Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Foods Hum Nutr ; 79(2): 308-315, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38639852

RESUMEN

In food industry, the characteristics of food substrate could be improved through its bidirectional solid-state fermentation (BSF) by fungi, because the functional components were produced during BSF. Six edible fungi were selected for BSF to study their effects on highland barley properties, such as functional components, antioxidant activity, and texture characteristics. After BSF, the triterpenes content in Ganoderma lucidum and Ganoderma leucocontextum samples increased by 76.57 and 205.98%, respectively, and the flavonoids content increased by 62.40% (Phellinus igniarius). Protein content in all tests increased significantly, with a maximal increase of 406.11% (P. igniarius). Proportion of indispensable amino acids increased significantly, with the maximum increase of 28.22%. Lysine content increased largest by 437.34% to 3.310 mg/g (Flammulina velutipes). For antioxidant activity, ABTS radical scavenging activity showed the maximal improvement, with an increase of 1268.95%. Low-field NMR results indicated a changed water status of highland barley after fermentation, which could result in changes in texture characteristics of highland barley. Texture analysis showed that the hardness and chewiness of the fermented product decreased markedly especially in Ganoderma lucidum sample with a decrease of 77.96% and 58.60%, respectively. The decrease indicated a significant improvement in the taste of highland barley. The results showed that BSF is an effective technology to increase the quality of highland barley and provide a new direction for the production of functional foods.


Asunto(s)
Antioxidantes , Fermentación , Ganoderma , Hordeum , Hordeum/química , Antioxidantes/análisis , Antioxidantes/metabolismo , Ganoderma/química , Ganoderma/metabolismo , Flavonoides/análisis , Aminoácidos/análisis , Aminoácidos/metabolismo , Flammulina/química , Flammulina/metabolismo , Reishi/metabolismo , Reishi/química , Manipulación de Alimentos/métodos
2.
Redox Biol ; 74: 103227, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38865903

RESUMEN

Hydrogen sulfide (H2S) has recently been recognized as an important gaseous transmitter with multiple physiological effects in various species. Previous studies have shown that H2S alleviated heat-induced ganoderic acids (GAs) biosynthesis, an important quality index of Ganoderma lucidum. However, a comprehensive understanding of the physiological effects and molecular mechanisms of H2S in G. lucidum remains unexplored. In this study, we found that heat treatment reduced the mitochondrial membrane potential (MMP) and mitochondrial DNA copy number (mtDNAcn) in G. lucidum. Increasing the intracellular H2S concentration through pharmacological and genetic means increased the MMP level, mtDNAcn, oxygen consumption rate level and ATP content under heat treatment, suggesting a role for H2S in mitigating heat-caused mitochondrial damage in G. lucidum. Further results indicated that H2S activates sulfide-quinone oxidoreductase (SQR) and complex III (Com III), thereby maintaining mitochondrial homeostasis under heat stress in G. lucidum. Moreover, SQR also mediated the negative regulation of H2S to GAs biosynthesis under heat stress. Furthermore, SQR might be persulfidated under heat stress in G. lucidum. Thus, our study reveals a novel physiological function and molecular mechanism of H2S signalling under heat stress in G. lucidum with broad implications for research on the environmental response of microorganisms.


Asunto(s)
Respuesta al Choque Térmico , Homeostasis , Sulfuro de Hidrógeno , Potencial de la Membrana Mitocondrial , Mitocondrias , Reishi , Triterpenos , Sulfuro de Hidrógeno/metabolismo , Reishi/metabolismo , Reishi/genética , Triterpenos/metabolismo , Mitocondrias/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Quinona Reductasas/metabolismo , Quinona Reductasas/genética , ADN Mitocondrial/genética , Complejo III de Transporte de Electrones/metabolismo , Complejo III de Transporte de Electrones/genética
3.
J Fungi (Basel) ; 9(3)2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36983508

RESUMEN

Flammulina filiformis, the most produced edible mushroom species in China, is rich in lysine. Further enhancing its lysine biosynthesis is vital for improving its quality in industrialized cultivation. Citric acid induction significantly increases both the biomass and growth rate of F. filiformis hyphae, as well as the lysine content. The genes encoding enzymes in the lysine biosynthesis pathway were detected under the optimal induction, revealing that the expression levels of hcs, hac, and hah were 2.67, 1.97, and 1.90 times greater, respectively, relative to the control, whereas no significant difference was seen for hdh, aat, sr, and shd, and the expression of aar decreased. Furthermore, the transcriptional levels of Ampk, GCN2, GCN4, and TOR were found significantly upregulated, with the most upregulated, Ampk, reaching a level 42.68 times greater than that of the control, while the phosphorylation of AMPK rose by nearly 54%. In AMPK-silencing strains under the optimal induction, however, the phosphorylation increment dropped to about 16% and the lysine content remained at the same level as in the WT. Thus, AMPK is presented as the critical intermediary in citric acid's regulation of lysine biosynthesis in F. filiformis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA