Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 145(36): 19707-19714, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37578936

RESUMEN

The susceptibility to moisture of metal-organic frameworks (MOFs) is a critical bottleneck for their wider practical application. Constructing core-shell composites has been postulated as an effective strategy for enhancing moisture resistance, but for fragile MOFs this has rarely been accomplished. We report herein, for the first time, the construction of a customized hydrophobic porous shell, NTU-COF, on the particularly fragile MOF-5 by a "Plug-Socket Anchoring" strategy. Notably, the pore structure of MOF-5 was well maintained, and it could still achieve complete CO2/N2 separation under humid conditions. The homogeneous interface between MOF-5 and NTU-COF has been inspected at atomic resolution by a combination of cryogenic focused ion beam (cryo-FIB) and ultralow-dose (scanning) transmission electron microscope giving profound insight into the mechanism of assembly of the core-shell structure. This work presents a facile strategy for the fabrication of a hydrophobic porous shell for labile MOFs, and provides a general approach for solving the problem of moisture instability of porous materials for practical applications.

2.
Angew Chem Int Ed Engl ; 62(37): e202308579, 2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37486880

RESUMEN

Developing hydrogen-bonded organic frameworks (HOFs) that combine functional sites, size control, and storage capability for targeting gas molecule capture is a novel and challenging venture. However, there is a lack of effective strategies to tune the hydrogen-bonded network to achieve high-performance HOFs. Here, a series of HOFs termed as HOF-ZSTU-M (M=1, 2, and 3) with different pore structures are obtained by introducing structure-directing agents (SDAs) into the hydrogen-bonding network of tetrakis (4-carboxyphenyl) porphyrin (TCPP). These HOFs have distinct space configurations with pore channels ranging from discrete to continuous multi-dimensional. Single-crystal X-ray diffraction (SCXRD) analysis reveals a rare diversity of hydrogen-bonding models dominated by SDAs. HOF-ZSTU-2, which forms a strong layered hydrogen-bonding network with ammonium (NH4 + ) through multiple carboxyl groups, has a suitable 1D "pearl-chain" channel for the selective capture of propylene (C3 H6 ). At 298 K and 1 bar, the C3 H6 storage density of HOF-ZSTU-2 reaches 0.6 kg L-1 , representing one of the best C3 H6 storage materials, while offering a propylene/propane (C3 H6 /C3 H8 ) selectivity of 12.2. Theoretical calculations and in situ SCXRD provide a detailed analysis of the binding strength of C3 H6 at different locations in the pearl-chain channel. Dynamic breakthrough tests confirm that HOF-ZSTU-2 can effectively separate C3 H6 from multi-mixtures.

3.
Molecules ; 27(17)2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-36080377

RESUMEN

The flue gas from fossil fuel power plants is a long-term stable and concentrated emission source of CO2, and it is imperative to reduce its emission. Adsorbents have played a pivotal role in reducing CO2 emissions in recent years, but the presence of water vapor in flue gas poses a challenge to the stability of adsorbents. In this study, ZIF-94, one of the ZIF adsorbents, showed good CO2 uptake (53.30 cm3/g), and the calculated CO2/N2 (15:85, v/v) selectivity was 54.12 at 298 K. Because of its excellent structural and performance stability under humid conditions, the CO2/N2 mixture was still well-separated on ZIF-94 with a separation time of 30.4 min when the relative humidity was as high as 99.2%, which was similar to the separation time of the dry gas experiments (33.2 min). These results pointed to the enormous potential applications of ZIF-94 for CO2/N2 separation under high humidity conditions in industrial settings.


Asunto(s)
Estructuras Metalorgánicas , Adsorción , Dióxido de Carbono/química , Humedad , Estructuras Metalorgánicas/química , Centrales Eléctricas
4.
Angew Chem Int Ed Engl ; 61(8): e202116850, 2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-34964235

RESUMEN

Methane (CH4 ) enrichment and purification is of great significance for increasing the heating value of unconventional natural gas sources and curtailing its effect on global warming. For a long time, commercial adsorbents for CH4 separation have been hampered by low adsorption capacities, sub-optimal adsorption selectivities, or slow diffusion rates, which have significantly restricted separation productivity. Herein, we report a facile and green seed-passaging method to fabricate donut-like macro-meso-micro hierarchical zeolite K-Chabazite nanocrystal aggregates. This consecutive seed-inducing method requires no organic template. By utilizing this unique nanocrystallization technique, the CH4 adsorption capacity, gas diffusion rate, and separation productivity of the resultant material are dramatically increased compared with those of commercially available adsorbents, thus setting a new benchmark in CH4 /N2 separation. More importantly, production of this adsorbent can be easily scaled-up to the order of 100 kg using readily available raw materials in this environmentally friendly synthetic route, enabling potential industrial implementation.

5.
Angew Chem Int Ed Engl ; 60(37): 20400-20406, 2021 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-34219344

RESUMEN

Adsorptive separation of propylene/propane (C3 H6 /C3 H8 ) mixture is desired for its potential energy saving on replacing currently deployed and energy-intensive cryogenic distillation. Realizing efficient C3 H6 /C3 H8 separation in the emerging hydrogen-bonded organic frameworks (HOFs) is very challenging owing to the lack of functional sites for preferential gas binding. By virtue of crystal engineering, we herein report a functionalized HOF (HOF-16) with free -COOH sites for the efficient separation of C3 H6 /C3 H8 mixtures. Under ambient conditions, HOF-16 shows a significant C3 H6 /C3 H8 uptake difference (by 76 %) and selectivity (5.4) in contrast to other carboxylic acid-based HOFs. Modeling studies indicate that free -COOH groups together with the suitable pore confinement facilitate the recognition and high-density packing of gas molecules. The separation performance of HOF-16 was validated by breakthrough experiments. HOF-16 is stable towards strong acidity and water.

6.
Environ Sci Technol ; 54(6): 3636-3642, 2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-32068395

RESUMEN

NH3 is the most important gaseous alkaline pollutant, which when accumulated at high concentrations can have a serious impact on animal and human health. More importantly, NH3 emissions will react with acidic pollutant gases to form particulate matter (PM2.5) in the atmosphere, which also poses a huge threat to human activities. The use of adsorbents for NH3 removal from emission sources or air is an urgent issue. However, there are difficulties in the compatibility between high adsorption capacity and recyclability for most conventional adsorbents. In this work, a structural transformation strategy using metal-organic frameworks (MOFs) is proposed for large-scale and recyclable NH3 adsorption. A series of M(BDC) (M = Cu, Zn, Cd) materials can transform into one-dimensional M(BDC)(NH3)2 after NH3 adsorption, resulting in repeatable adsorption capacities of 17.2, 14.1, and 7.4 mmol/g, respectively. These MOFs can be completely regenerated at 250 °C for 80 min with no adsorption capacity loss. Besides, breakthrough and cycle tests indicate that Cu(BDC) and Zn(BDC) show good performance in the removal of low concentrations of NH3 from the air. Overall, combining the advantages of high adsorption capacity and recyclability due to the reversible structural transformation, Cu(BDC) and Zn(BDC) can be employed as ideal adsorbent candidates for NH3 removal.


Asunto(s)
Amoníaco , Estructuras Metalorgánicas , Adsorción , Cadmio , Zinc
7.
J Colloid Interface Sci ; 669: 258-264, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38718579

RESUMEN

For ethylene purification, C2H6-selective metal-organic frameworks (MOFs) show great potential to directly produce polymer-grade C2H4 from C2H6/C2H4 mixtures. Most C2H6-traping MOFs are ultra-microporous structures so as to strengthen multiple supramolecular interactions with C2H6. However, the narrowed pore channels of C2H6-traping MOFs cause large guest diffusion barriers, greatly hampering their practical applications. Herein, we present a feasible strategy by precisely constructing hierarchically porous MOF@COF core-shell structures to address this issue. Additional mesoporous diffusion channels were incorporated between MOF crystals through the construction of the COF shell, thereby enhancing the gas adsorption kinetics. Notably, designing a core-shell MOF@COF structure with an optimal coating amount of mesoporous COF shell will further improve the gas diffusion rate. Breakthrough experiments reveal that the tailored MOF@COF composites can effectively achieve C2H6/C2H4 separation and maintain its separation performance over five continuous measurement cycles. This investigation opens up a new avenue to solve the diffusion/transfer issues and provides more opportunities and potentials for MOF@COF composites in practical separation applications.

8.
J Colloid Interface Sci ; 656: 538-544, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38007945

RESUMEN

In the petrochemical industry, obtaining polymer-grade ethylene from complex light-hydrocarbon mixtures by one-step separation is important and challenging. Here, we successfully prepared the Metal-Azolate Framework 7 (MAF-7) with pore chemistry and geometry control to realize the one-step separation of ethylene from cracking gas with up to quinary gas mixtures (propane/propylene/ethane/ethylene/acetylene). Based on the tailor-made pore environment, MAF-7 exhibited better selective adsorption of propane, propylene, ethane and acetylene than ethylene, and the adsorption ratios of ethane/ethylene and propylene/ethylene are as high as 1.49 and 2.81, respectively. The pore geometry design of MAF-7 leads to the unique weak binding affinity and adsorption site for ethylene molecules, which is clearly proved by Grand Canonical Monte Carlo theoretical calculations. The breakthrough experiments show that ethylene can be directly obtained from binary, ternary, and quinary gas mixtures. These comprehensive properties show that MAF-7 is expected to achieve one-step purification of ethylene in complex light hydrocarbon mixtures.

9.
ACS Appl Mater Interfaces ; 13(1): 962-969, 2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-33370532

RESUMEN

The separation of ethylene (C2H4) from C2 hydrocarbons is considered as one of the most difficult and important processes in the petrochemical industry. Heat-driven cryogenic distillation is still widely used in the C2 hydrocarbons separation realms, which is an energy intensive process and takes up immense space. In response to a greener, more energy-efficient sustainable development, we successfully synthesized a multifunction microporous Mg-based MOF [Mg2(TCPE)(µ2-OH2)(DMA)2]·solvents (NUM-9) with C2H6/C2H2 selectivity based on a physical adsorption mechanism, and with outstanding stability; especially, it is stable up to 500 °C under an air atmosphere. NUM-9a (activated NUM-9) shows good performances in the separation of C2H6/C2H2 from raw ethylene gases. In addition, its actual separation potential is also examined by IAST and dynamic column breakthrough experiments. GCMC calculation results indicate that the unique structure of NUM-9a is primarily conducive to the selective adsorption of C2H6 and C2H2. More importantly, compared with C2H4, NUM-9a prefers to selectively adsorb C2H6 and C2H2 simultaneously, which makes NUM-9a as a sorbent have the capacity to separate C2H4 from C2 hydrocarbon mixtures under mild conditions through a greener and energy-efficient separation strategy.

10.
Chem Sci ; 12(25): 8803-8810, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34257880

RESUMEN

Functional nanoporous materials are widely explored for CO2 separation, in particular, small-pore aluminosilicate zeolites having a "trapdoor" effect. Such an effect allows the specific adsorbate to push away the sited cations inside the window followed by exclusive admission to the zeolite pores, which is more advantageous for highly selective CO2 separation. Herein, we demonstrated that the protonated organic structure-directing agent in the small-pore silicoaluminophosphate (SAPO) RHO zeolite can be directly exchanged with Na+, K+, or Cs+ and that the Na+ form of SAPO-RHO exhibited unprecedented separation for CO2/CH4, superior to all of the nanoporous materials reported to date. Rietveld refinement revealed that Na+ is sited in the center of the single eight-membered ring (s8r), while K+ and Cs+ are sited in the center of the double 8-rings (d8rs). Theoretical calculations showed that the interaction between Na+ and the s8r in SAPO-RHO was stronger than that in aluminosilicate RHO, giving an enhanced "trapdoor" effect and record high selectivity for CO2 with the separation factor of 2196 for CO2/CH4 (0.02/0.98 bar). The separation factor of Na-SAPO-RHO for CO2/N2 was 196, which was the top level among zeolitic materials. This work opens a new avenue for gas separation by using diverse silicoaluminophosphate zeolites in terms of the cation-tailored "trapdoor" effect.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA