Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Small ; 20(23): e2309206, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38149505

RESUMEN

Ferroptosis is an emerging non-apoptotic death process, mainly involving lipid peroxidation (LPO) caused by iron accumulation, which is potentially lethal to the intrinsically apoptotic-resistant malignant tumor. However, it is still restricted by the inherent antioxidant systems of tumor cells and the poor efficacy of traditional iron-based ferroptosis initiators. Herein, the study develops a novel ferroptosis-inducing agent based on PEGylated Cu+/Cu2+-doped black phosphorus@polypyrrole heterojunction (BP@CPP), which is constructed by utilizing the phosphate on the surface of BP to chelate Cu ions and initiating subsequent in situ polymerization of pyrrole. As a novel Z-scheme heterojunction, BP@CPP possesses an excellent photocatalytic activity in which the separated electron-hole pairs under laser irradiation endow it with powerful oxidizing and reducing capacities, which synergy with Cu+/Cu2+ self-cycling catalyzing Fenton-like reaction to further strengthen reactive oxygen species (ROS) accumulation, glutathione (GSH) depletion, and glutathione peroxidase 4 (GPX4) inactivation, ultimately leading to efficient ferroptosis. Systematic in vitro and in vivo evaluations demonstrate that BP@CPP effectively inhibit tumor growth by inducing desired ferroptosis while maintaining a favorable biosafety in the body. Therefore, the developed BP@CPP-based ferroptosis initiator provides a promising strategy for ferroptosis-like cancer therapy.


Asunto(s)
Cobre , Ferroptosis , Oxidación-Reducción , Especies Reactivas de Oxígeno , Ferroptosis/efectos de los fármacos , Humanos , Especies Reactivas de Oxígeno/metabolismo , Cobre/química , Cobre/farmacología , Animales , Línea Celular Tumoral , Polímeros/química , Polímeros/farmacología , Pirroles/química , Pirroles/farmacología , Neoplasias/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Ratones , Glutatión/metabolismo , Fósforo/química
2.
Environ Sci Technol ; 58(12): 5394-5404, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38463002

RESUMEN

Conventional microalgal-bacterial consortia have limited capacity to treat low-C/N wastewater due to carbon limitation and single nitrogen (N) removal mode. In this work, indigenous synergetic microalgal-bacterial consortia with high N removal performance and bidirectional interaction were successful in treating rare earth tailing wastewaters with low-C/N. Ammonia removal reached 0.89 mg N L-1 h-1, 1.84-fold more efficient than a common microalgal-bacterial system. Metagenomics-based metabolic reconstruction revealed bidirectional microalgal-bacterial interactions. The presence of microalgae increased the abundance of bacterial N-related genes by 1.5- to 57-fold. Similarly, the presence of bacteria increased the abundance of microalgal N assimilation by 2.5- to 15.8-fold. Furthermore, nine bacterial species were isolated, and the bidirectional promotion of N removal by the microalgal-bacterial system was verified. The mechanism of microalgal N assimilation enhanced by indole-3-acetic acid was revealed. In addition, the bidirectional mode of the system ensured the scavenging of toxic byproducts from nitrate metabolism to maintain the stability of the system. Collectively, the bidirectional enhancement system of synergetic microalgae-bacteria was established as an effective N removal strategy to broaden the stable application of this system for the effective treatment of low C/N ratio wastewater.


Asunto(s)
Microalgas , Aguas Residuales , Microalgas/metabolismo , Desnitrificación , Nitrógeno/metabolismo , Bacterias/metabolismo , Biomasa
3.
Environ Res ; 252(Pt 1): 118775, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38548250

RESUMEN

Microalgal technology holds great promise for both low C/N wastewater treatment and resource recovery simultaneously. Nevertheless, the advancement of microalgal technology is hindered by its reduced nitrogen removal efficiency in low C/N ratio wastewater. In this work, microalgae and waste oyster shells were combined to achieve a total inorganic nitrogen removal efficiency of 93.85% at a rate of 2.05 mg L-1 h-1 in low C/N wastewater. Notably, over four cycles of oyster shell reuse, the reactor achieved an average 85% ammonia nitrogen removal extent, with a wastewater treatment cost of only $0.092/ton. Moreover, microbial community analysis during the reuse of oyster shells revealed the critical importance of timely replacement in inhibiting the growth of non-functional bacteria (Poterioochromonas_malhamensi). The work demonstrated that the oyster shell - microalgae system provides a time- and cost-saving, environmental approach for the resourceful treatment of harsh low C/N wastewater.


Asunto(s)
Exoesqueleto , Carbono , Microalgas , Nitrógeno , Ostreidae , Eliminación de Residuos Líquidos , Aguas Residuales , Animales , Nitrógeno/análisis , Nitrógeno/metabolismo , Microalgas/crecimiento & desarrollo , Aguas Residuales/química , Exoesqueleto/química , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/análisis
4.
J Am Chem Soc ; 145(36): 19961-19968, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37651158

RESUMEN

The search for highly active and selective catalysts with high precious metal atom utilization efficiency has attracted increasing interest in both the fundamental synthesis of materials and important industrial reactions. Here, we report the synthesis of Pd-Cu nanocubes with a Cu core and an ordered B2 intermetallic CuPd shell with controllable atomic layers on the surface (denoted as Cu/B2 CuPd), which can efficiently and robustly catalyze the selective hydrogenation of acetylene (C2H2) to ethylene (C2H4) under mild conditions. The optimized Cu/B2 CuPd with a Pd loading of 9.5 at. % exhibited outstanding performance in the C2H2 semi-hydrogenation with 100% C2H2 conversion and 95.2% C2H4 selectivity at 90 °C. We attributed this outstanding performance to the core/shell structure with a high surface density of active Pd sites isolated by Cu in the B2 intermetallic matrix, representing a structural motif of single-atom alloys (SAAs) on the surface. The combined experimental and computational studies further revealed that the electronic states of Pd and Cu are modulated by SAAs from the synergistic effect between Pd and Cu, leading to enhanced performance compared with pristine Pd and Cu catalysts. This study provides a new synthetic methodology for making single-atom catalysts with high precious metal atom utilization efficiency, enabling simultaneous tuning of both geometric and electronic structures of Pd active sites for enhanced catalysis.

5.
J Periodontal Res ; 58(4): 800-812, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37221903

RESUMEN

BACKGROUND AND OBJECTIVE: Periodontal ligament (PDL) and dental pulp (DP) share a common origin but have distinct biological and mechanical functions. To what extent the mechanoresponsive property of PDL can be attributed to its unique transcriptional profiles of cellular heterogeneity is unclear. This study aims to decipher cellular heterogeneity and distinct mechanoresponsive characteristics of odontogenic soft tissues and their underlying molecular mechanisms. MATERIALS AND METHODS: A single-cell comparison of digested human periodontal ligament (PDL) and dental pulp (DP) was performed using scRNA-seq. An in vitro loading model was constructed to measure mechanoresponsive ability. Dual-luciferase assay, overexpression, and shRNA knockdown were used to investigate the molecular mechanism. RESULTS: Our results demonstrate striking fibroblast heterogeneity across and within human PDL and DP. We demonstrated that a tissue-specific subset of fibroblasts existed in PDL exhibiting high expression of mechanoresponsive extracellular matrix (ECM) genes, which was verified by an in vitro loading model. ScRNA-seq analysis indicated a particularly enriched regulator in PDL-specific fibroblast subtype, Jun Dimerization Protein 2 (JDP2). Overexpression and knockdown of JDP2 extensively regulated the downstream mechanoresponsive ECM genes in human PDL cells. The force loading model demonstrated that JDP2 responded to tension and that knockdown of JDP2 effectively inhibited the mechanical force-induced ECM remodeling. CONCLUSIONS: Our study constructed the PDL and DP ScRNA-seq atlas to demonstrate PDL and DP fibroblast cellular heterogeneity and identify a PDL-specific mechanoresponsive fibroblast subtype and its underlying mechanism.


Asunto(s)
Fibroblastos , Análisis de Expresión Génica de una Sola Célula , Humanos , Células Cultivadas , Fibroblastos/metabolismo , Matriz Extracelular , Ligamento Periodontal/metabolismo
6.
J Fluoresc ; 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38008861

RESUMEN

Due to their persistent luminescence, persistent luminescent (PersL) materials have attracted great interest. In the biomedical field, the use of persistent luminescent nanoparticles (PLNPs) eliminates the need for continuous in situ excitation, thereby avoiding interference from tissue autofluorescence and significantly improving the signal-to-noise ratio (SNR). Although persistent luminescence materials can emit light continuously, the luminescence intensity of small-sized nanoparticles in vivo decays quickly. Early persistent luminescent nanoparticles were mostly excited by ultraviolet (UV) or visible light and were administered for imaging purposes through ex vivo charging followed by injection into the body. Limited by the low in vivo penetration depth, UV light cannot secondary charge PLNPs that have decayed in vivo, and visible light does not penetrate deep enough to reach deep tissues, which greatly limits the imaging time of persistent luminescent materials. In order to address this issue, the development of PLNPs that can be activated by light sources with superior tissue penetration capabilities is essential. Near-infrared (NIR) light and X-rays are widely recognized as ideal excitation sources, making persistent luminescent materials stimulated by these two sources a prominent area of research in recent years. This review describes NIR and X-ray excitable persistent luminescence materials and their recent advances in bioimaging.

7.
J Environ Manage ; 328: 116973, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36525735

RESUMEN

Microalgae appear to be a promising and ecologically safe way for nutrients removal from rare earth tailings (REEs) wastewater with CO2 fixation and added benefits of resource recovery and recycling. In this study, a pilot scale (50 L) co-flocculating microalgae photobioreactor (Ma-PBR) as constructed and operated for 140 days to treat REEs wastewater with low C/N ratio of 0.51-0.56. The removal rate of ammonia nitrogen (NH4+-N) reached 88.04% and the effluent residual concentration was as low as 9.91 mg/L that have met the Emission Standards of Pollutants from Rare Earths Industry (GB 26451-2011). Timely supplementation of trace elements was necessary to maintain the activity of microalgae and then prolonged the operation time. The dominant phyla in co-flocculating microalgae was Chlorophyta, the relative abundance of which was higher than 80%. Tetradesmus belonging to Chlorophyceae was the dominant genus with relative abundance of 80.35%. The results provided a practical support for the scaling-up of Ma-PBR to treat REEs wastewater.


Asunto(s)
Metales de Tierras Raras , Microalgas , Aguas Residuales , Fotobiorreactores , Proyectos Piloto , Biomasa , Nitrógeno
8.
Small ; 18(29): e2202964, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35717674

RESUMEN

Nanocatalytic medicine is a burgeoning disease treatment model with high specificity and biosafety in which the nanocatalyst is the core of driving catalytic reaction to generate therapeutic outcomes. However, the robust defense systems in the pathological region would counteract nanocatalyst-initiated therapeutics. Here, a Cu-doped polypyrrole is innovatively developed by a facile oxidative polymerization reaction, which exhibits intriguing multi-catalytic activities, including catalyzing H2 O2 to generate O2 and · OH, and consuming reduced glutathione by a Cu(II)-Cu(I) transition approach. By decorating with sonosensitizers and DSPE-PEG, the obtained CuPPy-TP plus US irradiation can induce severe oxidative damage to tumor cells by amplifying oxidative stress and simultaneously relieving antioxidant capacity in tumors based on the highly effective sonochemical and redox reactions. The notable tumor-specific biodegradability, remarkable cell apoptosis in vitro, and tumor suppression in vivo are demonstrated in this work, which not only present a promising biocompatible antitumor nanocatalyst but also broaden the perspective in oxidative stress-based antitumor therapy.


Asunto(s)
Polímeros , Pirroles , Catálisis , Línea Celular Tumoral , Peróxido de Hidrógeno/farmacología , Polímeros/farmacología , Microambiente Tumoral
9.
Int J Obes (Lond) ; 46(5): 1002-1008, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35079130

RESUMEN

BACKGROUND: Genetically modified probiotics have potential for use as a novel approach to express bioactive molecules for the treatment of obesity. The objective of the present study was to investigate the beneficial effect of genetically modified Escherichia coli Nissle 1917 (EcN-GM) in obese C57BL/6J mice. METHODS: First, an obesity model in C57BL/6J mice was successfully established. Then, the obese mice were randomly assigned into three groups: obese mice (OB), obese mice + EcN-GM (OB + EcN-GM), and obese mice + orlistat (OB + orlistat) (n = 10 in each group). The three groups were gavaged with 0.3 ml of 1010 CFU/ml control EcN, EcN-GM (genetically engineered EcN) and 10 ml/kg orlistat. Body weight, food consumption, fat pad and organ weight, hepatic biochemistry and hepatic histopathological alterations were measured. The effects of EcN-GM on the levels of endocrine peptides and the intestinal microbiota were also analyzed. RESULTS: After supplementation for 8 weeks, EcN-GM was associated with decreases in body weight gain, food intake, fat pad and liver weight, and alleviation hepatocyte steatosis in obese mice. EcN-GM also increased the level of GLP-1 in serum and alleviated leptin and insulin resistance. Moreover, supplementation with EcN-GM increased the α-diversity of the intestinal microbiota but did not significantly influence the relative abundance of Firmicutes and Bacteroidetes. CONCLUSIONS: These results indicated that EcN-GM, a genetically modified E. coli strain, may be a potential therapeutic approach to treat obesity. The beneficial effect of EcN-GM may be independent of the alteration of the diversity and composition of the intestinal microbiota in obese mice.


Asunto(s)
Escherichia coli , Probióticos , Animales , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad , Orlistat/farmacología , Probióticos/farmacología
10.
Molecules ; 27(14)2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35889477

RESUMEN

Xanthatin (XT) is a sesquiterpene lactone isolated from the Chinese herb Xanthium, which belongs to the Asteraceae family. In this study, we developed an inflammation model via stimulating macrophage cell line (RAW 264.7 cells) with lipopolysaccharide (LPS), which was applied to assess the anti-inflammatory effect and probable mechanisms of xanthatin. When compared with the only LPS-induced group, cells that were pretreated with xanthatin were found to decrease the amount of nitric oxide (NO), reactive oxygen species (ROS) and associated pro-inflammatory factors (TNF-α, IL-1ß and IL-6), and downregulate the mRNA expression of iNOS, COX-2, TNF-α, IL-1ß, and IL-6. Interestingly, phosphorylated levels of related proteins (STAT3, ERK1/2, SAPK/JNK, IκBα, p65) were notably increased only with the LPS-activated cells, while the expression of these could be reverted by pre-treatment with xanthatin in a dose-dependent way. Meanwhile, xanthatin was also found to block NF-κB p65 from translocating into the nucleus and activating inflammatory gene transcription. Collectively, these results demonstrated that xanthatin suppresses the inflammatory effects through downregulating the nuclear factor kappa-B (NF-κB), mitogen-activated protein kinase (MAPK) and signal transducer and activator of transcription (STATs) signaling pathways. Taken together, xanthatin possesses the potential to act as a good anti-inflammatory medication candidate.


Asunto(s)
Lipopolisacáridos , FN-kappa B , Animales , Antiinflamatorios/uso terapéutico , Furanos , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Interleucina-6/metabolismo , Lipopolisacáridos/farmacología , Macrófagos , Ratones , Proteínas Quinasas Activadas por Mitógenos/metabolismo , FN-kappa B/metabolismo , Células RAW 264.7 , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA