Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 323
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Genet ; 19(1): e1010600, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36634107

RESUMEN

In lepidopteran insects, dichotomous spermatogenesis produces eupyrene spermatozoa, which are nucleated, and apyrene spermatozoa, which are anucleated. Both sperm morphs are essential for fertilization, as eupyrene sperm fertilize the egg, and apyrene sperm is necessary for the migration of eupyrene sperm. In Drosophila, Prmt5 acts as a type II arginine methyltransferase that catalyzes the symmetrical dimethylation of arginine residues in the RNA helicase Vasa. Prmt5 is critical for the regulation of spermatogenesis, but Vasa is not. To date, functional genetic studies of spermatogenesis in the lepidopteran model Bombyx mori has been limited. In this study, we engineered mutations in BmPrmt5 and BmVasa through CRISPR/Cas9-based gene editing. Both BmPrmt5 and BmVasa loss-of-function mutants had similar male and female sterility phenotypes. Through immunofluorescence staining analysis, we found that the morphs of sperm from both BmPrmt5 and BmVasa mutants have severe defects, indicating essential roles for both BmPrmt5 and BmVasa in the regulation of spermatogenesis. Mass spectrometry results identified that R35, R54, and R56 of BmVasa were dimethylated in WT while unmethylated in BmPrmt5 mutants. RNA-seq analyses indicate that the defects in spermatogenesis in mutants resulted from reduced expression of the spermatogenesis-related genes, including BmSxl, implying that BmSxl acts downstream of BmPrmt5 and BmVasa to regulate apyrene sperm development. These findings indicate that BmPrmt5 and BmVasa constitute an integral regulatory module essential for spermatogenesis in B. mori.


Asunto(s)
Bombyx , Animales , Femenino , Masculino , Bombyx/genética , Drosophila , Fertilización , Proteína-Arginina N-Metiltransferasas/metabolismo , Semen , Espermatogénesis/genética , Espermatozoides/metabolismo , ARN Helicasas DEAD-box/metabolismo
2.
Eur J Immunol ; 54(5): e2350779, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38440842

RESUMEN

Pneumocystis pneumonia (PCP) is a fungal pulmonary disease with high mortality in immunocompromised patients. Neutrophils are essential in defending against fungal infections; however, their role in PCP is controversial. Here we aim to investigate the effects of neutrophil extracellular traps (NETs) on Pneumocystis clearance and lung injury using a mouse model of PCP. Intriguingly, although neutrophils play a fundamental role in defending against fungal infections, NETs failed to eliminate Pneumocystis, but instead impaired the killing of Pneumocystis. Mechanically, Pneumocystis triggered Leukotriene B4 (LTB4)-dependent neutrophil swarming, leading to agglutinative NET formation. Blocking Leukotriene B4 with its receptor antagonist Etalocib significantly reduced the accumulation and NET release of neutrophils in vitro and in vivo, enhanced the killing ability of neutrophils against Pneumocystis, and alleviated lung injury in PCP mice. This study identifies the deleterious role of agglutinative NETs in Pneumocystis infection and reveals a new way to prevent NET formation, which provides new insights into the pathogenesis of PCP.


Asunto(s)
Trampas Extracelulares , Leucotrieno B4 , Neutrófilos , Pneumocystis , Neumonía por Pneumocystis , Trampas Extracelulares/inmunología , Animales , Ratones , Neutrófilos/inmunología , Neumonía por Pneumocystis/inmunología , Leucotrieno B4/metabolismo , Leucotrieno B4/inmunología , Pneumocystis/inmunología , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Humanos
3.
Cell Mol Life Sci ; 81(1): 220, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38763956

RESUMEN

Cardiovascular diseases are an array of age-related disorders, and accumulating evidence suggests a link between cardiac resident macrophages (CRMs) and the age-related disorders. However, how does CRMs alter with aging remains elusive. In the present study, aged mice (20 months old) have been employed to check for their cardiac structural and functional alterations, and the changes in the proportion of CRM subsets as well, followed by sorting of CRMs, including C-C Motif Chemokine Receptor 2 (CCR2)+ and CCR2- CRMs, which were subjected to Smart-Seq. Integrated analysis of the Smart-Seq data with three publicly available single-cell RNA-seq datasets revealed that inflammatory genes were drastic upregulated for both CCR2+ and CCR2- CRMs with aging, but genes germane to wound healing were downregulated for CCR2- CRMs, suggesting the differential functions of these two subsets. More importantly, inflammatory genes involved in damage sensing, complement cascades, and phagocytosis were largely upregulated in CCR2- CRMs, implying the imbalance of inflammatory response upon aging. Our work provides a comprehensive framework and transcriptional resource for assessing the impact of aging on CRMs with a potential for further understanding cardiac aging.


Asunto(s)
Envejecimiento , Perfilación de la Expresión Génica , Macrófagos , Ratones Endogámicos C57BL , Receptores CCR2 , Animales , Macrófagos/metabolismo , Envejecimiento/genética , Envejecimiento/metabolismo , Ratones , Receptores CCR2/metabolismo , Receptores CCR2/genética , Transcriptoma , Miocardio/metabolismo , Masculino , Análisis de la Célula Individual , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Transducción de Señal , Fagocitosis
4.
PLoS Genet ; 18(3): e1010131, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35312700

RESUMEN

Sperm deliver the male complement of DNA to the ovum, and thus play a key role in sexual reproduction. Accordingly, spermatogenesis has outstanding significance in fields as disparate as infertility treatments and pest-control, making it a broadly interesting and important focus for molecular genetics research in a wide range of species. Here we investigate spermatogenesis in the model lepidopteran insect Bombyx mori (silkworm moth), with particular focus on the gene PMFBP1 (polyamine modulated factor 1 binding protein 1). In humans and mouse, PMFBP1 is essential for spermatogenesis, and mutations of this gene are associated with acephalic spermatozoa, which cause infertility. We identified a B. mori gene labeled as "PMFBP1" in GenBank's RefSeq database and sought to assess its role in spermatogenesis. Like in mammals, the silkworm version of this gene (BmPMFBP1) is specifically expressed in testes. We subsequently generated BmPMFBP1 mutants using a transgenic CRISPR/Cas9 system. Mutant males were sterile while the fertility of mutant females was comparable to wildtype females. In B. mori, spermatogenesis yields two types of sperm, the nucleated fertile eupyrene sperm, and anucleated unfertile apyrene sperm. Mutant males produced abnormal eupyrene sperm bundles but normal apyrene sperm bundles. For eupyrene sperm, nuclei were mislocated and disordered inside the bundles. We also found the BmPMFBP1 deficiency blocked the release of eupyrene sperm bundles from testes to ejaculatory seminalis. We found no obvious abnormalities in the production of apyrene sperm in mutant males, and double-matings with apyrene-deficient sex-lethal mutants rescued the ΔBmPMFBP1 infertility phenotype. These results indicate BmPMFBP1 functions only in eupyrene spermatogenesis, and highlight that distinct genes underlie the development of the two sperm morphs commonly found in Lepidoptera. Bioinformatic analyses suggest PMFBP1 may have evolved independently in lepidoptera and mammals, and that despite the shared name, are likely not homologous genes.


Asunto(s)
Bombyx , Mariposas Nocturnas , Animales , Bombyx/genética , Proteínas del Citoesqueleto/metabolismo , Femenino , Fertilidad/fisiología , Masculino , Mamíferos , Ratones , Espermatogénesis/genética , Espermatozoides/metabolismo
5.
J Lipid Res ; 65(2): 100499, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38218337

RESUMEN

Ferroptosis is a novel cell death mechanism that is mediated by iron-dependent lipid peroxidation. It may be involved in atherosclerosis development. Products of phospholipid oxidation play a key role in atherosclerosis. 1-palmitoyl-2-glutaroyl-sn-glycero-3-phosphocholine (PGPC) is a phospholipid oxidation product present in atherosclerotic lesions. It remains unclear whether PGPC causes atherosclerosis by inducing endothelial cell ferroptosis. In this study, human umbilical vein endothelial cells (HUVECs) were treated with PGPC. Intracellular levels of ferrous iron, lipid peroxidation, superoxide anions (O2•-), and glutathione were detected, and expression of fatty acid binding protein-3 (FABP3), glutathione peroxidase 4 (GPX4), and CD36 were measured. Additionally, the mitochondrial membrane potential (MMP) was determined. Aortas from C57BL6 mice were isolated for vasodilation testing. Results showed that PGPC increased ferrous iron levels, the production of lipid peroxidation and O2•-, and FABP3 expression. However, PGPC inhibited the expression of GPX4 and glutathione production and destroyed normal MMP. These effects were also blocked by ferrostatin-1, an inhibitor of ferroptosis. FABP3 silencing significantly reversed the effect of PGPC. Furthermore, PGPC stimulated CD36 expression. Conversely, CD36 silencing reversed the effects of PGPC, including PGPC-induced FABP3 expression. Importantly, E06, a direct inhibitor of the oxidized 1-palmitoyl-2-arachidonoyl-phosphatidylcholine IgM natural antibody, inhibited the effects of PGPC. Finally, PGPC impaired endothelium-dependent vasodilation, ferrostatin-1 or FABP3 inhibitors inhibited this impairment. Our data demonstrate that PGPC impairs endothelial function by inducing endothelial cell ferroptosis through the CD36 receptor to increase FABP3 expression. Our findings provide new insights into the mechanisms of atherosclerosis and a therapeutic target for atherosclerosis.


Asunto(s)
Aterosclerosis , Ciclohexilaminas , Ferroptosis , Fenilendiaminas , Animales , Ratones , Humanos , Fosfolípidos , Fosforilcolina , Éteres Fosfolípidos/metabolismo , Éteres Fosfolípidos/farmacología , Ratones Endogámicos C57BL , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Endotelio/metabolismo , Glutatión/metabolismo , Hierro/metabolismo , Proteína 3 de Unión a Ácidos Grasos
6.
BMC Plant Biol ; 24(1): 396, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745125

RESUMEN

BACKGROUND: Dendrobium officinale Kimura et Migo, a renowned traditional Chinese orchid herb esteemed for its significant horticultural and medicinal value, thrives in adverse habitats and contends with various abiotic or biotic stresses. Acid invertases (AINV) are widely considered enzymes involved in regulating sucrose metabolism and have been revealed to participate in plant responses to environmental stress. Although members of AINV gene family have been identified and characterized in multiple plant genomes, detailed information regarding this gene family and its expression patterns remains unknown in D. officinale, despite their significance in polysaccharide biosynthesis. RESULTS: This study systematically analyzed the D. officinale genome and identified four DoAINV genes, which were classified into two subfamilies based on subcellular prediction and phylogenetic analysis. Comparison of gene structures and conserved motifs in DoAINV genes indicated a high-level conservation during their evolution history. The conserved amino acids and domains of DoAINV proteins were identified as pivotal for their functional roles. Additionally, cis-elements associated with responses to abiotic and biotic stress were found to be the most prevalent motif in all DoAINV genes, indicating their responsiveness to stress. Furthermore, bioinformatics analysis of transcriptome data, validated by quantitative real-time reverse transcription PCR (qRT-PCR), revealed distinct organ-specific expression patterns of DoAINV genes across various tissues and in response to abiotic stress. Examination of soluble sugar content and interaction networks provided insights into stress release and sucrose metabolism. CONCLUSIONS: DoAINV genes are implicated in various activities including growth and development, stress response, and polysaccharide biosynthesis. These findings provide valuable insights into the AINV gene amily of D. officinale and will aid in further elucidating the functions of DoAINV genes.


Asunto(s)
Dendrobium , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Filogenia , beta-Fructofuranosidasa , Dendrobium/genética , Dendrobium/enzimología , beta-Fructofuranosidasa/genética , beta-Fructofuranosidasa/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilación de la Expresión Génica , Genoma de Planta , Estrés Fisiológico/genética , Genes de Plantas
7.
BMC Plant Biol ; 24(1): 807, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39187785

RESUMEN

Cadmium (Cd) is a biologically non-essential heavy metal, a major soil pollutant, and extremely harmful to plants. The phytohormone methyl jasmonate (MeJA) plays an important role in plant heavy-metal resistance. However, the understanding of the effects of MeJA supply level on alleviating Cd toxicity in plants is limited. Here, we investigated how MeJA regulated the development of physiological processes and cell wall modification in Cosmos bipinnatus. We found that low concentrations of MeJA increased the dry weight of seedlings under 120 µM Cd stress by reducing the transport of Cd from roots to shoots. Moreover, a threshold concentration of exogenous MeJA increased the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) in plant roots, the concentration of Cd in the root cell wall, and the contents of pectin and hemicellulose 1 polysaccharides, through converting Cd into pectin-bound forms. These results suggested that MeJA mitigated Cd toxicity by modulating root cell wall polysaccharide and functional group composition, especially through pectin polysaccharides binding to Cd, with effects on Cd transport capacity, specific chemical forms of Cd, and homeostatic antioxidant systems in C. bipinnatus.


Asunto(s)
Acetatos , Cadmio , Ciclopentanos , Oxilipinas , Reguladores del Crecimiento de las Plantas , Oxilipinas/metabolismo , Ciclopentanos/metabolismo , Acetatos/farmacología , Cadmio/toxicidad , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Contaminantes del Suelo/toxicidad , Pared Celular/metabolismo , Pared Celular/efectos de los fármacos , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Antioxidantes/metabolismo , Superóxido Dismutasa/metabolismo
8.
J Med Virol ; 96(3): e29496, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38402627

RESUMEN

The detection of high-risk human papillomaviruses (HPVs) is crucial for early screening and preventing cervical cancer. However, the substantial workload in high-level hospitals or the limited resources in primary-level hospitals hinder widespread testing. To address this issue, we explored a sample-to-answer genotyping system and assessed its performance by comparing it with the traditional real-time polymerase chain reaction (PCR) method conducted manually. Samples randomly selected from those undergoing routine real-time PCR detection were re-analyzed using the fully automatic GenPlex® system. This system identifies 24 types of HPV through a combination of ordinary PCR and microarray-based reverse hybridization. Inconsistent results were confirmed by repeated testing with both methods, and the κ concordance test was employed to evaluate differences between the two methods. A total of 365 samples were randomly selected from 7259 women. According to real-time PCR results, 76 were high-risk HPV negative, and 289 were positive. The GenPlex® system achieved a κ value greater than 0.9 (ranging from 0.920 to 1.000, p < 0.0001) for 14 types of high-risk HPV, except HPV 51 (κ = 0.697, p < 0.0001). However, the inconsistent results in high-risk HPV 51 were revealed to be false positive in real-time PCR by other method. When counting by samples without discriminating the high-risk HPV type, the results of both methods were entirely consistent (κ = 1.000, p < 0.0001). Notably, the GenPlex® system identified more positive cases, with 73 having an HPV type not covered by real-time PCR, and 20 potentially due to low DNA concentration undetectable by the latter. Compared with the routinely used real-time PCR assay, the GenPlex® system demonstrated high consistency. Importantly, the system's advantages in automatic operation and a sealed lab-on-chip format respectively reduce manual work and prevent aerosol pollution. For widespread use of GenPlex® system, formal clinical validation following international criteria should be warranted.


Asunto(s)
Alphapapillomavirus , Virus del Papiloma Humano , Infecciones por Papillomavirus , Neoplasias del Cuello Uterino , Femenino , Humanos , Reacción en Cadena en Tiempo Real de la Polimerasa , Genotipo , Infecciones por Papillomavirus/diagnóstico , Sensibilidad y Especificidad , ADN Viral/genética , Papillomaviridae/genética , Análisis de Secuencia por Matrices de Oligonucleótidos
9.
Opt Express ; 32(9): 15893-15911, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38859229

RESUMEN

Optical mirror misalignments, which are caused by assembly mistakes and changes in the surrounding environment (such as gravity, temperature, and atmosphere), degrade the system's imaging performance. Therefore, active misalignment correction is essential for ensuring the image quality of the off-axis telescope. In this paper, a novel misalignment correction method without wavefront sensors is proposed. The point spread functions (PSFs) of the system are analytically related to the optical mirror misalignments. On this basis, a fully connected neural network (FCNN) is used to establish the mapping relationship between the misalignments and the discrete orthogonal unbiased finite impulse response (UFIR) moment features, which can effectively characterize changes of intensity and geometric of the spot image. The simulation and experimental results in this paper justify the effectiveness and practicality of the proposed method. This approach offers a low-cost and straightforward technical method for achieving high imaging quality throughout the alignment and observation phases. This approach can prevent the accumulation of errors caused by wavefront detection and the high delay of multiple iterations.

10.
Langmuir ; 40(19): 10261-10269, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38693862

RESUMEN

Carnosine is a natural bioactive dipeptide with important physiological functions widely used in food and medicine. Dipeptidase (PepD) from Serratia marcescens can catalyze the reverse hydrolytic reaction of ß-alanine with l-histidine to synthesize carnosine in the presence of Mn2+. However, it remains challenging to practice carnosine biosynthesis due to the low activity and high cost of the enzyme. Therefore, the development of biocatalysts with high activity and stability is of significance for carnosine synthesis. Here, we proposed to chelate Mn2+ to polyethylenimine (PEI) that induced rapid formation of calcium phosphate nanocrystals (CaP), and Mn-PEI@CaP was used for PepD immobilization via electrostatic interaction. Mn-PEI@CaP as the carrier enhanced the stability of the immobilized enzyme. Moreover, Mn2+ loaded in the carrier acted as an in situ activator of the immobilized PepD for facilitating the biocatalytic process of carnosine synthesis. The as-prepared immobilized enzyme (PepD-Mn-PEI@CaP) kept similar activity with free PepD plus Mn2+ (activity recovery, 102.5%), while exhibiting elevated thermal stability and pH tolerance. Moreover, it exhibited about two times faster carnosine synthesis than the free PepD system. PepD-Mn-PEI@CaP retained 86.8% of the original activity after eight cycles of batch catalysis without the addition of free Mn2+ ions during multiple cycles. This work provides a new strategy for the co-immobilization of PepD and Mn2+, which greatly improves the operability of the biocatalysis and demonstrates the potential of the immobilized PepD system for efficient carnosine synthesis.


Asunto(s)
Fosfatos de Calcio , Carnosina , Dipeptidasas , Enzimas Inmovilizadas , Manganeso , Nanopartículas , Polietileneimina , Carnosina/química , Carnosina/metabolismo , Polietileneimina/química , Manganeso/química , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Fosfatos de Calcio/química , Nanopartículas/química , Dipeptidasas/metabolismo , Dipeptidasas/química , Serratia marcescens/enzimología , Biocatálisis
11.
J Vasc Interv Radiol ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38969336

RESUMEN

PURPOSE: To test the hypothesis that Pressure-Enabled Drug Delivery (PEDD) would improve the delivery of surrogate therapeutic glass microspheres (GMs) via hepatic artery infusion to liver tumors when compared with a conventional endhole microcatheter. MATERIALS AND METHODS: The study was conducted in transgenic pigs (Oncopigs) with induced liver tumors. Tumors were infused intra-arterially with fluorescently labeled GM. PEDD with a specialized infusion device (TriNav; TriSalus Life Sciences, Westminster, Colorado) was compared with conventional endhole microcatheter delivery in both lobar and selective infusions. Near-infrared imaging was used to detect GM fluorescent signal in tumors. Image analysis with a custom deep learning algorithm (Visiopharm A/S) was used to quantitate signal intensity in relation to the tumor border. RESULTS: With lobar infusions, significant increases in GM signal intensity were observed in and around tumors after PEDD (n = 10) when compared with those after conventional delivery (n = 7), with PEDD increasing penetration into the tumor by 117% (P = .004). In selective infusions, PEDD (n = 9) increased penetration into the tumor by 39% relative to conventional delivery (n = 8, P = .032). Lobar PEDD of GMs to the tumor was statistically equivalent to conventional selective delivery (P = .497). CONCLUSIONS: PEDD with a TriNav device significantly improved GM uptake in liver tumors relative to conventional infusion in both lobar and selective procedures. Lobar GM delivery with PEDD was equivalent to conventional selective delivery with an endhole device, suggesting that proximal PEDD infusions may enable effective delivery without selection of distal target vessels.

12.
Cereb Cortex ; 33(6): 2548-2558, 2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-35689654

RESUMEN

The human cingulate cortex (CC) is a complex region that is characterized by heterogeneous cytoarchitecture, connectivity, and function, and it is associated with various cognitive functions. The adult CC has been divided into various subregions, and this subdivision is highly consistent with its functional differentiation. However, only a few studies have focused on the function of neonatal CC. The aim of this study was to describe the cingulate segregation and the functional connectivity of each subdivision in full-term neonates (n = 60) based on resting-state functional magnetic resonance imaging. The neonatal CC was divided into three subregions, and each subregion showed specific connectivity patterns. The anterior cingulate cortex was mainly correlated with brain regions related to the salience (affected) network and default mode network (DMN), the midcingulate cortex was related to motor areas, and the posterior cingulate cortex was coupled with DMN. Moreover, we found that the cingulate subregions showed distinct functional profiles with major brain networks, which were defined using independent component analysis, and exhibited functional lateralization. This study provided new insights into the understanding of the functional specialization of neonatal CC, and these findings may have significant clinical implications, especially in predicting neurological disorder.


Asunto(s)
Mapeo Encefálico , Giro del Cíngulo , Adulto , Recién Nacido , Humanos , Giro del Cíngulo/diagnóstico por imagen , Mapeo Encefálico/métodos , Imagen por Resonancia Magnética/métodos , Vías Nerviosas/diagnóstico por imagen , Encéfalo
13.
Environ Res ; 262(Pt 2): 119898, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39222727

RESUMEN

In the context of global warming, vegetation changes exhibit various patterns, yet previous studies have focused primarily on monotonic changes, often overlooking the complexity and diversity of multiple change processes. Therefore, it is crucial to further explore vegetation dynamics and diverse change trajectories in this region under future climate scenarios to obtain a more comprehensive understanding of local ecosystem evolution. In this study, we established an integrated machine learning prediction framework and a vegetation change trajectory recognition framework to predict the dynamics of vegetation in Central Asia under future climate change scenarios and identify its change trajectories, thus revealing the potential impacts of future climate change on vegetation in the region. The findings suggest that various future climate scenarios will negatively affect most vegetation in Central Asia, with vegetation change intensity increasing with increasing emission trajectories. Analyses of different time scales and trend variations consistently revealed more pronounced downward trends. Vegetation change trajectory analysis revealed that most vegetation has undergone nonlinear and dramatic changes, with negative changes outnumbering positive changes and curve changes outnumbering abrupt changes. Under the highest emission scenario (SSP5-8.5), the abrupt vegetation changes and curve changes are 1.7 times and 1.3 times greater, respectively, than those under the SSP1-2.6 scenario. When transitioning from lower emission pathways (SSP1-2.6, SSP2-4.5) to higher emission pathways (SSP3-7.0, SSP5-8.5), the vegetation change trajectories shift from neutral and negative curve changes to abrupt negative changes. Across climate scenarios, the key climate factors influencing vegetation changes are mostly evapotranspiration and soil moisture, with temperature and relative humidity exerting relatively minor effects. Our study reveals the negative response of vegetation in Central Asia to climate change from the perspective of vegetation dynamics and change trajectories, providing a scientific basis for the development of effective ecological protection and climate adaptation strategies.

14.
Drug Resist Updat ; 68: 100939, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36806005

RESUMEN

Thyroid cancer is the most prevalent endocrine tumor and its incidence is fast-growing worldwide in recent years. Differentiated thyroid cancer (DTC) is the most common pathological subtype which is typically curable with surgery and Radioactive iodine (RAI) therapy (approximately 85%). Radioactive iodine is the first-line treatment for patients with metastatic Papillary Thyroid Cancer (PTC). However, 60% of patients with aggressive metastasis DTC developed resistance to RAI treatment and had a poor overall prognosis. The molecular mechanisms of RAI resistance include gene mutation and fusion, failure to transport RAI into the DTC cells, and interference with the tumor microenvironment (TME). However, it is unclear whether the above are the main drivers of the inability of patients with DTC to benefit from iodine therapy. With the development of new biological technologies, strategies that bolster RAI function include TKI-targeted therapy, DTC cell redifferentiation, and improved drug delivery via extracellular vesicles (EVs) have emerged. Despite some promising data and early success, overall survival was not prolonged in the majority of patients, and the disease continued to progress. It is still necessary to understand the genetic landscape and signaling pathways leading to iodine resistance and enhance the effectiveness and safety of the RAI sensitization approach. This review will summarize the mechanisms of RAI resistance, predictive biomarkers of RAI resistance, and the current RAI sensitization strategies.


Asunto(s)
Neoplasias de la Tiroides , Humanos , Neoplasias de la Tiroides/tratamiento farmacológico , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/radioterapia , Radioisótopos de Yodo/uso terapéutico , Biomarcadores , Transducción de Señal , Microambiente Tumoral/genética
15.
Appetite ; 192: 107107, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37890531

RESUMEN

In the realm of healthy dietary choices about reducing sweetness perception, the exploration of crossmodal effects stands as a frequently employed approach. Both music and color can independently influence flavor evaluation and gustatory experience by eliciting emotions. However, less research has been done on the effects of audio-visual crossmodal interactions on sweetness expectations and perceptions. The present study conducted two experiments delving into the crossmodal effect on sweetness expectation and perception of milk tea by manipulating the emotional valence of music and packaging color. The results showed that positive (vs. negative) music led to higher sweetness expectations and perceptions for milk teas with neutral packaging color. Irrespective of music, participants had higher sweetness expectations for milk tea with positive or neutral (vs. negative) packaging colors. The congruence of valence between music and packaging color influenced sweetness perception. Positive (vs. negative) music correlated with a sweeter perception when the packaging color was positive. Exposed to negative music, subjects showed a higher sweetness perception with negative (vs. positive) packaging colors. In conclusion, the results suggest that the valence of music and packaging color crossmodally influence consumers' evaluation of milk tea, and it differs depending on whether it was tasted. Thus, this study has demonstrated the crossmodal influence of music and packaging color, providing valuable implications for healthy eating and marketing applications.


Asunto(s)
Motivación , Música , Humanos , Animales , Leche , Percepción del Gusto , Gusto , , Música/psicología
16.
PLoS Genet ; 17(5): e1009572, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33999948

RESUMEN

[This corrects the article DOI: 10.1371/journal.pgen.1009194.].

17.
Ecotoxicol Environ Saf ; 275: 116275, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38564858

RESUMEN

Compound pollution with cadmium (Cd) and zinc (Zn) is common in nature. The effects of compounded Cd and Zn on the growth and development of Iris pseudacorus in the environment and the plant's potential to remediate heavy metals in the environment remain unclear. In this study, the effects of single and combined Cd and Zn stress on I. pseudacorus growth and the enrichment of heavy metals in I. pseudacorus seedlings were investigated. The results showed that under Cd (160 µM) and Zn (800 µM) stress, plant growth was significantly inhibited and photosynthetic performance was affected. Cd+Zn200 (160 µM + 200 µM) reduced the levels of malondialdehyde, hydrogen peroxide, and non-protein thiols by 31.29%, 53.20%, and 13.29%, respectively, in the aboveground tissues compared with levels in the single Cd treatment. However, Cd+Zn800 (160 µM + 800 µM) had no effect. Cd and Zn800 inhibited the absorption of mineral elements, while Zn200 had little effect on plants. Compared with that for Cd treatment alone, Cd + Zn200 and Cd+Zn800 reduced the Cd content in aboveground tissues by 54.15% and 49.92%, respectively, but had no significant effect on Cd in the root system. Zn significantly reduced the Cd content in subcellular components and limited the content and proportion of Cd extracted using water and ethanol. These results suggest that a low supply of Zn reduces Cd accumulation in aboveground tissues by promoting antioxidant substances and heavy metal chelating agents, thus protecting the photosynthetic systems. The addition of Zn also reduced the mobility and bioavailability of Cd to alleviate its toxicity in I. pseudacorus.


Asunto(s)
Género Iris , Metales Pesados , Contaminantes del Suelo , Cadmio/toxicidad , Cadmio/análisis , Zinc/toxicidad , Desarrollo de la Planta , Contaminantes del Suelo/toxicidad
18.
J Sports Sci ; 42(14): 1313-1322, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39133765

RESUMEN

This review aims to investigate the dose-response relationship between walking speed and all-cause mortality. PubMed, Web of Science, Embase and Cochrane Library were searched to September, 2023 for cohort studies. A meta-analysis estimated the overall hazard ratio (HR) of mortality incidence and 95% Confidence Interval (CI) for individuals with the fastest walking speed compared to those with the slowest walking speed. Subgroup analyses were conducted based on sex, age and speed-measuring methods. Dose-response meta-analyses were examined by using "mvmeta" packages available in STATA. A total of 13 studies involving 530,841 participants were included. Of these, 11 studies provided data for dose-response meta-analyses. Individuals in the fastest walking-speed category had a 43% lower risk of all-cause mortality compared to those in the slowest walking-speed category (HR = 0.57, 95% CI 0.48-0.66). There was an inverse linear dose-response relationship between walking speed and all-cause mortality; for every 0.1 m/s increment in walking speed, the risk of mortality decreased by 6% (HR = 0.94; 0.92-0.96). There was an inverse nonlinear dose-response relationship between them when participants' age was larger than 65 years, but linear dose-response relationships were detected in both the timed walking speed test and self-reported walking speed measurements.


Asunto(s)
Mortalidad , Velocidad al Caminar , Humanos , Velocidad al Caminar/fisiología , Factores de Edad , Causas de Muerte , Modelos de Riesgos Proporcionales , Factores de Riesgo , Caminata/fisiología
19.
J Microencapsul ; 41(3): 190-203, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38602138

RESUMEN

AIMS: To develop Antarctic krill oil emulsions with casein and whey protein concentrate (WPC) and study their physicochemical properties and storage stability. METHODS: Emulsions were prepared by homogenisation and ultrasonication. The properties of the emulsions were investigated via ultraviolet ray spectroscopy, dynamic light scattering, confocal laser scanning microscope, sodium dodecyl sulphate-polyacrylamide gel electrophoresis, Fourier transform infra-red spectrometer, and fluorescence spectrum. Shelf life was predicted by the Arrhenius model. RESULTS: Casein- and WPC-krill oil emulsions were well formed; the mean particle diameters were less than 128.19 ± 0.64 nm and 158 ± 1.56 nm, the polymer dispersity indices were less than 0.26 ± 0.01 and 0.27 ± 0.01, and the zeta potential were around -46.88 ± 5.02 mV and -33.51 ± 2.68 mV, respectively. Shelf life was predicted to be 32.67 ± 1.55 days and 29.62 ± 0.65 days (40 °C), 27.69 ± 1.15 days and 23.58 ± 0.14 days (50 °C), 24.02 ± 0.15 days and 20.1 ± 0.08 days (60 °C). CONCLUSION: The prepared krill oil emulsions have great potential to become a new krill oil supplement.


Asunto(s)
Caseínas , Euphausiacea , Animales , Emulsiones/química , Proteína de Suero de Leche/química , Aceites
20.
J Environ Manage ; 365: 121624, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38968888

RESUMEN

In the context of global warming, the occurrence and severity of extreme events like atmospheric drought (AD) and warm spell duration index (WSDI) have increased, causing significant impacts on terrestrial ecosystems in Central Asia's arid regions. Previous research has focused on single extreme events such as AD and WSDI, but the effect of compound hot and dry events (CHWE) on grassland phenology in the arid regions of Central Asia remains unclear. This study utilized structural equation modeling (SEM) and the Pettitt breakpoint test to quantify the direct and indirect responses of grassland phenology (start of season - SOS, length of season - LOS, and end of season - EOS) to AD, WSDI, and CHWE. Furthermore, this research investigated the threshold of grassland phenology response to compound hot and dry events. The research findings indicate a significant increasing trend in AD, WSDI, and CHWE in the arid regions of Central Asia from 1982 to 2022 (0.51 day/year, P < 0.01; 0.25 day/year, P < 0.01; 0.26 day/year, P < 0.01). SOS in the arid regions of Central Asia showed a significant advancement trend, while EOS exhibited a significant advance. LOS demonstrated an increasing trend (-0.23 day/year, P < 0.01; -0.12 day/year, P < 0.01; 0.56 day/year). The temperature primarily governs the variation in SOS. While higher temperatures promote an earlier SOS, they also offset the delaying effect of CHWE on SOS. AD, temperature, and CHWE have negative impacts on EOS, whereas WSDI has a positive effect on EOS. AD exhibits the strongest negative effect on EOS, with an increase in AD leading to an earlier EOS. Temperature and WSDI are positively correlated with LOS, indicating that higher temperatures and increased WSDI contribute to a longer LOS. The threshold values for the response of SOS, EOS, and LOS to CHWE are 16.14, 18.49, and 16.61 days, respectively. When CHWE exceeds these critical thresholds, there are significant changes in the response of SOS, EOS, and LOS to CHWE. These findings deepen our understanding of the mechanisms by which extreme climate events influence grassland phenology dynamics in Central Asia. They can contribute to better protection and management of grassland ecosystems and help in addressing the impacts of global warming and climate change in practice.


Asunto(s)
Sequías , Pradera , Estaciones del Año , Ecosistema , Cambio Climático , Asia , Calentamiento Global
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA