Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Circ Res ; 133(3): 220-236, 2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37377022

RESUMEN

BACKGROUND: The cardiac-protective role of GSNOR (S-nitrosoglutathione reductase) in the cytoplasm, as a denitrosylase enzyme of S-nitrosylation, has been reported in cardiac remodeling, but whether GSNOR is localized in other organelles and exerts novel effects remains unknown. We aimed to elucidate the effects of mitochondrial GSNOR, a novel subcellular localization of GSNOR, on cardiac remodeling and heart failure (HF). METHODS: GSNOR subcellular localization was observed by cellular fractionation assay, immunofluorescent staining, and colloidal gold particle staining. Overexpression of GSNOR in mitochondria was achieved by mitochondria-targeting sequence-directed adeno-associated virus 9. Cardiac-specific knockout of GSNOR mice was used to examine the role of GSNOR in HF. S-nitrosylation sites of ANT1 (adenine nucleotide translocase 1) were identified using biotin-switch and liquid chromatography-tandem mass spectrometry. RESULTS: GSNOR expression was suppressed in cardiac tissues of patients with HF. Consistently, cardiac-specific knockout mice showed aggravated pathological remodeling induced by transverse aortic constriction. We found that GSNOR is also localized in mitochondria. In the angiotensin II-induced hypertrophic cardiomyocytes, mitochondrial GSNOR levels significantly decreased along with mitochondrial functional impairment. Restoration of mitochondrial GSNOR levels in cardiac-specific knockout mice significantly improved mitochondrial function and cardiac performance in transverse aortic constriction-induced HF mice. Mechanistically, we identified ANT1 as a direct target of GSNOR. A decrease in mitochondrial GSNOR under HF leads to an elevation of S-nitrosylation ANT1 at cysteine 160 (C160). In accordance with these findings, overexpression of either mitochondrial GSNOR or ANT1 C160A, non-nitrosylated mutant, significantly improved mitochondrial function, maintained the mitochondrial membrane potential, and upregulated mitophagy. CONCLUSIONS: We identified a novel species of GSNOR localized in mitochondria and found mitochondrial GSNOR plays an essential role in maintaining mitochondrial homeostasis through ANT1 denitrosylation, which provides a potential novel therapeutic target for HF.


Asunto(s)
Insuficiencia Cardíaca , Remodelación Ventricular , Animales , Humanos , Ratones , Corazón , Insuficiencia Cardíaca/metabolismo , Ratones Noqueados , Mitocondrias/metabolismo
2.
Biomed Pharmacother ; 177: 116994, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38889638

RESUMEN

BACKGROUND: Myocardial infarction (MI) has emerged as the primary cause of global mortality. Managing blood sugar levels could play a vital role in the treatment of MI. Dapagliflozin (DPG), a commonly used hypoglycemic drug, has demonstrated efficacy in treating heart failure. However, the impact of DPG on MI remains unclear. We aimed to investigate the effects and mechanisms of DPG in relation to MI. METHODS AND RESULTS: DPG administration alleviated MI-induced cardiac dysfunction and myocardial fibrosis. We also found that DPG administration mitigated cardiomyocyte apoptosis through TUNEL staining. CD31 and α-Sma staining revealed that DPG promotes post-MI angiogenesis in mice. In vitro, using scratch assays, transwell assays, and tube formation assays, we discovered that DPG enhanced HUVEC proliferation capacity. Mechanistically, DPG promoted the expression of extracellular matrix genes and mitochondrial function-related genes. Additionally, molecular docking identified the interaction between DPG and PXR, which activated PXR and recruited it to the promoters of Pgam2 and Tcap, promoting their expressions, thus facilitating angiogenesis and post-MI heart repair. CONCLUSIONS: DPG promotes angiogenesis by activating PXR, thereby alleviating cardiac dysfunction and fibrosis after myocardial infarction. This study provides new strategies and targets for the treatment of ischemic disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA