RESUMEN
C-Alkyl glycosides, an important class of C-glycosides, are widely found in various drugs and natural products. The synthesis of C-alkyl glycosides has attracted considerable attention. Herein, we developed a Ni/photoredox catalyzed decarboxylative C(sp3)-C(sp3) coupling reaction of stable glycosylcarboxylic acids with simple aliphatic bromides to generate C-alkyl glycosides. The method successfully linked several functional molecular fragments (natural products or drugs) to a sugar moiety, showing the extensive application prospects of this transformation. Controlled experiments and DFT calculations demonstrated that the reaction pathway contains a free radical process, and a possible mechanism is proposed.
RESUMEN
The aryl-to-vinyl nickel 1,4-migration (1,4-Ni migration) reaction has been reported for the first time. The generated alkenyl Ni species undergo a reductive coupling reaction with unactivated brominated alkanes affording a series of trisubstituted olefins. This tandem reaction exhibits mild conditions, a broad substrate scope, high regioselectivity, and excellent Z/E stereoselectivity. A series of controlled experiments have shown that the critical 1,4-Ni migration process is reversible. In addition, the alkenyl nickel intermediates obtained after migration are highly Z/E stereoselective and do not undergo Z/E isomerization. The obtained trace isomerization products are caused by the instability of the product.
RESUMEN
BACKGROUND: The current surveillance system only focuses on notifiable infectious diseases in China. The arrival of the big-data era provides us a chance to elaborate on the full spectrum of infectious diseases. METHODS: In this population-based observational study, we used multiple health-related data extracted from the Shandong Multi-Center Healthcare Big Data Platform from January 2013 to June 2017 to estimate the incidence density and describe the epidemiological characteristics and dynamics of various infectious diseases in a population of 3,987,573 individuals in Shandong province, China. RESULTS: In total, 106,289 cases of 130 infectious diseases were diagnosed among the population, with an incidence density (ID) of 694.86 per 100,000 person-years. Besides 73,801 cases of 35 notifiable infectious diseases, 32,488 cases of 95 non-notifiable infectious diseases were identified. The overall ID continuously increased from 364.81 per 100,000 person-years in 2013 to 1071.80 per 100,000 person-years in 2017 (χ2 test for trend, P < 0.0001). Urban areas had a significantly higher ID than rural areas, with a relative risk of 1.25 (95% CI 1.23-1.27). Adolescents aged 10-19 years had the highest ID of varicella, women aged 20-39 years had significantly higher IDs of syphilis and trichomoniasis, and people aged ≥ 60 years had significantly higher IDs of zoster and viral conjunctivitis (all P < 0.05). CONCLUSIONS: Infectious diseases remain a substantial public health problem, and non-notifiable diseases should not be neglected. Multi-source-based big data are beneficial to better understand the profile and dynamics of infectious diseases.
Asunto(s)
Enfermedades Transmisibles , Sífilis , Adolescente , Adulto , Macrodatos , Niño , China/epidemiología , Enfermedades Transmisibles/epidemiología , Femenino , Humanos , Incidencia , Persona de Mediana Edad , Adulto JovenRESUMEN
We report here a new method for the synthesis of organohydrosilanes from phenols and ketones. This method is established through reductive C-Si coupling of chlorohydrosilanes via unconventional Si-Cl cleavage. The reaction offers access to aryl- and alkenylhydrosilanes with a scope that is complementary to those of the established methods. Electron-rich, electron-poor, and ortho-/meta-/para-substituted (hetero)aryl electrophiles, as well as cyclic and acyclic alkenyl electrophiles, were coupled successfully. Functionalities, including Grignard-sensitive groups (e.g., primary amine, amide, phenol, ketone, ester, and free indole), acid-sensitive groups (e.g., ketal and THP protection), alkyl-Cl, pyridine, furan, thiophene, Ar-Bpin, and Ar-SiMe3 , were tolerated. Gram-scale reaction, incorporation of -Si(H)R2 into complex biologically active molecules, and derivatization of formed organohydrosilanes are demonstrated.
RESUMEN
Catalytic alkylation of stable alkenyl C-O electrophiles is synthetically appealing, but studies to date have typically focused on the reactions with alkyl Grignard reagents. We report herein a cross-electrophile reaction of alkenyl acetates with alkyl bromides. This work has enabled a new method for the synthesis of aliphatic alkenes from alkenyl acetates to be established that can be used to add more structural complexity and molecular diversity with enhanced functionality tolerance. The method allows for a gram-scale reaction and modification of biologically active molecules, and it affords access to useful building blocks. Preliminary mechanistic studies reveal that the NiI species plays an essential role for the success of the coupling of these two reactivity-mismatched electrophiles.
RESUMEN
C-aryl glycosides are popular basic skeletons in biochemistry and pharmaceutical chemistry. Herein, ruthenium-catalyzed highly stereo- and site-selective ortho- and meta-CAr -H glycosylation is described. A series of C-aryl pyranosides and furanosides were synthesized by this method. The strategy showed good substrate scope, and various N-heterocyclic directing groups were compatible with the reaction system. A mechanistic study suggested that the key pathway of ortho-CAr -H glycosylation might involve oxidative addition/reduction elimination, whereas aryl meta-C-H glycosylation was mediated by σ-activation. Density functional theory calculations also showed that the high stereoselectivity of meta-CAr -H glycosylation was due to steric hindrance.
Asunto(s)
Rutenio , Catálisis , Glicosilación , Oxidación-ReducciónRESUMEN
Asymmetric cross-electrophile coupling has emerged as a promising tool for producing chiral molecules; however, the potential of this chemistry with metals other than nickel remains unknown. Herein, we report a cobalt-catalyzed enantiospecific vinylation reaction of allylic alcohol with vinyl triflates. This work establishes a new method for the synthesis of enantioenriched 1,4-dienes. The reaction proceeds through a dynamic kinetic coupling approach, which not only allows for direct functionalization of allylic alcohols but also is essential to achieve high chemoselectivity. The use of cobalt enables the reactions to proceed with high enantiospecificity, which have failed to be realized by nickel catalysts.
RESUMEN
Catalytic transformation of alcohols via metal-catalyzed cross-coupling reactions is very important, but it typically relies on a multistep procedure. We here report a dynamic kinetic cross-coupling approach for the direct functionalization of alcohols. The feasibility of this strategy is demonstrated by a nickel-catalyzed cross-electrophile arylation reaction of benzyl alcohols with (hetero)aryl electrophiles. The reaction proceeds with a broad substrate scope of both coupling partners. The electron-rich, electron-poor, and ortho-/meta-/para-substituted (hetero)aryl electrophiles (e.g., Ar-OTf, Ar-I, Ar-Br, and inert Ar-Cl) all coupled well. Most of the functionalities, including aldehyde, ketone, amide, ester, nitrile, sulfone, furan, thiophene, benzothiophene, pyridine, quinolone, Ar-SiMe3, Ar-Bpin, and Ar-SnBu3, were tolerated. The dynamic nature of this method enables the direct arylation of benzylic alcohol in the presence of various nucleophilic groups, including nonactivated primary/secondary/tertiary alcohols, phenols, and free indoles. It thus offers a robust alternative to existing methods for the precise construction of diarylmethanes. The synthetic utility of the method was demonstrated by a concise synthesis of biologically active molecules and by its application to peptide modification and conjugation. Preliminary mechanistic studies revealed that the reaction of in situ formed benzyl oxalates with nickel, possibly via a radical process, is an initial step in the reaction with aryl electrophiles.
RESUMEN
The regiocontrolled functionalization of 1,3-dienes has become a powerful tool for divergent synthesis, yet it remains a long-standing challenge for aliphatic substrates. Herein, we report a reductive approach for a branch-selective 1,2-hydrovinylation of aliphatic 1,3-dienes with R-X electrophiles, which represents a new selectivity pattern for diene functionalization. Simple butadiene, aromatic 1,3-dienes, and highly conjugated polyene were also tolerated. The combination of Ni(0) and the phosphine-nitrile ligand generally resulted in >20:1 regioselectivity with the retention of the geometry of the C3-C4 double bonds. This reaction proceeds with a broad substrate scope, and it allows for the conjugation of two biologically active units to form more complex polyene molecules, such as tetraene and pentaene as well as heptaene.
RESUMEN
We report here a direct allenylation reaction of inactive cyclic ethers. The reaction proceeds through a copper-catalyzed 1,4-difunctionalization of 1,3-enynes, with cyano group installed at the allenes simultaneously. This methodology shows a broad functional group compatibility to 1,3-enynes. Diversified allene-modified cyclic ether derivatives were synthesized with high regioselectivity under mild conditions.
RESUMEN
A mild and facile approach to construct various perfluoroketones via photo-catalyzed difluoroalkylation of difluoroenoxysilanes is developed. The reaction includes a strategy of combination of two fluorine-containing functional groups, which confers the reaction with characteristics like high efficiency, mild conditions, and broad scope. A variety of fluoroalkyl halides including perfluoroalkyl iodides, bromo difluoro esters and amides can be employed as radical precursors. Control experiments indicate that a single-electron transfer pathway may be involved in the reaction.
RESUMEN
The cross-electrophile coupling has become a powerful tool for C-C bond formation, but its potential for forging the C-Si bond remains unexplored. Here we report a cross-electrophile Csp2 -Si coupling reaction of vinyl/aryl electrophiles with vinyl chlorosilanes. This new protocol offers an approach for facile and precise synthesis of organosilanes with high molecular diversity and complexity from readily available materials. The reaction proceeds under mild and non-basic conditions, demonstrating a high step economy, broad substrate scope, wide functionality tolerance, and easy scalability. The synthetic utility of the method is shown by its efficient accessing of silicon bioisosteres, the design of new BCB-monomers, and studies on the Hiyama cross-coupling of vinylsilane products.
RESUMEN
The cross-electrophile reaction is a promising strategy for C-C bond formation. Recent studies have focused mainly on reactions with organic halides. Here we report a coupling reaction between C-N and C-O electrophiles that demonstrates the possibility of constructing a C-C bond via C-N and C-O cleavage. Several reactions between benzyl/aryl ammonium salts and vinyl/aryl C-O electrophiles have been studied. Preliminary mechanistic studies revealed that the benzyl ammoniums were activated through a radical mechanism.
RESUMEN
Enantioselective cross-electrophile reactions remain a challenging subject in metal catalysis, and with respect to data, studies have mainly focused on stereoconvergent reactions of racemic alkyl electrophiles. Here, we report an enantioselective cross-electrophile aryl-alkenylation reaction of unactivated alkenes. This method provides access to a number of biologically important chiral molecules such as dihydrobenzofurans, indolines, and indanes. The incorporated alkenyl group is suitable for further reactions that can lead to an increase in molecular diversity and complexity. The reaction proceeds under mild conditions at room temperature, and an easily accessible chiral pyrox ligand is used to afford products with high enantioselectivity. The synthetic utility of this method is demonstrated by enabling the modification of complex molecules such as peptides, indometacin, and steroids.
RESUMEN
BACKGROUND: Considerable researches suggest that high level of homocysteine (Hcy) is associated with the risk of ischemic stroke. Ambulatory blood pressure monitoring (ABPM) parameters have also been confirmed associated with cardio-cerebrovascular events. However, the relationship between Hcy and ABPM parameters remains unclear in patients with acute ischemic stroke. In this study, we aim to investigate the association between Hcy level and ABPM parameters in patients with acute ischemic stroke. METHODS: We enrolled 60 patients with acute ischemic stroke who received ABPM. We calculated ABPM parameters like morning blood pressure surge (MBPS), ambulatory arterial stiffness index, blood pressure variability, and night dipping patterns. RESULTS: Multivariate logistic regression analysis indicated that patients in the top quartile of Hcy level tended to have a higher level of prewaking and sleep-trough MBPS compared with patients in the lower 3 quartiles after adjusted for age and gender (Pâ¯=â¯.028 and Pâ¯=â¯.030, respectively). When treating Hcy as a continuous variable, the linear regression showed the association between Hcy level and both MBPS parameters remained significant (prewaking MBPS, râ¯=â¯.356, Pâ¯=â¯.022; sleep-trough MBPS, râ¯=â¯.365, Pâ¯=â¯.017, respectively). However, there is no association between Hcy level and ambulatory arterial stiffness index, blood pressure variability or night dipping patterns (Pâ¯=â¯.635, Pâ¯=â¯.348 and Pâ¯=â¯.127 respectively). CONCLUSIONS: There is a relationship between the 2 major cerebrovascular risk factors: MBPS and Hcy.
Asunto(s)
Presión Sanguínea , Isquemia Encefálica/sangre , Ritmo Circadiano , Homocisteína/sangre , Hiperhomocisteinemia/sangre , Hipertensión/fisiopatología , Accidente Cerebrovascular/sangre , Anciano , Biomarcadores/sangre , Isquemia Encefálica/diagnóstico , Isquemia Encefálica/etiología , Isquemia Encefálica/fisiopatología , Femenino , Humanos , Hiperhomocisteinemia/complicaciones , Hiperhomocisteinemia/diagnóstico , Hiperhomocisteinemia/fisiopatología , Hipertensión/complicaciones , Hipertensión/diagnóstico , Masculino , Persona de Mediana Edad , Factores de Riesgo , Accidente Cerebrovascular/diagnóstico , Accidente Cerebrovascular/etiología , Accidente Cerebrovascular/fisiopatología , Factores de TiempoRESUMEN
An iodine-promoted one-pot radical cyclization reaction of 1,6-enynes with sulfonyl hydrazides to provide five-membered and hexatomic ring sulfonylated products under the same conditions is established. This reaction proceeded smoothly in water and gave the corresponding products by using I2/TBHP instead of expensive and toxic catalysts with C-S and C-I bond formed in one step. This method also allowed easy access to significant functional sulfones for potential applications in medicinal and organic chemistry.
RESUMEN
Over the past few decades, the development of versatile methodologies to employ azides as aminating agents for the formation of nitrogen-containing compounds has attracted significant attention in synthetic chemistry. This review examines recent developments in the tandem reaction of azides with alkynes and alkynols, which have not been solely discussed before. The formation of diverse nitrogen-containing compounds is classified in this review according to the types of reactions.
RESUMEN
In the last few years, the development of versatile methodologies to incorporate trifluoromethyl groups into organic molecules has attracted significant attention in synthetic chemistry. This review gives an overview over the development on the trifluoromethylation of alkynes, which have not been solely discussed before. Formation of diverse C(sp, sp(2) , sp(3) )-CF3 bonds are all covered in this review.
Asunto(s)
Alquinos/química , Hidrocarburos Fluorados/química , Alquinos/síntesis química , Técnicas de Química Sintética/métodos , Halogenación , Hidrocarburos Fluorados/síntesis química , MetilaciónRESUMEN
A copper-catalyzed difunctionalizing trifluoromethylation of activated alkynes with the cheap reagent sodium trifluoromethanesulfinate (NaSO2CF3 or Langlois' reagent) has been developed incorporating a tandem cyclization/dearomatization process. This strategy affords a straightforward route to synthesis of 3-(trifluoromethyl)-spiro[4.5]trienones, and presents an example of difunctionalization of alkynes for simultaneous formation of two carbon-carbon single bonds and one carbon-oxygen double bond.
Asunto(s)
Alquinos/química , Cobre/química , Compuestos de Espiro/síntesis química , Alquinos/síntesis química , Catálisis , Ciclización , Halogenación , Metilación , Oxidación-Reducción , Compuestos de Espiro/químicaRESUMEN
A convenient strategy is presented for the easy preparation of a series of 2 H-chromenes under mild conditions through iodocyclization of readily accessible propynols. In addition, various 4-chromanones can be synthesized through a p-toluenesulfonic acid catalyzed cascade cyclization with high efficiency (yields up to 99 %). Our developed reaction systems are proven to have good functional-group applicability and can be scaled up to gram quantities in satisfactory yields. These systems also provide a new synthetic strategy for two types of important flavonoid skeleton without using costly and toxic metal catalysts. Additionally, the resulting halides could be further exploited in subsequent palladium-catalyzed coupling reactions, so these compounds could act as potential intermediates for the construction of some valuable drug molecules.