Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Entropy (Basel) ; 26(7)2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39056960

RESUMEN

Due to the information non-independence of attributes, combined with a complex and changeable environment, the analysis of risks faces great difficulties. In view of this problem, this paper proposes a new three-way decision-making (3WD) method, combined with prospect theory and a non-additive measure, to cope with multi-source and incomplete risk information systems. Prospect theory improves the loss function of the original 3WD model, and the combination of non-additive measurement and probability measurement provides a new perspective to understand the meaning of decision-making, which could measure the relative degree by considering expert knowledge and objective data. The theoretical basis and framework of this model are illustrated, and this model is applied to a real in-service aviation equipment structures risk evaluation problem involving multiple incomplete risk information sources. When the simulation analysis is carried out, the results show that the availability of this method is verified. This method can also evaluate and rank key risk factors in equipment structures, which provides a reliable basis for decisions in aviation safety management.

2.
Front Neurosci ; 18: 1297671, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38505773

RESUMEN

The direct utilization of low-light images hinders downstream visual tasks. Traditional low-light image enhancement (LLIE) methods, such as Retinex-based networks, require image pairs. A spiking-coding methodology called intensity-to-latency has been used to gradually acquire the structural characteristics of an image. convLSTM has been used to connect the features. This study introduces a simplified DCENet to achieve unsupervised LLIE as well as the spiking coding mode of a spiking neural network. It also applies the comprehensive coding features of convLSTM to improve the subjective and objective effects of LLIE. In the ablation experiment for the proposed structure, the convLSTM structure was replaced by a convolutional neural network, and the classical CBAM attention was introduced for comparison. Five objective evaluation metrics were compared with nine LLIE methods that currently exhibit strong comprehensive performance, with PSNR, SSIM, MSE, UQI, and VIFP exceeding the second place at 4.4% (0.8%), 3.9% (17.2%), 0% (15%), 0.1% (0.2%), and 4.3% (0.9%) on the LOL and SCIE datasets. Further experiments of the user study in five non-reference datasets were conducted to subjectively evaluate the effects depicted in the images. These experiments verified the remarkable performance of the proposed method.

3.
ScientificWorldJournal ; 2013: 826514, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24000278

RESUMEN

The flow-field characteristics of high-temperature annular buoyant jets as well as the development laws influenced by ventilation system were studied using numerical methods to eliminate the pollutants effectively in this paper. The development laws of high-temperature annular buoyant jets were analyzed and compared with previous studies, including radial velocity distribution, axial velocity and temperature decay, reattachment position, cross-section diameter, volumetric flow rate, and velocity field characteristics with different pressures at the exhaust hood inlet. The results showed that when the ratio of outer diameter to inner diameter of the annulus was smaller than 5/2, the flow-field characteristics had significant difference compared to circular buoyant jets with the same outer diameter. For similar diameter ratios, reattachment in this paper occurred further downstream in contrast to previous study. Besides, the development laws of volumetric flow rate and cross-section diameter were given with different initial parameters. In addition, through analyzing air distribution characteristics under the coupling effect of high-temperature annular buoyant jets and ventilation system, it could be found that the position where maximum axial velocity occurred was changing gradually when the pressure at the exhaust hood inlet changed from 0 Pa to -5 Pa.


Asunto(s)
Calor , Ventilación
4.
Nat Commun ; 11(1): 5496, 2020 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-33127896

RESUMEN

Mechanical anisotropy is an essential property for many biomolecules to assume their structures, functions and applications, however, the mechanisms for their direction-dependent mechanical responses remain elusive. Herein, by using a single-molecule nanopore sensing technique, we explore the mechanisms of directional mechanical stability of the xrRNA1 RNA from ZIKA virus (ZIKV), which forms a complex ring-like architecture. We reveal extreme mechanical anisotropy in ZIKV xrRNA1 which highly depends on Mg2+ and the key tertiary interactions. The absence of Mg2+ and disruption of the key tertiary interactions strongly affect the structural integrity and attenuate mechanical anisotropy. The significance of ring structures in RNA mechanical anisotropy is further supported by steered molecular dynamics simulations in combination with force distribution analysis. We anticipate the ring structures can be used as key elements to build RNA-based nanostructures with controllable mechanical anisotropy for biomaterial and biomedical applications.


Asunto(s)
Fenómenos Bioquímicos , Exorribonucleasas/genética , Exorribonucleasas/metabolismo , ARN Viral/química , Virus Zika/genética , Anisotropía , Humanos , Magnesio/metabolismo , Fenómenos Mecánicos , Simulación de Dinámica Molecular , Conformación de Ácido Nucleico , Pliegue del ARN , ARN Viral/genética , Infección por el Virus Zika/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA