Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell ; 170(3): 492-506.e14, 2017 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-28753426

RESUMEN

Interferon-α (IFNα) signaling is essential for antiviral response via induction of IFN-stimulated genes (ISGs). Through a non-biased high-throughput RNAi screening of 711 known epigenetic modifiers in cellular models of IFNα-mediated inhibition of HBV replication, we identified methyltransferase SETD2 as a critical amplifier of IFNα-mediated antiviral immunity. Conditional knockout mice with hepatocyte-specific deletion of Setd2 exhibit enhanced HBV infection. Mechanistically, SETD2 directly mediates STAT1 methylation on lysine 525 via its methyltransferase activity, which reinforces IFN-activated STAT1 phosphorylation and antiviral cellular response. In addition, SETD2 selectively catalyzes the tri-methylation of H3K36 on promoters of some ISGs such as ISG15, leading to gene activation. Our study identifies STAT1 methylation on K525 catalyzed by the methyltransferase SETD2 as an essential signaling event for IFNα-dependent antiviral immunity and indicates potential of SETD2 in controlling viral infections.


Asunto(s)
Virus de la Hepatitis B/fisiología , Hepatitis B Crónica/inmunología , N-Metiltransferasa de Histona-Lisina/metabolismo , Interferón-alfa/inmunología , Factor de Transcripción STAT1/genética , Animales , Línea Celular , Línea Celular Tumoral , Epigénesis Genética , Hepatitis B Crónica/virología , Hepatocitos/metabolismo , Histonas/metabolismo , Humanos , Ratones , Fosforilación , Dominios Proteicos , Interferencia de ARN , Transcripción Genética , Replicación Viral
2.
Immunity ; 50(3): 600-615.e15, 2019 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-30824325

RESUMEN

CCR7 chemokine receptor stimulation induces rapid but transient dendritic cell (DC) migration toward draining lymph nodes, which is critical for the initiation of protective immunity and maintenance of immune homeostasis. The mechanisms for terminating CCR7-mediated DC migration remain incompletely understood. Here we have identified a long non-coding RNA lnc-Dpf3 whose feedback restrained CCR7-mediated DC migration. CCR7 stimulation upregulated lnc-Dpf3 via removing N6-methyladenosine (m6A) modification to prevent RNA degradation. DC-specific lnc-Dpf3 deficiency increased CCR7-mediated DC migration, leading to exaggerated adaptive immune responses and inflammatory injuries. Mechanistically, CCR7 stimulation activated the HIF-1α transcription factor pathway in DCs, leading to metabolic reprogramming toward glycolysis for DC migration. lnc-Dpf3 directly bound to HIF-1α and suppressed HIF-1α-dependent transcription of the glycolytic gene Ldha, thus inhibiting DC glycolytic metabolism and migratory capacity. We demonstrate a critical role for CCR7-inducible lnc-Dpf3 in coupling epigenetic and metabolic pathways to feedback-control DC migration and inflammatory responses.


Asunto(s)
Movimiento Celular/genética , Proteínas de Unión al ADN/genética , Glucólisis/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Receptores CCR7/genética , Factores de Transcripción/genética , Inmunidad Adaptativa/genética , Animales , Línea Celular , Células Dendríticas/patología , Epigénesis Genética/genética , Regulación de la Expresión Génica/genética , Células HEK293 , Humanos , Inflamación/genética , Inflamación/patología , Ganglios Linfáticos/patología , Redes y Vías Metabólicas/genética , Ratones , Ratones Endogámicos C57BL , Transcripción Genética/genética , Regulación hacia Arriba/genética
3.
Immunity ; 49(4): 640-653.e5, 2018 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-30332630

RESUMEN

Tissue-resident mast cells are associated with many inflammatory and physiological processes. Although mast cells arise from the yolk sac, the exact ontogeny of adult mast cells remains unclear. Here we have investigated the hematopoietic origin of mast cells using fate-mapping systems. We have shown that early erythro-myeloid progenitors (EMPs), late EMPs, and definitive hematopoietic stem cells (HSCs) each gave rise to mast cells in succession via an intermediate integrin ß7+ progenitor. From late embryogenesis to adult, early EMP-derived mast cells were largely replaced by late EMP-derived cells in most connective tissues except adipose and pleural cavity. Thus, mast cells with distinct origin displayed tissue-location preferences: early EMP-derived cells were limited to adipose and pleural cavity and late EMP-derived cells dominated most connective tissues, while HSC-derived cells were a main group in mucosa. Therefore, embryonic origin shapes the heterogeneity of adult mast cells, with diverse functions in immunity and development.


Asunto(s)
Células Eritroides/inmunología , Mastocitos/inmunología , Células Progenitoras Mieloides/inmunología , Animales , Linaje de la Célula/inmunología , Células Cultivadas , Tejido Conectivo/inmunología , Tejido Conectivo/metabolismo , Embrión de Mamíferos/citología , Embrión de Mamíferos/embriología , Embrión de Mamíferos/inmunología , Células Eritroides/citología , Células Eritroides/metabolismo , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/inmunología , Células Madre Hematopoyéticas/metabolismo , Cadenas beta de Integrinas/inmunología , Cadenas beta de Integrinas/metabolismo , Mastocitos/citología , Mastocitos/metabolismo , Ratones Transgénicos , Células Progenitoras Mieloides/citología , Células Progenitoras Mieloides/metabolismo
4.
Nat Immunol ; 15(7): 612-22, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24859449

RESUMEN

Excessive activation of dendritic cells (DCs) leads to the development of autoimmune and inflammatory diseases, which has prompted a search for regulators of DC activation. Here we report that Rhbdd3, a member of the rhomboid family of proteases, suppressed the activation of DCs and production of interleukin 6 (IL-6) triggered by Toll-like receptors (TLRs). Rhbdd3-deficient mice spontaneously developed autoimmune diseases characterized by an increased abundance of the TH17 subset of helper T cells and decreased number of regulatory T cells due to the increase in IL-6 from DCs. Rhbdd3 directly bound to Lys27 (K27)-linked polyubiquitin chains on Lys302 of the modulator NEMO (IKKγ) via the ubiquitin-binding-association (UBA) domain in endosomes. Rhbdd3 further recruited the deubiquitinase A20 via K27-linked polyubiquitin chains on Lys268 to inhibit K63-linked polyubiquitination of NEMO and thus suppressed activation of the transcription factor NF-κB in DCs. Our data identify Rhbdd3 as a critical regulator of DC activation and indicate K27-linked polyubiquitination is a potent ubiquitin-linked pattern involved in the control of autoimmunity.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/fisiología , Autoinmunidad , Células Dendríticas/inmunología , Interleucina-6/biosíntesis , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ubiquitinación , Animales , Interleucina-6/antagonistas & inhibidores , Lisina/metabolismo , Ratones , Ratones Endogámicos C57BL , FN-kappa B/fisiología , Estructura Terciaria de Proteína , Linfocitos T/inmunología , Receptores Toll-Like/fisiología
5.
J Med Virol ; 96(9): e29889, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39206862

RESUMEN

The SARS-CoV-2 Omicron variant is characterized by its high transmissibility, which has caused a worldwide epidemiological event. Yet, it turns ominous once the disease progression degenerates into severe pneumonia and sepsis, presenting a horrendous lethality. To elucidate the alveolar immune or inflammatory landscapes of Omicron critical-ill patients, we performed single-cell RNA-sequencing (scRNA-seq) of bronchoalveolar lavage fluid (BALF) from the patients with critical pneumonia caused by Omicron infection, and analyzed the correlation between the clinical severity scores and different immune cell subpopulations. In the BALF of Omicron critical patients, the alveolar violent myeloid inflammatory environment was determined. ISG15+ neutrophils and CXCL10+ macrophages, both expressed the interferon-stimulated genes (ISGs), were negatively correlated with clinical pulmonary infection score, while septic CST7+ neutrophils and inflammatory VCAN+ macrophages were positively correlated with sequential organ failure assessment. The percentages of ISG15+ neutrophils were associated with more protective alveolar epithelial cells, and may reshape CD4+ T cells to the exhaustive phenotype, thus preventing immune injuries. The CXCL10+ macrophages may promote plasmablast/plasma cell survival and activation as well as the production of specific antibodies. As compared to the previous BALF scRNA-seq data from SARS-CoV-2 wild-type/Alpha critical patients, the subsets of neutrophils and macrophages with pro-inflammatory and immunoregulatory features presented obvious distinctions, suggesting an immune disparity in Omicron variants. Overall, this study provides a BALF single-cell atlas of Omicron critical patients, and suggests that alveolar interferon-responsive neutrophils and macrophages may extricate SARS-CoV-2 Omicron critical patients from the nasty fate of sepsis.


Asunto(s)
Líquido del Lavado Bronquioalveolar , COVID-19 , Macrófagos , Neutrófilos , SARS-CoV-2 , Sepsis , Humanos , COVID-19/inmunología , COVID-19/virología , Neutrófilos/inmunología , Sepsis/inmunología , Sepsis/virología , SARS-CoV-2/inmunología , Masculino , Macrófagos/inmunología , Macrófagos/virología , Femenino , Persona de Mediana Edad , Líquido del Lavado Bronquioalveolar/virología , Líquido del Lavado Bronquioalveolar/inmunología , Líquido del Lavado Bronquioalveolar/citología , Anciano , Citocinas/inmunología , Interferones , Enfermedad Crítica , Adulto
6.
Bioorg Med Chem Lett ; 101: 129653, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38360420

RESUMEN

Gene-encoded aldehyde tag technology has been widely utilized in protein bioorthogonal chemistry and biotechnological application. Herein, we report utilization of the promiscuous rSAM cyclophane synthase SjiB involved in triceptide biosynthesis as a dedicated and highly efficient formylglycine synthase. The new aldehyde tag sequence in this system, YQSSI, is biosynthetically orthogonal to the known aldehyde tag (C/S)x(P/A)xR. The potential use of SjiB/YQSSI aldehyde tag system was further validated in fluorescent labelling of model proteins.


Asunto(s)
Aldehídos , Ciclofanos , Proteínas
7.
J Autoimmun ; 138: 103048, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37216870

RESUMEN

Metabolic reprogramming plays a pivotal role in the differentiation and function of immune cells including dendritic cells (DCs). Regulatory DCs can be generated in regional tissue niches like splenic stroma and act as an important part of stromal control of immune response for the maintenance of immune tolerance. However, the metabolic alterations during splenic stroma-driven regulatory DCs differentiation and the metabolic enzyme involved in regulatory DCs function remain poorly understood. By combining metabolomic, transcriptomic, and functional investigations of mature DCs (maDCs) and diffDCs (regulatory DCs differentiated from activated mature DCs through coculturing with splenic stroma), here we identified succinate-CoA ligase subunit beta Suclg2 as a key metabolic enzyme that reprograms the proinflammatory status of mature DCs into a tolerogenic phenotype via preventing NF-κB signaling activation. diffDCs downregulate succinic acid levels and increase the Suclg2 expression along with their differentiation from mature DCs. Suclg2-interference impaired the tolerogenic function of diffDCs in inducing T cell apoptosis and enhanced activation of NF-κB signaling and expression of inflammatory genes CD40, Ccl5, and Il12b in diffDCs. Furthermore, we identified Lactb as a new positive regulator of NF-κB signaling in diffDCs whose succinylation at the lysine 288 residue was inhibited by Suclg2. Our study reveals that the metabolic enzyme Suclg2 is required to maintain the immunoregulatory function of diffDCs, adding mechanistic insights into the metabolic regulation of DC-based immunity and tolerance.


Asunto(s)
Células Dendríticas , FN-kappa B , Diferenciación Celular , Células Dendríticas/inmunología , Regulación de la Expresión Génica , Tolerancia Inmunológica , FN-kappa B/metabolismo , Transducción de Señal , Succinato-CoA Ligasas/inmunología , beta-Lactamasas/inmunología
8.
BMC Med ; 20(1): 42, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35101045

RESUMEN

BACKGROUND: There is currently a lack of effective treatments for non-small cell lung cancer (NSCLC) patients harboring HER2 mutations. We examined the efficacy and safety of, and potential resistance mechanism to, pyrotinib, a pan-HER inhibitor, in advanced NSCLC carrying HER2 mutations. METHODS: In this multicenter, single-arm, phase II trial, stage IIIB-IV NSCLC patients harboring HER2 mutations, as determined using next-generation sequencing, were enrolled and treated with pyrotinib at a dose of 400 mg/day. The primary endpoint was 6-month progression-free survival (PFS) rate, and secondary endpoints were objective response rate (ORR), PFS, overall survival (OS), disease control rate (DCR), and safety. The impact of different HER2 mutation types on sensitivity to pyrotinib and the potential of utilizing mutational profile derived from circulating tumor DNA (ctDNA) to predict disease progression were also explored. RESULTS: Seventy-eight patients were enrolled for efficacy and safety analysis. The 6-month PFS rate was 49.5% (95% confidence interval [CI], 39.2-60.8). Pyrotinib produced an ORR of 19.2% (95% CI, 11.2-30.0), with median PFS of 5.6 months (95% CI, 2.8-8.4), and median OS of 10.5 months (95% CI, 8.7-12.3). The median duration of response was 9.9 months (95% CI, 6.2-13.6). All treatment-related adverse events (TRAEs) were grade 1-3 (all, 91.0%; grade 3, 20.5%), and the most common TRAE was diarrhea (all, 85.9%; grade 3, 16.7%). Patients with exon 20 and non-exon 20 HER2 mutations had ORRs of 17.7% and 25.0%, respectively. Brain metastases at baseline and prior exposure to afatinib were not associated with ORR, PFS, or OS. Loss of HER2 mutations and appearance of amplification in HER2 and EGFR were detected upon disease progression. CONCLUSIONS: Pyrotinib exhibited promising efficacy and acceptable safety in NSCLC patients carrying exon 20 and non-exon 20 HER2 mutations and is worth further investigation. TRIAL REGISTRATION: Chinese Clinical Trial Registry Identifier: ChiCTR1800020262.


Asunto(s)
Adenocarcinoma del Pulmón , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Acrilamidas/efectos adversos , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/genética , Aminoquinolinas/efectos adversos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Genes erbB-2/genética , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Mutación
9.
Immunity ; 39(3): 470-81, 2013 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-24012418

RESUMEN

Histone modifications play important roles in multiple physiological processes by regulating gene expression. However, the roles of histone modifications in immunity remain poorly understood. Here we report that Ash1l, a H3K4 methyltransferase, suppressed interleukin-6 (IL-6), and tumor necrosis factor (TNF) production in Toll-like receptor (TLR)-triggered macrophages, protecting mice from sepsis. Ash1l-silenced mice were more susceptible to autoimmune disease as a result of enhanced IL-6 production. Ash1l enhanced A20 expression through induction of H3K4 modification at the Tnfaip3 promoter via H3K4 methyltransferase activity of Ash1l SET (Su[var]3-9, E[z] and trithorax) domain. Ash1l suppressed NF-κB, mitogen-activated protein kinase (MAPK) pathways, and subsequent IL-6 production via facilitating A20-mediated NF-κB signal modulator NEMO and transducer TRAF6 deubiquitination. Therefore, Ash1l-mediated H3K4 methylation at the Tnfaip3 promoter is required for controlling innate IL-6 production and suppressing inflammatory autoimmune diseases, providing mechanistic insight into epigenetic modulation of immune responses and inflammation.


Asunto(s)
Enfermedades Autoinmunes/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Unión al ADN/metabolismo , Interleucina-6/biosíntesis , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Células Cultivadas , Cisteína Endopeptidasas , Proteínas de Unión al ADN/biosíntesis , Histonas/metabolismo , Inmunoglobulina A/sangre , Inmunoglobulina G/sangre , Inmunoglobulina M/sangre , Inflamación , Péptidos y Proteínas de Señalización Intracelular/biosíntesis , Macrófagos , Ratones , Ratones Noqueados , FN-kappa B/metabolismo , Regiones Promotoras Genéticas , Interferencia de ARN , ARN Interferente Pequeño , Sepsis/inmunología , Sepsis/prevención & control , Transducción de Señal , Factor 6 Asociado a Receptor de TNF/metabolismo , Receptores Toll-Like/metabolismo , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa , Factores de Necrosis Tumoral/biosíntesis , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/biosíntesis
10.
Nat Immunol ; 9(5): 542-50, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18391954

RESUMEN

Unbalanced production of proinflammatory cytokines and type I interferons in immune responses may lead to immunopathology; thus, the mechanisms that ensure the beneficial production of proinflammatory cytokines and type I interferons are of particular importance. Here we demonstrate that the phosphatase SHP-1 negatively regulated Toll-like receptor-mediated production of proinflammatory cytokines by inhibiting activation of the transcription factor NF-kappaB and mitogen-activated protein kinase. Simultaneously, SHP-1 increased the production of type I interferon mediated by Toll-like receptors and the helicase RIG-I by directly binding to and inhibiting activation of the kinase IRAK1. Our data demonstrate that SHP-1 contributes to immune homeostasis by balancing the production of proinflammatory cytokines and type I interferons in the innate immune response.


Asunto(s)
Interferón Tipo I/biosíntesis , Quinasas Asociadas a Receptores de Interleucina-1/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 6/metabolismo , Receptores Toll-Like/metabolismo , Animales , Dominio Catalítico/fisiología , Citocinas/biosíntesis , Homeostasis/inmunología , Inmunidad Innata , Factor 1 Regulador del Interferón/metabolismo , Quinasas Asociadas a Receptores de Interleucina-1/antagonistas & inhibidores , Quinasas Asociadas a Receptores de Interleucina-1/química , Macrófagos Peritoneales , Proteínas de la Membrana/inmunología , Ratones , Ratones Endogámicos C57BL , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , FN-kappa B/antagonistas & inhibidores , FN-kappa B/metabolismo , Proteínas del Tejido Nervioso/inmunología , Unión Proteica , Proteína Tirosina Fosfatasa no Receptora Tipo 6/inmunología , Receptores de Superficie Celular , Transducción de Señal , Receptores Toll-Like/inmunología
11.
Food Microbiol ; 80: 25-39, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30704594

RESUMEN

Bilberry (Vaccinium myrtillus L.) juice was fermented with Torulaspora delbrueckii (TD291 and TD70526) and Schizosaccharomyces pombe (SP3796 and SP70572) in pure fermentation as well as in sequential and simultaneous inoculations with Saccharomyces cerevisiae 1116 (SC1116). Altogether, 56 volatile compounds were identified and semi-quantified with HS-SPME-GC/MS in bilberry products. Yeast fermentation prominently enhanced the aroma complexity of bilberry with a sharp increase in alcohols, esters, aldehydes, and acetals. Compared to S. cerevisiae, T. delbrueckii produced less ethanol but more fusel alcohols that potentially enhance "alcohol" and "nail polish" odors in TD70526 and less "fruity" esters in TD291. SP70572 resulted in high productions of undesirable compounds of acetoin and acetaldehyde but a low content of higher alcohols and esters, SP3796 produced a high content of fatty acid ethyl esters and acetoin. In comparison with monoculture of non-Saccharomyces yeast, sequential and simultaneous cultures of S. pombe and S. cerevisiae significantly decreased the content of acetoin while increased the relative level of esters; sequential cultures of T. delbrueckii and S. cerevisiae remarkably increased the concentration of acetaldehyde; simultaneous inoculations of S. cerevisiae with TD70526 and TD291 significantly decreased the content of fusel alcohols and increased the content of esters, respectively. The findings suggested that non-Saccharomyces yeasts possess the potential to affect and modulate the aromatic profile of fermented bilberry products. Sequential and simultaneous inoculations with S. pombe strains and S. cerevisiae as well as simultaneous fermentation using T. delbrueckii strains and S. cerevisiae are optimal strategies to positively influence the aroma profile of bilberry wines.


Asunto(s)
Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/metabolismo , Torulaspora/metabolismo , Vaccinium myrtillus/metabolismo , Compuestos Orgánicos Volátiles/análisis , Vino/análisis , Antocianinas/metabolismo , Técnicas de Cocultivo , Fermentación , Cinética , Extractos Vegetales , Vino/microbiología
12.
J Food Sci Technol ; 55(6): 2240-2250, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29892124

RESUMEN

This study aimed to investigate the effect of Lactobacillus plantarum strains on quality improvement of bog bilberry juice. Bog bilberry juice with different pH conditions was fermented by Lactobacillus B7 or C8-1 strain. Physicochemical index, amino acids, phenolic compounds, and volatiles of these fermented juices were compared. Results indicated that Lactobacillus plantarum strains preferred to metabolize malic acid and reducing sugar in non-pH-adjusted juice (NJ, pH 2.65), whereas quinic and citric acids were largely consumed in pH-adjusted juice (AJ, pH 3.50). Shikimic acid and aromatic amino acids were significantly accumulated in pH-adjusted juice, and phenolic compounds in both juices were significantly reduced. These strains enhanced the composition and concentration of volatiles compounds in non-pH-adjusted juice and improved the floral and fruity flavors. However, concentration and complexity of volatiles were reduced in pH-adjusted juices.

13.
Proc Natl Acad Sci U S A ; 110(19): 7814-9, 2013 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-23610400

RESUMEN

Rhomboid domain-containing protein 3 (Rhbdd3), which belongs to a family of proteins with rhomboid domain, is widely expressed in immune cells; however, the roles of the Rhbdd members, including Rhbdd3, in immunity remain unknown. Natural killer (NK) cells are critical for host immune defense and also can mediate inflammatory diseases such as hepatitis. Although much is known about how NK cells are activated, the detailed mechanisms for negative regulation of NK cell activation remain to be fully understood. Using Rhbdd3-deficient mice, we reveal that Rhbdd3, selectively up-regulated in NK cells upon Toll-like receptor 3 (TLR3) stimulation, negatively regulates TLR3-mediated NK cell activation in a feedback manner. Rhbdd3 inhibits TLR3-triggered IFN-γ and granzyme B expression of NK cells in cell-cell contact dependence of accessory cells such as dendritic cells and Kupffer cells. Rhbdd3 interacts with DNAX activation protein of 12 kDa and promotes its degradation, inhibiting MAPK activation in TLR3-triggered NK cells. Furthermore, Rhbdd3 plays a critical role in attenuating TLR3-triggered acute inflammation by controlling NK cell activation and accumulation in liver and disrupting NK cell-Kupffer cell interaction. Therefore, Rhbdd3 is a feedback inhibitor of TLR3-triggered NK cell activation. Our study outlines a mechanism for the negative regulation of NK cell activation and also provides clues for the function of the rhomboid proteins in immunity.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/fisiología , Regulación de la Expresión Génica , Células Asesinas Naturales/metabolismo , Activación de Linfocitos , Receptor Toll-Like 3/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Comunicación Celular , Células Dendríticas/citología , Ensayo de Inmunoadsorción Enzimática , Macrófagos del Hígado/citología , Sistema de Señalización de MAP Quinasas , Ratones , Ratones Endogámicos C57BL , Microscopía Confocal , Poli I-C/metabolismo , Interferencia de ARN , Regulación hacia Arriba
14.
Molecules ; 20(11): 19865-77, 2015 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-26556321

RESUMEN

Phenolic compounds determine the color quality of fruit wines. In this study, the phenolic compound content and composition, color characteristics and changes during 6 months of bottle aging were studied in wines fermented with bog bilberry syrup under three different pHs. The total anthocyanins and total phenols were around 15.12-16.23 mg/L and 475.82 to 486.50 mg GAE/L in fresh wines and declined 22%-31% and about 11% in bottle aged wines, respectively. In fresh wines, eight anthocyanins, six phenolic aids and 14 flavonols, but no flavon-3-ols were identified; Malvidin-3-O-glucoside, petunidin-3-O-glucoside and delphinium-3-O-glucoside were the predominant pigments; Chlorogentic acid was the most abundant phenolic acid, and quercetin-3-O-galactoside and myricetin-3-O-galactoside accounted for nearly 90% of the total flavonols. During 6 months of bottle storage, the amounts of all the monomeric anthocyanins and phenolic acids were reduced dramatically, while the glycosidyl flavonols remained constant or were less reduced and their corresponding aglycones increased a lot. The effects of aging on blueberry wine color were described as the loss of color intensity with a dramatic change in color hue, from initial red-purple up to final red-brick nuances, while the pH of the fermentation matrix was negatively related to the color stability of aged wine.


Asunto(s)
Polifenoles/química , Vaccinium myrtillus/química , Vino/análisis , Antocianinas/química , Fermentación , Flavonoles/química , Concentración de Iones de Hidrógeno , Hidroxibenzoatos/química , Fenoles/química , Pigmentos Biológicos/análisis
15.
Food Res Int ; 186: 114404, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729686

RESUMEN

Autism spectrum disorder (ASD) is a neurodevelopmental disorder with an unknown etiology. It is associated with various factors and causes great inconvenience to the patient's life. The gut-brain axis (GBA), which serves as a bidirectional information channel for exchanging information between the gut microbiota and the brain, is vital in studying many neurodegenerative diseases. Dietary flavonoids provide anti-inflammatory and antioxidant benefits, as well as regulating the structure and function of the gut microbiota. The occurrence and development of ASD are associated with dysbiosis of the gut microbiota. Modulation of gut microbiota can effectively improve the severity of ASD. This paper reviews the links between gut microbiota, flavonoids, and ASD, focusing on the mechanism of dietary flavonoids in regulating ASD through the GBA.


Asunto(s)
Trastorno del Espectro Autista , Eje Cerebro-Intestino , Flavonoides , Microbioma Gastrointestinal , Microbioma Gastrointestinal/efectos de los fármacos , Humanos , Trastorno del Espectro Autista/microbiología , Trastorno del Espectro Autista/metabolismo , Trastorno del Espectro Autista/dietoterapia , Flavonoides/farmacología , Dieta , Disbiosis , Encéfalo/metabolismo , Animales , Antioxidantes/farmacología
16.
J Gastrointest Oncol ; 15(4): 1746-1759, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39279982

RESUMEN

Background: Lactate dehydrogenase A (LDHA) plays a crucial role in the final step of anaerobic glycolysis, converting L-lactate and NAD+ to pyruvate and nicotinamide adenine dinucleotide (NADH). Its high expression has been linked to tumorigenesis and patient survival in various human cancers. However, the full implications of LDHA's role and its correlation with clinicopathological features in pancreatic adenocarcinoma (PAAD) remain to be fully understood. This study was thus conducted to elucidate the specific functions of LDHA in PAAD, with the aim of providing more robust evidence for clinical diagnosis and treatment. Methods: In an extensive systems analysis, we searched through numerous databases, including The Cancer Genome Atlas (TCGA) and Oncomine. Our objective was to clarify the clinical implications and functional role of LDHA in PAAD. Bioinformatics was used to identify the biological function of LDHA expression and its correlation with tumor immune status. Results: Our analysis revealed that the LDHA gene is overexpressed in PAAD and that this upregulation was associated with a worse patient prognosis. Through gene set enrichment analysis, we found that LDHA's influence on PAAD is linked to signaling pathways involving Kirsten rat sarcoma viral oncogene homolog (K-Ras), transforming growth factor-ß (TGF-ß), and hypoxia inducible factor-1 (HIF-1). Mutation of K-Ras could upregulate its own expression and was positively correlated with LDHA expression. Moreover, our data demonstrated that LDHA expression was linked to immune infiltration and poor prognosis in PAAD, indicating its role in disease pathogenesis. Overexpression of LDHA may suppress tumor immunity, suggesting it as a potential target for the diagnosis and treatment of PAAD, thus providing new insights into managing this aggressive cancer. Conclusions: Overall, our results showed that LDHA as a prognostic biomarker could serve as a novel target for future PAAD immunotherapy.

17.
Food Res Int ; 178: 113976, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38309882

RESUMEN

This study focused on isolating and characterising autochthonous lactic acid bacteria (LAB) from spontaneously fermented Chinese bayberry (CB) and their potential application in CB wine fermentation in co-inoculation with yeast starter cultures. Numerous LAB, including Lactiplantibacillus (Lp.) plantarum (9), Limosilactobacillus (Lb.) fermentum (6), Lactococcus (Lc.) lactis (3), Enterococcus (Ec.) hirae (1), Leuconostoc (Le.) mesenteroides (1), and Weissella (Ws.) cibaria (1), were isolated and identified. The isolated strains Lp. plantarum ZFM710 and ZFM715, together with Lb. fermentum ZFM720 and ZFM722, adapted well to unfavourable fermentation environment, including ethanol, osmolality, and acidity stresses, were selected for producing CB wine by co-inoculation with Saccharomyces cerevisiae. During fermentation, the presence of LAB promoted the development of S. cerevisiae, while the population dynamics of LAB in different groups at different stages showed strain-specific differences. Fermentation trials involving LAB yielded a lower ethanol concentration except for Lp. plantarum ZFM715. Compared to the pure S. cerevisiae fermented sample, the addition of LAB led to a clear modulation in organic acid composition. Lb. fermentum strains in co-fermentation led to significant decreases in each classified group of aroma compounds, while Lp. plantarum ZFM715 significantly increased the complexity and intensity of aroma compounds, as well as the intensities of fruity and floral notes. The study selects interesting strains for the design of starter cultures for use in CB wine production, underlining the interest in the selection of autochthonous LAB in fruit wines, with the aim of improving the adaptation of bacteria to specific environmental conditions and shaping the unique traits of the finished products.


Asunto(s)
Lactobacillales , Myrica , Vino , Vino/análisis , Saccharomyces cerevisiae , Microbiología de Alimentos , Etanol/análisis , China
18.
J Gastrointest Oncol ; 15(2): 585-596, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38756641

RESUMEN

Background: Platinum-based chemotherapy combined with immune checkpoint inhibitors (ICIs) is now becoming the standard first-line therapy for human epidermal growth factor receptor 2 (HER2)-negative advanced gastric cancer (AGC). In China, paclitaxel has shown good efficacy and tolerability in AGC as an alternative for first-line therapy. Combining ICIs with paclitaxel-based chemotherapy may lead to improved tumor immune microenvironment, but evidence in paclitaxel combing with ICIs as first-line regimen is lacking. This multicenter, retrospective research aims to compare effectiveness and tolerability of paclitaxel-based chemotherapy combined with ICIs versus chemotherapy alone as a first-line treatment of HER2-negative AGC in a real-world setting. Methods: Eighty-six patients with HER2-negative AGC were included from 2017 to 2022. Among them, 57 patients received paclitaxel-based chemotherapy plus ICIs, and 29 patients received paclitaxel-based chemotherapy alone. We compared the efficacy and incidence of adverse events between the two therapy options. Results: Significant improvements in median progression-free survival (PFS) (8.77 versus 7.47 months; P=0.04) and median overall survival (OS) (15.70 versus 14.33 months; P=0.04) were observed in the ICIs combined with paclitaxel-based chemotherapy group. The use of ICIs also significantly prolonged the duration of response (DOR) (7.47 versus 4.59 months; P=0.02). Meanwhile, the ICIs plus chemotherapy group demonstrated significantly improved objective response rate (ORR) (50.9% vs. 27.6%; P=0.03) and disease control rate (DCR) (98.3% vs. 82.8%; P=0.01), and the side effects were tolerable. Conclusions: In summary, for HER2-negative AGC, ICIs plus paclitaxel-based chemotherapy is effective with mild toxicities, which should be considered as an alternative first-line therapy regimen.

19.
Cell Discov ; 10(1): 103, 2024 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-39414763

RESUMEN

How immune cells are spatiotemporally coordinated in the lung to effectively monitor, respond to, and resolve infection and inflammation in primed form needs to be fully illustrated. Here we apply immunocartography, a high-resolution technique that integrates spatial and single-cell RNA sequencing (scRNA-seq) through deconvolution and co-localization analyses, to the SARS-CoV-2-infected Syrian hamster model. We generate a comprehensive transcriptome map of the whole process of pulmonary infection from physiological condition, infection initiation, severe pneumonia to natural recovery at organ scale and single-cell resolution, with 142,965 cells and 45 lung lobes from 25 hamsters at 5 time points. Integrative analysis identifies that alveolar dendritic cell-T cell immunity hubs, where Ccr7+Ido1+ dendritic cells, Cd160+Cd8+ T cells, and Tnfrsf4+Cd4+ T cells physiologically co-localize, rapidly expand during SARS-CoV-2 infection, eliminate SARS-CoV-2 with the aid of Slamf9+ macrophages, and then restore to physiological levels after viral clearance. We verify the presence of these cell subpopulations in the immunity hubs in normal and SARS-CoV-2-infected hACE2 mouse models, as well as in publicly available human scRNA-seq datasets, demonstrating the potential broad relevance of our findings in lung immunity.

20.
Cell Discov ; 10(1): 104, 2024 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-39414783

RESUMEN

How the lung achieves immune homeostasis after a pulmonary infection is not fully understood. Here, we analyzed the spatiotemporal changes in the lungs over a 2-week natural recovery from severe pneumonia in a Syrian hamster model of SARS-CoV-2 infection. We find that SARS-CoV-2 infects multiple cell types and causes massive cell death at the early stage, including alveolar macrophages. We identify a group of monocyte-derived Slamf9+ macrophages, which are induced after SARS-CoV-2 infection and resistant to impairment caused by SARS-CoV-2. Slamf9+ macrophages contain SARS-CoV-2, recruit and interact with Isg12+Cst7+ neutrophils to clear the viruses. After viral clearance, Slamf9+ macrophages differentiate into Trem2+ and Fbp1+ macrophages, contributing to inflammation resolution at the late stage, and finally replenish alveolar macrophages. These findings are validated in a SARS-CoV-2-infected hACE2 mouse model and confirmed with publicly available human autopsy single-cell RNA-seq data, demonstrating the potential role of Slamf9+ macrophages and their coordination with neutrophils in post-injury tissue repair and inflammation resolution.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA