxime formation using explosive hydroxylamine (NH2OH) is insecure and troublesome. Herein, we present a convenient method of oxime ether synthesis in a one-pot tandem electrochemical system using magnesium based metal-organic framework-derived magnesium oxide anchoring in self-supporting carbon nanofiber membrane catalyst (MgO-SCM), the in situ produced NH2OH from nitrogen oxides electrocatalytic reduction coupled with aldehyde to produce 4-cyanobenzaldoxime with a selectivity of 93 % and Faraday efficiency up to 65.1 %, which further reacted with benzyl bromide to directly give oxime ether precipitate with a purity of 97 % by convenient filtering separation. The high efficiency was attributed to the ultrafine MgO nanoparticles in MgO-SCM, effectively inhibiting hydrogen evolution reaction and accelerating the production of NH2OH, which rapidly attacked carbonyl of aldehydes to form oximes, but hardly crossed the hydrogenation barrier of forming amines, thus leading to a high yield of oxime ether when coupling benzyl bromide nucleophilic reaction. This work highlights the importance of kinetic control in complex electrosynthetic organonitrogen system and demonstrates a green and safe alternative method for synthesis of organic nitrogen drug molecules.

4.
Nat Mater ; 21(10): 1183-1190, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35941363

RESUMEN

The development of membranes that block solutes while allowing rapid water transport is of great importance. The microstructure of the membrane needs to be rationally designed at the molecular level to achieve precise molecular sieving and high water flux simultaneously. We report the design and fabrication of ultrathin, ordered conjugated-polymer-framework (CPF) films with thicknesses down to 1 nm via chemical vapour deposition and their performance as separation membranes. Our CPF membranes inherently have regular rhombic sub-nanometre (10.3 × 3.7 Å) channels, unlike membranes made of carbon nanotubes or graphene, whose separation performance depends on the alignment or stacking of materials. The optimized membrane exhibited a high water/NaCl selectivity of ∼6,900 and water permeance of ∼112 mol m-2 h-1 bar-1, and salt rejection >99.5% in high-salinity mixed-ion separations driven by osmotic pressure. Molecular dynamics simulations revealed that water molecules quickly and collectively pass through the membrane by forming a continuous three-dimensional network within the hydrophobic channels. The advent of ordered CPF provides a route towards developing carbon-based membranes for precise molecular separation.


Asunto(s)
Grafito , Nanotubos de Carbono , Polímeros , Cloruro de Sodio , Agua/química
5.
Appl Environ Microbiol ; 89(1): e0173222, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36533965

RESUMEN

Marine cyanobacteria contribute to approximately half of the ocean primary production, and their biomass is limited by low iron (Fe) bioavailability in many regions of the open seas. The mechanisms by which marine cyanobacteria overcome Fe limitation remain unclear. In this study, multiple Fe uptake pathways have been identified in a coastal strain of Synechococcus sp. strain PCC 7002. A total of 49 mutants were obtained by gene knockout methods, and 10 mutants were found to have significantly decreased growth rates compared to the wild type (WT). The genes related to active Fe transport pathways such as TonB-dependent transporters and the synthesis and secretion of siderophores are found to be essential for the adaptation of Fe limitation in Synechococcus sp. PCC 7002. By comparing the Fe uptake pathways of this coastal strain with other open-ocean cyanobacterial strains, it can be concluded that the Fe uptake strategies from different cyanobacteria have a strong relationship with the Fe bioavailability in their habitats. The evolution and adaptation of cyanobacterial iron acquisition strategies with the change of iron environments from ancient oceans to modern oceans are discussed. This study provides new insights into the diversified strategies of marine cyanobacteria in different habitats from temporal and spatial scales. IMPORTANCE Iron (Fe) is an important limiting factor of marine primary productivity. Cyanobacteria, the oldest photosynthetic oxygen-evolving organisms on the earth, play crucial roles in marine primary productivity, especially in the oligotrophic ocean. How they overcome Fe limitation during the long-term evolution process has not been fully revealed. Fe uptake mechanisms of cyanobacteria have been partially studied in freshwater cyanobacteria but are largely unknown in marine cyanobacterial species. In this paper, the characteristics of Fe uptake mechanisms in a coastal model cyanobacterium, Synechococcus sp. PCC 7002, were studied. Furthermore, the relationship between Fe uptake strategies and Fe environments of cyanobacterial habitats has been revealed from temporal and spatial scales, which provides a good case for marine microorganisms adapting to changes in the marine environment.


Asunto(s)
Hierro , Synechococcus , Hierro/metabolismo , Synechococcus/genética , Synechococcus/metabolismo , Transporte Biológico , Sideróforos/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
6.
J Am Chem Soc ; 144(7): 3182-3191, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35157426

RESUMEN

With the development of ultralow-dose (scanning) transmission electron microscopy ((S)TEM) techniques, atomic-resolution imaging of highly sensitive nanomaterials has recently become possible. However, applying these techniques to the study of sensitive bulk materials remains challenging due to the lack of suitable specimen preparation methods. We report that cryogenic focused ion beam (cryo-FIB) can provide a solution to this challenge. We successfully extracted thin specimens from metal-organic framework (MOF) crystals and a hybrid halide perovskite single-crystal film solar cell using cryo-FIB without damaging the inherent structures. The high quality of the specimens enabled the subsequent (S)TEM and electron diffraction studies to reveal complex unknown local structures at an atomic resolution. The obtained structural information allowed us to resolve planar defects in MOF HKUST-1, three-dimensionally reconstruct a concomitant phase in MOF UiO-66, and discover a new CH3NH3PbI3 structure and locate its distribution in a single-crystal film perovskite solar cell. This proof-of-concept study demonstrates that cryo-FIB has a unique ability to handle highly sensitive materials, which can substantially expand the range of applications for electron microscopy.

7.
J Am Chem Soc ; 144(47): 21502-21511, 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36332199

RESUMEN

Electrochemical CO2 conversion is a promising way for sustainable chemical fuel production, yet the conversion efficiency is strongly limited by the sluggish kinetics and complex reaction pathways. Here we report the ultrathin conjugated metalloporphyrin covalent organic framework epitaxially grown on graphene as a two-dimensional van der Waals heterostructure to catalyze CO2 reduction. Operando X-ray absorption and density functional theory calculations reveal the strong interlayer coupling leads to electron-deficient metal centers and speeds up electrocatalysis. The Co(III)-N4 centers exhibit a CO Faradaic efficiency of 97% at a partial current density of 8.2 mA cm-2 in an H-cell, along with a stable running over 30 h. The selectivity of CO approached 99% with a partial current density of 191 mA cm-2 in a liquid flow cell, and the turnover frequency achieved 50 400 h-1 at -1.15 V vs RHE, outperforming most reported organometallic frameworks. This work highlights the key role of strong electronic coupling between van der Waals layers for accelerating the dynamics of CO2 conversion.

8.
Environ Microbiol ; 24(2): 551-565, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-33817959

RESUMEN

In oligotrophic oceans, low bioavailability of Fe is a key factor limiting primary productivity. However, excessive Fe in cells leads to the Fenton reaction, which is toxic to cells. Cyanobacteria must strictly maintain intracellular Fe homeostasis. Here, we knocked out a series of genes encoding efflux systems in Synechocystis sp. PCC 6803, and found eight genes that are required for high Fe detoxification. Unexpectedly, the HlyBD-TolC efflux system plays an important role in the adaptation of Synechocystis under Fe-deficient conditions. Mutants of HlyD and TolC grew worse than the wild-type strain under low-Fe conditions and showed significantly lower intracellular Fe contents than the wild-type strain. We excluded the possibility that the low Fe sensitivity of the HlyBD-TolC mutants was caused by a loss of the S-layer, the main extracellular protein secreted via this efflux system. Inactivation of the HlyD protein influenced type IV pili formation and direct inactivation of type IV pili related genes affected the adaptation to low-Fe conditions. HlyBD-TolC system is likely involved in the formation of type IV pili and indirectly influenced Fe acquisition. Our findings suggest that efflux system in non-siderophore-producing cyanobacteria can facilitate Fe uptake and help cells adapt to Fe-deficient conditions via novel pathways.


Asunto(s)
Synechocystis , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Transporte Biológico/genética , Fimbrias Bacterianas/metabolismo , Homeostasis , Hierro/metabolismo , Synechocystis/genética , Synechocystis/metabolismo
9.
Nat Mater ; 20(3): 362-369, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33020610

RESUMEN

The synthesis of molecular-sieving zeolitic membranes by the assembly of building blocks, avoiding the hydrothermal treatment, is highly desired to improve reproducibility and scalability. Here we report exfoliation of the sodalite precursor RUB-15 into crystalline 0.8-nm-thick nanosheets, that host hydrogen-sieving six-membered rings (6-MRs) of SiO4 tetrahedra. Thin films, fabricated by the filtration of a suspension of exfoliated nanosheets, possess two transport pathways: 6-MR apertures and intersheet gaps. The latter were found to dominate the gas transport and yielded a molecular cutoff of 3.6 Å with a H2/N2 selectivity above 20. The gaps were successfully removed by the condensation of the terminal silanol groups of RUB-15 to yield H2/CO2 selectivities up to 100. The high selectivity was exclusively from the transport across 6-MR, which was confirmed by a good agreement between the experimentally determined apparent activation energy of H2 and that computed by ab initio calculations. The scalable fabrication and the attractive sieving performance at 250-300 °C make these membranes promising for precombustion carbon capture.

10.
Molecules ; 27(21)2022 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-36363972

RESUMEN

Direct conversion of methane to methanol is an effective and practical process to improve the efficiency of natural gas utilization. Copper (Cu)-based catalysts have attracted great research attention, due to their unique ability to selectively catalyze the partial oxidation of methane to methanol at relatively low temperatures. In recent decades, many different catalysts have been studied to achieve a high conversion of methane to methanol, including the Cu-based enzymes, Cu-zeolites, Cu-MOFs (metal-organic frameworks) and Cu-oxides. In this mini review, we will detail the obtained evidence on the exact state of the active Cu sites on these various catalysts, which have arisen from the most recently developed techniques and the results of DFT calculations. We aim to establish the structure-performance relationship in terms of the properties of these materials and their catalytic functionalities, and also discuss the unresolved questions in the direct conversion of methane to methanol reactions. Finally, we hope to offer some suggestions and strategies for guiding the practical applications regarding the catalyst design and engineering for a high methanol yield in the methane oxidation reaction.


Asunto(s)
Metanol , Zeolitas , Metano , Dominio Catalítico , Catálisis
11.
J Am Chem Soc ; 143(9): 3509-3518, 2021 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-33621078

RESUMEN

Two-dimensional (2D) materials with highly ordered in-plane nanopores are crucial for numerous applications, but their rational synthesis and local structural characterization remain two grand challenges. We illustrate here that single-crystalline ultrathin 2D MOF nanosheets (MONs) with intrinsic porosity can be prepared by exfoliating layered metal-organic frameworks (MOFs), whose layers are stabilized by sterically bulky groups. As a result, three three-dimensional (3D) isostructural lanthanide MOFs possessing porous layer structures are constructed by coordinating metal ions with an angular dicarboxylate linker derived from chiral 1,1'-biphenyl phosphoric acid with pendant mesityl groups. The Eu-MOF is readily ultrasonic exfoliated into single-crystalline nanosheets with a thickness of ca. 6.0 nm (2 layers) and a lateral size of 1.5 × 3.0 µm2. The detailed structural information, i.e., the pore channels and individual organic and inorganic building units in the framework, is clearly visualized by a low-dose high-resolution transmission electron microscopy (HRTEM) technique. Benefiting from their ultrathin feature, the nanosheets are well embedded into the polymer matrix to form free-standing mixed-matrix membranes. In both the solution and membrane phase, the fluorescence of the MONs can be effectively quenched by a total of 17 chiral terpenes and terpenoids through supramolecular interactions with uncoordinated chiral phosphoric acids, leading to a chiral optical sensor for detecting vapor enantiomers, which is among the most challenging molecular recognition tasks.

12.
J Am Chem Soc ; 143(17): 6681-6690, 2021 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-33887909

RESUMEN

A bottom-up chemical synthesis of metal-organic frameworks (MOFs) permits significant structural diversity because of various combinations of metal centers and different organic linkers. However, fabrication generally complies with the classic hard and soft acids and bases (HSAB) theory. This restricts direct synthesis of desired MOFs with converse Lewis type of metal ions and ligands. Here we present a top-down strategy to break this limitation via the structural cleavage of MOFs to trigger a phase transition using a novel "molecular scalpel". A conventional CuBDC MOF (BDC = 1,4-benzenedicarboxylate) prepared from a hard acid (Cu2+) metal and a hard base ligand was chemically cleaved by l-ascorbic acid acting as chemical scalpel to fabricate a new Cu2BDC structure composed of a soft acid (Cu1+) and a hard base (BDC). Controlled phase transition was achieved by a series of redox steps to regulate the chemical state and coordination number of Cu ions, resulting in a significant change in chemical composition and catalytic activity. Mechanistic insights into structural cleavage and rearrangement are elaborated in detail. We show this novel strategy can be extended to general Cu-based MOFs and supramolecules for nanoscopic casting of unique architectures from existing ones.

13.
J Am Chem Soc ; 143(13): 5201-5211, 2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-33764061

RESUMEN

Noble metals manifest themselves with unique electronic structures and irreplaceable activity toward a wide range of catalytic applications but are unfortunately restricted by limited choice of geometric structures spanning single atoms, clusters, nanoparticles, and bulk crystals. Herein, we propose how to overcome this limitation by integrating noble metal atoms into the lattice of transition metal oxides to create a new type of hybrid structure. This study shows that iridium single atoms can be accommodated into the cationic sites of cobalt spinel oxide with short-range order and an identical spatial correlation as the host lattice. The resultant Ir0.06Co2.94O4 catalyst exhibits much higher electrocatalytic activity than the parent oxide by 2 orders of magnitude toward the challenging oxygen evolution reaction under acidic conditions. Because of the strong interaction between iridium and cobalt oxide support, the Ir0.06Co2.94O4 catalyst shows significantly improved corrosion resistance under acidic conditions and oxidative potentials. This work eliminates the "close-packing" limitation of noble metals and offers promising opportunity to create analogues with desired topologies for various catalytic applications.

14.
J Am Chem Soc ; 143(50): 21364-21378, 2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-34881868

RESUMEN

Atomically dispersed noble metal catalysts have drawn wide attention as candidates to replace supported metal clusters and metal nanoparticles. Atomic dispersion can offer unique chemical properties as well as maximum utilization of the expensive metals. Addition of a second metal has been found to help reduce the size of Pt ensembles in bimetallic clusters; however, the stabilization of isolated Pt atoms in small nests of nonprecious metal atoms remains challenging. We now report a novel strategy for the design, synthesis, and characterization of a zeolite-supported propane dehydrogenation catalyst that incorporates predominantly isolated Pt atoms stably bonded within nests of Zn atoms located within the nanoscale pores of dealuminated zeolite Beta. The catalyst is stable in long-term operation and exhibits high activity and high selectivity to propene. Atomic resolution images, bolstered by X-ray absorption spectra, demonstrate predominantly atomic dispersion of the Pt in the nests and, with complementary infrared and nuclear magnetic resonance spectra, determine a structural model of the nested Pt.

15.
J Am Chem Soc ; 143(18): 7144-7153, 2021 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-33908757

RESUMEN

The production of 1-butene by ethylene dimerization is an important chemical industrial process currently implemented using homogeneous catalysts. Here, we describe a highly active heterogeneous catalyst (Ni-ZIF-8) for ethylene dimerization, which consists of isolating Ni-active sites selectively located on the crystal surface of a zeolitic imidazolate framework. Ni-ZIF-8 can be easily prepared by a simple one-pot synthesis method in which site-specific anchoring of Ni is achieved spontaneously because of the incompatibility between the d8 electronic configuration of Ni2+ and the three-dimensional framework of ZIF-8. The full exposure and square-planar coordination of the Ni sites accounts for the high catalytic activity of Ni-ZIF-8. It exhibits an average ethylene turnover frequency greater than 1 000 000 h-1 (1-butene selectivity >85%) at 35 °C and 50 bar, far exceeding the activities of previously reported heterogeneous catalysts and many homogeneous catalysts under similar conditions. Moreover, compared to molecular Ni complexes used as homogeneous catalysts for ethylene dimerization, Ni-ZIF-8 has significantly higher stability and shows constant activity during 4 h of continuous reaction. Isotopic labeling experiments indicate that ethylene dimerization over Ni-ZIF-8 follows the Cossee-Arlman mechanism, and detailed characterizations combined with density functional theory calculations rationalize this observed high activity.

16.
Proc Natl Acad Sci U S A ; 115(20): 5093-5098, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29712826

RESUMEN

Amino acids are the building blocks for protein biosynthesis and find use in myriad industrial applications including in food for humans, in animal feed, and as precursors for bio-based plastics, among others. However, the development of efficient chemical methods to convert abundant and renewable feedstocks into amino acids has been largely unsuccessful to date. To that end, here we report a heterogeneous catalyst that directly transforms lignocellulosic biomass-derived α-hydroxyl acids into α-amino acids, including alanine, leucine, valine, aspartic acid, and phenylalanine in high yields. The reaction follows a dehydrogenation-reductive amination pathway, with dehydrogenation as the rate-determining step. Ruthenium nanoparticles supported on carbon nanotubes (Ru/CNT) exhibit exceptional efficiency compared with catalysts based on other metals, due to the unique, reversible enhancement effect of NH3 on Ru in dehydrogenation. Based on the catalytic system, a two-step chemical process was designed to convert glucose into alanine in 43% yield, comparable with the well-established microbial cultivation process, and therefore, the present strategy enables a route for the production of amino acids from renewable feedstocks. Moreover, a conceptual process design employing membrane distillation to facilitate product purification is proposed and validated. Overall, this study offers a rapid and potentially more efficient chemical method to produce amino acids from woody biomass components.


Asunto(s)
Aminoácidos/metabolismo , Biomasa , Nanopartículas/química , Nanotubos de Carbono/química , Aminoácidos/química , Catálisis , Hidrogenación , Níquel/química , Rutenio/química
17.
Nano Lett ; 20(10): 7469-7475, 2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-32881534

RESUMEN

The integration of high-k gate dielectrics with two-dimensional (2D) semiconducting channel materials is essential for high-performance and low-power electronics. However, the conformal deposition of a uniform high-k dielectric with sub-1 nm equivalent oxide thickness (EOT) and high interface quality on high-mobility 2D semiconductors is still challenging. Here, we report a facile approach to synthesize a uniform high-k (εr ∼ 22) amorphous native oxide Bi2SeOx on the high-mobility 2D semiconducting Bi2O2Se using O2 plasma at room temperature. The conformal native oxide can directly serve as gate dielectrics with EOT of ∼0.9 nm, while the original properties of underlying 2D Bi2O2Se is preserved. Furthermore, high-resolution area-selective oxidation of Bi2O2Se is achieved to fabricate discrete electronic components. This facile integration of a high-mobility 2D semiconductor and its high-k native oxide holds high promise for next-generation nanoelectronics.

18.
Angew Chem Int Ed Engl ; 60(6): 3047-3054, 2021 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-33191586

RESUMEN

By manipulating the nucleation and growth of solid materials, the synthesis of various sophisticated nanostructures has been achieved. Similar methodology, if applied to liquids, could enable the mass-production and control of ultra-small droplets at the scale of nanoparticles (10-18  L or below). It would be highly desirable since droplets play a fundamental role in numerous applications. Here we present a general strategy to synthesize and manipulate nanoscale droplets, similar to what has been done to solid nanoparticles in classic solution-synthesis. It was achieved by a solute-induced phase separation which initiates the nucleation of droplets from a homogeneous solution. These liquid nanoparticles have great potentials to be manipulated like their solid counterparts, borrowing from the vast methodologies of nanoparticle synthesis, such as burst nucleation, seeded growth, and co-precipitation. Liquid nanoparticles also serve as a general synthetic platform, to fabricate nanoreactors, drug-loaded carriers, and other hollow nanostructures with a variety of shell materials.

19.
Angew Chem Int Ed Engl ; 60(45): 24227-24233, 2021 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-34473888

RESUMEN

In this study, we successfully solve polymorphs A and B of zeolite EMM-17, which can only crystallize in sub-micrometer-sized crystals while containing complex stacking disorders, from the three-dimensional (3D) electron diffraction (ED) data. This is the first time that the atomic structure of this polymorph has been ab initio solved, and the result reveals a unique 10(12)×10(12)×11-ring channel system. Moreover, we acquire the first atomic-resolution images of EMM-17 using integrated differential phase-contrast scanning transmission electron microscopy. The images allow us to directly observe polymorphs B and C and discover a large number of local structural defects. Based on structural features unraveled from the reciprocal-space 3D ED data and real-space images, we propose a series of energetically feasible local structures in EMM-17. We also demonstrate that the unique porous structure of EMM-17 enables efficient kinetic separation of C6 alkane isomers.

20.
J Am Chem Soc ; 142(9): 4213-4222, 2020 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-32041401

RESUMEN

Oxide-/hydroxide-derived copper electrodes exhibit excellent selectivity toward C2+ products during the electrocatalytic CO2 reduction reaction (CO2RR). However, the origin of such enhanced selectivity remains controversial. Here, we prepared two Cu-based electrodes with mixed oxidation states, namely, HQ-Cu (containing Cu, Cu2O, CuO) and AN-Cu (containing Cu, Cu(OH)2). We extracted an ultrathin specimen from the electrodes using a focused ion beam to investigate the distribution and evolution of various Cu species by electron microscopy and electron energy loss spectroscopy. We found that at the steady stage of the CO2RR, the electrodes have all been reduced to Cu0, regardless of the initial states, suggesting that the high C2+ selectivities are not associated with specific oxidation states of Cu. We verified this conclusion by control experiments in which HQ-Cu and AN-Cu were pretreated to fully reduce oxides/hydroxides to Cu0, and the pretreated electrodes showed even higher C2+ selectivity compared with their unpretreated counterparts. We observed that the oxide/hydroxide crystals in HQ-Cu and AN-Cu were fragmented into nanosized irregular Cu grains under the applied negative potentials. Such a fragmentation process, which is the consequence of an oxidation-reduction cycle and does not occur in electropolished Cu, not only built an intricate network of grain boundaries but also exposed a variety of high-index facets. These two features greatly facilitated the C-C coupling, thus accounting for the enhanced C2+ selectivity. Our work demonstrates that the use of advanced characterization techniques enables investigating the structural and chemical states of electrodes in unprecedented detail to gain new insights into a widely studied system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA