Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Plant J ; 114(3): 570-590, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36815286

RESUMEN

Leaf senescence involves massive multidimensional alterations, such as nutrient redistribution, and is closely related to crop yield and quality. No apical meristem, Arabidopsis transcription activation factor, and Cup-shaped cotyledon (NAC)-type transcription factors integrate various signals and modulate an enormous number of target genes to ensure the appropriate progression of leaf senescence. However, few leaf senescence-related NACs have been functionally characterized in wheat. Based on our previous RNA-sequencing (RNA-seq) data, we focused on a NAC family member, TaNAC69-B, which is increasingly expressed during leaf senescence in wheat. Overexpression of TaNAC69-B led to precocious leaf senescence in wheat and Arabidopsis, and affected several agricultural traits in transgenic wheat. Moreover, impaired expression of TaNAC69-B by virus-induced gene silencing retarded the leaf senescence in wheat. By RNA-seq and quantitative real-time polymerase chain reaction analysis, we confirmed that some abscisic acid (ABA) biosynthesis genes, including AAO3 and its ortholog in wheat, TraesCS2B02G270600 (TaAO3-B), were elevated by the overexpression of TaNAC69-B. Consistently, we observed more severe ABA-induced leaf senescence in TaNAC69-B-OE wheat and Arabidopsis plants. Furthermore, we determined that TaNAC69-B bound to the NAC binding site core (CGT) on the promoter regions of AAO3 and TaAO3-B. Moreover, we confirmed elevated ABA levels in TaNAC69-B-OE wheat lines. Although TaNAC69-B shares 39.83% identity (amino acid) with AtNAP, TaNAC69-B did not completely restore the delayed leaf senescence in the atnap mutant. Collectively, our results revealed a positive feedback loop, consisting of TaNAC69-B, ABA biosynthesis and leaf senescence, that is essential for the regulation of leaf senescence in wheat.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Triticum/metabolismo , Senescencia de la Planta , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Ácido Abscísico/metabolismo
2.
An Acad Bras Cienc ; 95(suppl 1): e20220676, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37255171

RESUMEN

In this study, systematic pharmacological methods were used to reveal the potential pharmacological targets of baweixiaoyaosan in the treatment of major depressive disorder (MDD). We identified 133 potential active compounds through data mining and absorption, distribution, metabolism, and excretion evaluation systems. Then, the target of potential active compounds is predicted by a system model based on random forest and support vector machine methods. Next, construct herbal ingredient-target networks and target-disease networks for further analysis of multi-directional treatment methods. At the same time, we also performed gene ontology enrichment analysis, tissue location analysis, and pathway analysis on 76 potential targets. Finally, we conducted the Jun-Chen-Zuo-Shi compatibility analysis of the formula and scientifically explained the different functions of different herbs in the formula. In short, we found that the formula mainly exerts the effect of treating MDD through the four functional modules of inflammation inhibition, neuroprotection, monoamine neurotransmitter and liver. This research not only explores the mechanism of Traditional Chinese Medicine treatment of MDD from a multi-scale perspective, but also provides a reference for future research on BWXYS. It plays a role in promoting the widespread use of BWXYS.


Asunto(s)
Trastorno Depresivo Mayor , Medicamentos Herbarios Chinos , Humanos , Medicina Tradicional China/métodos , Medicamentos Herbarios Chinos/farmacología , Trastorno Depresivo Mayor/tratamiento farmacológico , Inflamación/tratamiento farmacológico
3.
New Phytol ; 236(1): 114-131, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35719110

RESUMEN

Abscisic acid (ABA) receptors are considered as the targeted manipulation of ABA sensitivity and water productivity in plants. Regulation of their stability or activity will directly affect ABA signalling. Mitogen-activated protein kinase (MAPK) cascades link multiple environmental and plant developmental cues. However, the molecular mechanism of ABA signalling and MAPK cascade interaction remains largely elusive. TaMPK3 overexpression decreases drought tolerance and wheat sensitivity to ABA, significantly weakening ABA's inhibitory effects on growth. Under drought stress, overexpression lines show lower survival rates, shoot fresh weight and proline content, but higher malondialdehyde levels at seedling stage, as well as decreased grain width and 1000 grain weight in both glasshouse and field conditions at the adult stage. TaMPK3-RNAi increases drought tolerance. TaMPK3 interaction with TaPYL4 leads to decreased TaPYL4 levels by promoting its ubiquitin-mediated degradation, whereas ABA treatment diminishes TaMPK3-TaPYL interactions. In addition, the expression of ABA signalling proteins is impaired in TaMPK3-overexpressing wheat plants under ABA treatment. The MPK3-PYL interaction module was found to be conserved across monocots and dicots. Our results suggest that the MPK3-PYL module could serve as a negative regulatory mechanism for balancing appropriate drought stress response with normal plant growth signalling in wheat.


Asunto(s)
Ácido Abscísico , Proteínas Quinasas Activadas por Mitógenos , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Proteínas Portadoras/metabolismo , Sequías , Regulación de la Expresión Génica de las Plantas , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Plantones/fisiología , Estrés Fisiológico
4.
Biomed Eng Online ; 21(1): 53, 2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-35918704

RESUMEN

BACKGROUND: CPT-11 (irinotecan) is one of the most efficient agents used for colorectal cancer chemotherapy. However, as for many other chemotherapeutic drugs, how to minimize the side effects of CPT-11 still needs to be thoroughly described. OBJECTIVES: This study aimed to develop the CPT-11-loaded DSPE-PEG 2000 targeting EGFR liposomal delivery system and characterize its targeting specificity and therapeutic effect on colorectal cancer (CRC) cells in vitro and in vivo. RESULTS: The synthesized liposome exhibited spherical shapes (84.6 ± 1.2 nm to 150.4 nm ± 0.8 nm of estimated average sizes), good stability, sustained release, and enough drug loading (55.19%). For in vitro experiments, SW620 cells treated with CPT-11-loaded DSPE-PEG2000 targeting EGFR liposome showed lower survival extended level of intracellular ROS production. In addition, it generated an enhanced apoptotic cell rate by upregulating the protein expression of both cleaved-caspase-3 and cleaved-caspase-9 compared with those of SW620 cells treated with free CPT-11. Importantly, the xenograft model showed that both the non-target and EGFR-targeted liposomes significantly inhibited tumor growth compared to free CPT-11. CONCLUSIONS: Compared with the non-target CPT-11-loaded DSPE-PEG2000 liposome, CPT-11-loaded DSPE-PEG2000 targeting EGFR liposome treatment showed much better antitumor activity in vitro in vivo. Thus, our findings provide new assets and expectations for CRC targeting therapy.


Asunto(s)
Antineoplásicos , Neoplasias del Colon , Línea Celular Tumoral , Neoplasias del Colon/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Receptores ErbB , Humanos , Irinotecán/farmacología , Liposomas
5.
J Nanobiotechnology ; 19(1): 248, 2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-34407835

RESUMEN

BACKGROUND: Osteoporosis (OP) is a systemic skeletal disease marked by bone mass reduction and bone tissue destruction. Hormone replacement therapy is an effective treatment for post-menopausal OP, but estrogen has poor tissue selectivity and severe side effects. RESULTS: In this study, we constructed a poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs)-based drug delivery system to co-load 17ß estradiol (E2) and iron oxide (Fe3O4) together, modified with alendronate (AL) to achieve bone targeting and realize a magnetically remote-controllable drug release. The NPs were fabricated through the emulsion solvent diffusion method. The particle size was approximately 200 nm while the encapsulation efficiency of E2 was 58.34 ± 9.21%. The NPs were found to be spherical with a homogenous distribution of particle size. The NPs showed good stability, good biocompatibility, high encapsulation ability of E2 and excellent magnetic properties. The NPs could be effectively taken up by Raw 264.7 cells and were effective in enriching drugs in bone tissue. The co-loaded NPs exposed to an external magnetic field ameliorated OVX-induced bone loss through increased BV/TV, decreased Tb.N and Tb.Sp, improved bone strength, increased PINP and OC, and downregulated CTX and TRAP-5b. The haematological index and histopathological analyses displayed the NPs had less side effects on non-skeletal tissues. CONCLUSIONS: This study presented a remote-controlled release system based on bone-targeted multifunctional NPs and a new potential approach to bone-targeted therapy of OP.


Asunto(s)
Huesos/efectos de los fármacos , Estradiol/farmacología , Osteoporosis/tratamiento farmacológico , Ovariectomía/efectos adversos , Animales , Sistemas de Liberación de Medicamentos/métodos , Liberación de Fármacos , Emulsiones/uso terapéutico , Estradiol/química , Femenino , Compuestos Férricos , Ratones , Nanopartículas , Tamaño de la Partícula , Células RAW 264.7 , Ratas , Ratas Sprague-Dawley , Fosfatasa Ácida Tartratorresistente
6.
BMC Plant Biol ; 20(1): 444, 2020 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-32993508

RESUMEN

BACKGROUND: Leaf senescence comprises numerous cooperative events, integrates environmental signals with age-dependent developmental cues, and coordinates the multifaceted deterioration and source-to-sink allocation of nutrients. In crops, leaf senescence has long been regarded as an essential developmental stage for productivity and quality, whereas functional characterization of candidate genes involved in the regulation of leaf senescence has, thus far, been limited in wheat. RESULTS: In this study, we analyzed the expression profiles of 97 WRKY transcription factors (TFs) throughout the progression of leaf senescence in wheat and subsequently isolated a potential regulator of leaf senescence, TaWRKY42-B, for further functional investigation. By phenotypic and physiological analyses in TaWRKY42-B-overexpressing Arabidopsis plants and TaWRKY42-B-silenced wheat plants, we confirmed the positive role of TaWRKY42-B in the initiation of developmental and dark-induced leaf senescence. Furthermore, our results revealed that TaWRKY42-B promotes leaf senescence mainly by interacting with a JA biosynthesis gene, AtLOX3, and its ortholog, TaLOX3, which consequently contributes to the accumulation of JA content. In the present study, we also demonstrated that TaWRKY42-B was functionally conserved with AtWRKY53 in the initiation of age-dependent leaf senescence. CONCLUSION: Our results revealed a novel positive regulator of leaf senescence, TaWRKY42-B, which mediates JA-related leaf senescence via activation of JA biosynthesis and has the potential to be a target gene for molecular breeding in wheat.


Asunto(s)
Senescencia Celular/genética , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Reguladores del Crecimiento de las Plantas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Hojas de la Planta/metabolismo , Factores de Transcripción/metabolismo , Triticum/genética , Triticum/metabolismo , Senescencia Celular/fisiología , China , Productos Agrícolas/genética , Productos Agrícolas/metabolismo , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción/genética
7.
Plant Physiol ; 180(1): 605-620, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30842265

RESUMEN

BRI1-EMS suppressor (BES)/brassinazole-resistant (BZR) family transcription factors are involved in a variety of physiological processes, but the biological functions of some BES/BZR transcription factors remain unknown; moreover, it is not clear if any of these proteins function in the regulation of plant stress responses. Here, wheat (Triticum aestivum) brassinazole-resistant 2 (TaBZR2)-overexpressing plants exhibited drought tolerant phenotypes, whereas downregulation of TaBZR2 in wheat by RNA interference resulted in elevated drought sensitivity. electrophoretic mobility shift assay and luciferase reporter analysis illustrate that TaBZR2 directly interacts with the gene promoter to activate the expression of T. aestivum glutathione s-transferase-1 (TaGST1), which functions positively in scavenging drought-induced superoxide anions (O2 -). Moreover, TaBZR2 acts as a positive regulator in brassinosteroid (BR) signaling. Exogenous BR treatment enhanced TaBZR2-mediated O2 - scavenging and antioxidant enzyme gene expression. Taken together, we demonstrate that a BES/BZR family transcription factor, TaBZR2, functions positively in drought responses by activating TaGST1 and mediates the crosstalk between BR and drought signaling pathways. Our results thus provide new insights into the mechanisms underlying how BES/BZR family transcription factors contribute to drought tolerance in wheat.


Asunto(s)
Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Triticum/fisiología , Brasinoesteroides/metabolismo , Brasinoesteroides/farmacología , Núcleo Celular/metabolismo , Sequías , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Interferencia de ARN , Estrés Fisiológico/genética , Superóxidos/metabolismo , Factores de Transcripción/genética , Triticum/efectos de los fármacos
8.
BMC Genet ; 21(1): 105, 2020 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-32928120

RESUMEN

BACKGROUND: Plant calmodulin-binding transcription activator (CAMTA) proteins play important roles in hormone signal transduction, developmental regulation, and environmental stress tolerance. However, in wheat, the CAMTA gene family has not been systematically characterized. RESULTS: In this work, 15 wheat CAMTA genes were identified using a genome-wide search method. Their chromosome location, physicochemical properties, subcellular localization, gene structure, protein domain, and promoter cis-elements were systematically analyzed. Phylogenetic analysis classified the TaCAMTA genes into three groups (groups A, B, and C), numbered 7, 6, and 2, respectively. The results showed that most TaCAMTA genes contained stress-related cis-elements. Finally, to obtain tissue-specific and stress-responsive candidates, the expression profiles of the TaCAMTAs in various tissues and under biotic and abiotic stresses were investigated. Tissue-specific expression analysis showed that all of the 15 TaCAMTA genes were expressed in multiple tissues with different expression levels, as well as under abiotic stress, the expressions of each TaCAMTA gene could respond to at least one abiotic stress. It also found that 584 genes in wheat genome were predicted to be potential target genes by CAMTA, demonstrating that CAMTA can be widely involved in plant development and growth, as well as coping with stresses. CONCLUSIONS: This work systematically identified the CAMTA gene family in wheat at the whole-genome-wide level, providing important candidates for further functional analysis in developmental regulation and the stress response in wheat.


Asunto(s)
Proteínas de Unión al Calcio/genética , Familia de Multigenes , Proteínas de Plantas/genética , Transactivadores/genética , Triticum/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Filogenia , Regiones Promotoras Genéticas , Estrés Fisiológico
9.
BMC Genet ; 21(1): 69, 2020 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-32631217

RESUMEN

BACKGROUND: Activated charcoal (AC) is highly adsorbent and is often used to promote seedling growth in plant tissue culture; however, the underlying molecular mechanism remains unclear. In this study, root and leaf tissues of 10-day-old seedlings grown via immature embryo culture in the presence or absence of AC in the culture medium were subjected to global transcriptome analysis by RNA sequencing to provide insights into the effects of AC on seedling growth. RESULTS: In total, we identified 18,555 differentially expressed genes (DEGs). Of these, 11,182 were detected in the roots and 7373 in the leaves. In seedlings grown in the presence of AC, 9460 DEGs were upregulated and 7483 DEGs were downregulated in the presence of AC as compared to the control. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed 254 DEG-enriched pathways, 226 of which were common between roots and leaves. Further analysis of the major metabolic pathways revealed that AC stimulated the expression of nine genes in the phenylpropanoid biosynthesis pathway, including PLA, CYP73A, COMT, CYP84A, and 4CL, the protein products of which promote cell differentiation and seedling growth. Further, AC upregulated genes involved in plant hormone signaling related to stress resistance and disease resistance, including EIN3, BZR1, JAR1, JAZ, and PR1, and downregulated genes related to plant growth inhibition, including BKI1, ARR-B, DELLA, and ABF. CONCLUSIONS: Growth medium containing AC promotes seedling growth by increasing the expression of certain genes in the phenylpropanoid biosynthesis pathway, which are related to cell differentiation and seedling growth, as well as genes involved in plant hormone signaling, which is related to resistance.


Asunto(s)
Carbón Orgánico , Perfilación de la Expresión Génica , Plantones/crecimiento & desarrollo , Triticum/genética , Regulación de la Expresión Génica de las Plantas , Fenilpropionatos/metabolismo , Plantones/genética , Transcriptoma , Triticum/crecimiento & desarrollo
10.
Int J Mol Sci ; 21(5)2020 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-32155734

RESUMEN

Wheat (Triticum aestivum L.) is an important staple crop. Rhizoctonia cerealis is the causal agent of diseases that are devastating to cereal crops, including wheat. Xylanases play an important role in pathogenic infection, but little is known about xylanases in R. cerealis. Herein, we identified nine xylanase-encoding genes from the R. cerealis genome, named RcXYN1-RcXYN9, examined their expression patterns, and investigated the pathogenicity role of RcXYN1. RcXYN1-RcXYN9 proteins contain two conserved glutamate residues within the active motif in the glycoside hydrolase 10 (GH10) domain. Of them, RcXYN1-RcXYN4 are predicted to be secreted proteins. RcXYN1-RcXYN9 displayed different expression patterns during the infection process of wheat, and RcXYN1, RcXYN2, RcXYN5, and RcXYN9 were expressed highly across all the tested inoculation points. Functional dissection indicated that the RcXYN1 protein was able to induce necrosis/cell-death and H2O2 generation when infiltrated into wheat and Nicotiana benthamiana leaves. Furthermore, application of RcXYN1 protein followed by R. cerealis led to significantly higher levels of the disease in wheat leaves than application of the fungus alone. These results demonstrate that RcXYN1 acts as a pathogenicity factor during R. cerealis infection in wheat. This is the first investigation of xylanase genes in R. cerealis, providing novel insights into the pathogenesis mechanisms of R. cerealis.


Asunto(s)
Resistencia a la Enfermedad/genética , Endo-1,4-beta Xilanasas/metabolismo , Enfermedades de las Plantas/genética , Rhizoctonia/enzimología , Rhizoctonia/genética , Triticum/virología , Proteínas Virales/genética , Endo-1,4-beta Xilanasas/genética , Regulación Viral de la Expresión Génica , Genoma Viral , Interacciones Huésped-Patógeno , Micosis/virología , Enfermedades de las Plantas/virología , Proteínas Virales/metabolismo
11.
Int J Mol Sci ; 20(22)2019 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-31739570

RESUMEN

The WRKY transcription factor superfamily is known to participate in plant growth and stress response. However, the role of this family in wheat (Triticum aestivum L.) is largely unknown. Here, a salt-induced gene TaWRKY13 was identified in an RNA-Seq data set from salt-treated wheat. The results of RT-qPCR analysis showed that TaWRKY13 was significantly induced in NaCl-treated wheat and reached an expression level of about 22-fold of the untreated wheat. Then, a further functional identification was performed in both Arabidopsis thaliana and Oryza sativa L. Subcellular localization analysis indicated that TaWRKY13 is a nuclear-localized protein. Moreover, various stress-related regulatory elements were predicted in the promoter. Expression pattern analysis revealed that TaWRKY13 can also be induced by polyethylene glycol (PEG), exogenous abscisic acid (ABA), and cold stress. After NaCl treatment, overexpressed Arabidopsis lines of TaWRKY13 have a longer root and a larger root surface area than the control (Columbia-0). Furthermore, TaWRKY13 overexpression rice lines exhibited salt tolerance compared with the control, as evidenced by increased proline (Pro) and decreased malondialdehyde (MDA) contents under salt treatment. The roots of overexpression lines were also more developed. These results demonstrate that TaWRKY13 plays a positive role in salt stress.


Asunto(s)
Tolerancia a la Sal/genética , Factores de Transcripción/genética , Triticum/genética , Triticum/metabolismo , Mapeo Cromosómico , Cromosomas de las Plantas , Biología Computacional/métodos , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Genómica/métodos , Fenotipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas , Elementos de Respuesta , Estrés Fisiológico/genética
12.
BMC Plant Biol ; 18(1): 320, 2018 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-30509166

RESUMEN

BACKGROUND: Abiotic stress severely influences plant growth and development. MYB transcription factors (TFs), which compose one of the largest TF families, play an important role in abiotic stress responses. RESULT: We identified 139 soybean MYB-related genes; these genes were divided into six groups based on their conserved domain and were distributed among 20 chromosomes (Chrs). Quantitative real-time PCR (qRT-PCR) indicated that GmMYB118 highly responsive to drought, salt and high temperature stress; thus, this gene was selected for further analysis. Subcellular localization revealed that the GmMYB118 protein located in the nucleus. Ectopic expression (EX) of GmMYB118 increased tolerance to drought and salt stress and regulated the expression of several stress-associated genes in transgenic Arabidopsis plants. Similarly, GmMYB118-overexpressing (OE) soybean plants generated via Agrobacterium rhizogenes (A. rhizogenes)-mediated transformation of the hairy roots showed improved drought and salt tolerance. Furthermore, compared with the control (CK) plants, the clustered, regularly interspaced, short palindromic repeat (CRISPR)-transformed plants exhibited reduced drought and salt tolerance. The contents of proline and chlorophyll in the OE plants were significantly greater than those in the CK plants, whose contents were greater than those in the CRISPR plants under drought and salt stress conditions. In contrast, the reactive oxygen species (ROS) and malondialdehyde (MDA) contents were significantly lower in the OE plants than in the CK plants, whose contents were lower than those in the CRISPR plants under stress conditions. CONCLUSIONS: These results indicated that GmMYB118 could improve tolerance to drought and salt stress by promoting expression of stress-associated genes and regulating osmotic and oxidizing substances to maintain cell homeostasis.


Asunto(s)
Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Agrobacterium/metabolismo , Arabidopsis/metabolismo , Arabidopsis/fisiología , Deshidratación , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/fisiología , Raíces de Plantas/microbiología , Plantas Modificadas Genéticamente , Reacción en Cadena en Tiempo Real de la Polimerasa , Estrés Salino , Glycine max/genética , Glycine max/metabolismo , Glycine max/fisiología , Factores de Transcripción/genética , Factores de Transcripción/fisiología
13.
Int J Mol Sci ; 19(9)2018 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-30200246

RESUMEN

Abiotic stresses restrict the growth and yield of crops. Plants have developed a number of regulatory mechanisms to respond to these stresses. WRKY transcription factors (TFs) are plant-specific transcription factors that play essential roles in multiple plant processes, including abiotic stress response. At present, little information regarding drought-related WRKY genes in maize is available. In this study, we identified a WRKY transcription factor gene from maize, named ZmWRKY40. ZmWRKY40 is a member of WRKY group II, localized in the nucleus of mesophyll protoplasts. Several stress-related transcriptional regulatory elements existed in the promoter region of ZmWRKY40. ZmWRKY40 was induced by drought, high salinity, high temperature, and abscisic acid (ABA). ZmWRKY40 could rapidly respond to drought with peak levels (more than 10-fold) at 1 h after treatment. Overexpression of ZmWRKY40 improved drought tolerance in transgenic Arabidopsis by regulating stress-related genes, and the reactive oxygen species (ROS) content in transgenic lines was reduced by enhancing the activities of peroxide dismutase (POD) and catalase (CAT) under drought stress. According to the results, the present study may provide a candidate gene involved in the drought stress response and a theoretical basis to understand the mechanisms of ZmWRKY40 in response to abiotic stresses in maize.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Estrés Fisiológico , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Zea mays/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Núcleo Celular/metabolismo , Sequías , Evolución Molecular , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Regiones Promotoras Genéticas , Protoplastos/metabolismo , Zea mays/crecimiento & desarrollo , Zea mays/metabolismo
14.
Int J Mol Sci ; 19(10)2018 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-30301220

RESUMEN

WRKY transcription factors constitute one of the largest transcription factor families in plants, and play crucial roles in plant growth and development, defense regulation and stress responses. However, knowledge about this family in maize is limited. In the present study, we identified a drought-induced WRKY gene, ZmWRKY106, based on the maize drought de novo transcriptome sequencing data. ZmWRKY106 was identified as part of the WRKYII group, and a phylogenetic tree analysis showed that ZmWRKY106 was closer to OsWRKY13. The subcellular localization of ZmWRKY106 was only observed in the nucleus. The promoter region of ZmWRKY106 included the C-repeat/dehydration responsive element (DRE), low-temperature responsive element (LTR), MBS, and TCA-elements, which possibly participate in drought, cold, and salicylic acid (SA) stress responses. The expression of ZmWRKY106 was induced significantly by drought, high temperature, and exogenous abscisic acid (ABA), but was weakly induced by salt. Overexpression of ZmWRKY106 improved the tolerance to drought and heat in transgenic Arabidopsis by regulating stress-related genes through the ABA-signaling pathway, and the reactive oxygen species (ROS) content in transgenic lines was reduced by enhancing the activities of superoxide dismutase (SOD), peroxide dismutase (POD), and catalase (CAT) under drought stress. This suggested that ZmWRKY106 was involved in multiple abiotic stress response pathways and acted as a positive factor under drought and heat stress.


Asunto(s)
Adaptación Biológica , Sequías , Respuesta al Choque Térmico , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Zea mays/genética , Zea mays/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Núcleo Celular/metabolismo , Perfilación de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Fenotipo , Filogenia , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Transporte de Proteínas , Especies Reactivas de Oxígeno/metabolismo , Elementos de Respuesta , Estrés Fisiológico , Factores de Transcripción/química , Transcriptoma , Zea mays/clasificación
15.
PLoS One ; 19(6): e0304478, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38870180

RESUMEN

In the context of the evolving landscape of reduction in carbon emissions and integration of renewable energy, this study uses system dynamics (SD) modeling to explore the interconnected dynamics of carbon trading (CT), tradable green certificate (TGC) trading, and electricity markets. Using differential equations with time delays, the study provides a comprehensive analysis of structural relationships and feedback mechanisms within and between these markets. Key findings reveal the intricate interplay between carbon prices, green certificate prices, and electricity prices under various coupling mechanisms. For example, under the three-market coupling mechanism, carbon trading prices stabilize around 150 Yuan/ton, while green certificate prices reach a peak of 0.45 Yuan/KWH, impacting electricity prices, which fluctuate between 0.33 and 1.09 Yuan / KWH during the simulation period. These quantitative results shed light on nuanced fluctuations in market prices and the dynamics of anticipated purchases and sales volumes within each market. The insights gleaned from this study offer valuable implications for policy makers and market stakeholders in navigating the complexities of carbon emission reduction strategies, the integration of renewable energy and market equilibrium. By understanding the dynamics of multi-market coupling, stakeholders can better formulate policies and strategies to achieve sustainable energy transitions and mitigate impacts of climate change.


Asunto(s)
Carbono , Electricidad , Energía Renovable/economía , Modelos Económicos , Comercio/economía , Modelos Teóricos
16.
Int J Mol Med ; 53(2)2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38099365

RESUMEN

Following the publication of this paper, it was drawn to the Editor's attention by a concerned reader that the immunofluorescence staining data shown in Fig. 3C, and the migration and invasion assay data shown in Figs. 4C and 4D were strikingly similar to data appearing in different form in other research articles written by different authors at different research institutes that had either already been published, or were submitted for publication at around the same time, one of which has been retracted. In addition, the western blotting data shown for the E­cadherin and AKT protein bands in Fig. 5 were strikingly similar, albeit the bands had been flipped vertically. Owing to the fact that contentious data in the above article had already been submitted for publication elsewhere prior to its submission to International Journal of Molecular Medicine, the Editor has decided that this paper should be retracted from the Journal. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive a reply. The Editor apologizes to the readership for any inconvenience caused. [International Journal of Molecular Medicine 44: 700­708, 2020; DOI: 10.3892/ijmm.2020.4637].

17.
Chem Commun (Camb) ; 60(12): 1546-1562, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38240334

RESUMEN

Cyanation has attracted considerable attention in organic synthesis because nitriles are key structural motifs in numerous important dyes, agrochemicals, natural products and drug molecules. As the fourth generation of cyanating reagents, isocyanides occupy a prominent place in the synthesis of nitriles due to their favorable stability, easy operability and high reactivity. In recent years, three types of cyanation with isocyanides have been established: the cleavage of the C-NC bond of tertiary alkyl isocyanides (Type I), the rearrangement of aryl isocyanides with azides (Type II), and the reductive cyanation of ketones with α-acidic isocyanides (Type III). This review focuses on advances in cyanation with isocyanides with an emphasis on reaction scope, limitations and mechanisms, which could reveal their remarkable value and superiority for accessing various nitriles. In addition, the future development prospects of this specific field are also introduced. We believe that this feature article will serve as a comprehensive tool to navigate cyanation with isocyanides across the vast area of synthetic chemistry.

18.
Environ Sci Pollut Res Int ; 30(7): 17723-17740, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36201080

RESUMEN

In order to ensure the best dust removal on the basis of the optimal gas emission, and to determine the best dust and gas exhaust air volume, numerical simulation research was carried out on the airflow-dust-gas field of the fully mechanized driving face. The results indicate that under different air volumes, with an increase in the distance from the head-on, the airflow velocity of the fully mechanized driving face first increased and then decreased, and gradually tended to be stable. When Q = 800-900 m3/min, the head-on gas dilution ability is strong and the range of high gas content was the minimum. When Q > 900 m3/min, the gas dilution efficiency was reduced and easy to cause secondary dust. In the height of the respiratory zone, the relationship between the dust concentration distribution and air volume is [Formula: see text], and that between the gas content and air volume is [Formula: see text]. Finally, the optimal air volume range was determined to be Q = 800-900 m3/min. By comparing the measured and simulated airflow velocity, dust concentration, and gas content, the average errors were 6.77%, 6.83%, and 7.73%, respectively, which proves the reliability of the numerical simulation results.


Asunto(s)
Polvo , Ventilación , Polvo/análisis , Reproducibilidad de los Resultados , Simulación por Computador , Emisiones de Vehículos
19.
Artículo en Inglés | MEDLINE | ID: mdl-36833976

RESUMEN

Lucid waters and lush mountains are invaluable assets. Resource-saving and environmentally friendly industrial structures, production, and living modes are pursued continuously for sustainable ecological development. According to the Second National Pollution-Source Survey, agricultural non-point pollution is still the most important source of the current water pollution. In order to improve the water environment and control the pollution, the meaning and content of the eco-agricultural industrial chain was introduced. Based on this conception, the eco-agricultural industrial chain, integrating a whole circular system with different sessions of crop farming, animal breeding, agricultural product processing, and rural living, was innovatively put forward to control the agricultural non-point pollution and protect the water environment systematically for the first time in this paper. The sustainable development was realized at a large scale from the reduction and harmlessness at the source, resource utilization in the process, and ecological restoration in the end. Core techniques were innovated based on the integration of agricultural industries to achieve the high-quality and green development of agriculture. The system included ecological breeding technologies, ecological cultivation technologies, as well as rural sewage treatment and recycling technologies, in the principle of reduce, reuse, and resource. Based on this, the agricultural production changed from the traditional mode of "resources-products-wastes" to the circulation pattern of "resources-products-renewable resources-products". Thus, the final aim could be achieved to realize the material's multilevel use and energy conversion in the system. The eco-agricultural industrial chain technology was proven to be efficient to achieve both the good control of agricultural non-point pollution and an effective improvement in the water quality.


Asunto(s)
Agricultura , Contaminación del Agua , Animales , Industrias , China
20.
Org Lett ; 25(34): 6272-6277, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37607048

RESUMEN

An unprecedented route for the preparation of fused tetracyclic N-heterocycles is presented through the palladium-catalyzed cyclization of isocyanides with alkyne-tethered aryl iodides. In this transformation, a novel amino-to-alkyl 1,5-palladium migration/intramolecular C(sp3)-C(sp2) coupling sequence was observed first. More importantly, isocyanide exhibited three roles, serving simultaneously as a C1 synthon, a C1N1 synthon, and the donor of C(sp3) for C(sp3)-C(sp2) coupling, and the reaction was the sole successful example that achieved C(sp3)-H activation of isocyanide.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA