Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Nature ; 579(7799): E9, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32112062

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

2.
Nature ; 577(7790): 346-349, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31942050

RESUMEN

Highly efficient neutron detectors are critical in many sectors, including national security1,2, medicine3, crystallography4 and astronomy5. The main neutron detection technologies currently used involve 3He-gas-filled proportional counters6 and light scintillators7 for thermalized neutrons. Semiconductors could provide the next generation of neutron detectors because their advantages could make them competitive with or superior to existing detectors. In particular, solids with a high concentration of high-neutron-capture nuclides (such as 6Li, 10B) could be used to develop smaller detectors with high intrinsic efficiencies. However, no promising materials have been reported so far for the construction of direct-conversion semiconductor detectors. Here we report on the semiconductor LiInP2Se6 and demonstrate its potential as a candidate material for the direct detection of thermal neutrons at room temperature. This compound has a good thermal-neutron-capture cross-section, a suitable bandgap (2.06 electronvolts) and a favourable electronic band structure for efficient electron charge transport. We used α particles from an 241Am source as a proxy for the neutron-capture reaction and determined that the compact two-dimensional (2D) LiInP2Se6 detectors resolved the full-energy peak with an energy resolution of 13.9 per cent. Direct neutron detection from a moderated Pu-Be source was achieved using 6Li-enriched (95 per cent) LiInP2Se6 detectors with full-peak resolution. We anticipate that these results will spark interest in this field and enable the replacement of 3He counters by semiconductor-based neutron detectors.

3.
Small ; 19(6): e2206125, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36461726

RESUMEN

Owing to the high power density, eco-friendly, and outstanding stability, the lead-free ceramics have attracted great interest in the fields of pulsed power systems. Nevertheless, the low energy storage density of such ceramics is undoubtedly a severe problem in practical applications. To overcome this limitation, the lead-free ceramics with gradient structures are designed and fabricated using the tape-casting method herein. By optimizing the composition and distribution of the gradient-structured ceramics, the energy storage density, and efficiency can be improved simultaneously. Under a moderate electric field of 320 kV cm-1 , the value of recoverable energy storage density (Wrec ) is higher than 4 J cm-3 , and the energy storage efficiency (η) is of ≥88% for 20-5-20 and 20-10-20. Furthermore, the gradient-structured ceramics of 20-10-0-10-20 and 20-15-0-15-20 possess high applied electric field, large maximum polarization, and small remnant polarization, which give rise to ultrahigh Wrec and η on the order of ≈6.5 J cm-3 and 89-90%, respectively. In addition, the energy storage density and efficiency also exhibit excellent stability over a broad range of frequencies, temperatures, and cycling numbers. This work provides an effective strategy for improving the energy storage capability of eco-friendly ceramics.

4.
Small ; 19(32): e2205644, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37078836

RESUMEN

Nanocomposites with hierarchical pore structure hold great potentials for applications in the field of microwave-absorbing materials because of their lightweight and high-efficiency absorption properties. Herein, M-type barium ferrite (BaM) with ordered mesoporous structure (M-BaM) is prepared via a sol-gel process enhanced by mixed anionic and cationic surfactants. The surface area of M-BaM is enhanced almost ten times compared with BaM together with 40% reflection loss enhancing. Then M-BaM compounded with nitrogen-doped reduced graphene oxide (MBG) is synthesized via hydrothermal reaction in which the reduction and nitrogen doping of graphene oxide (GO) in situ occur simultaneously. Interestingly, the mesoporous structure is able to provide opportunity for reductant to enter the bulk M-BaM reducing its Fe3+ to Fe2+ and further forms Fe3 O4 . It requires an optimal balance among the remained mesopores in MBG, formed Fe3 O4 , and CN in nitrogen-doped graphene (N-RGO) for optimizing impedance matching and greatly increasing multiple reflections/interfacial polarization. MBG-2 (GO:M-BaM = 1:10) achieves the minimum reflection loss of -62.6 dB with an effective bandwidth of 4.2 GHz at an ultra-thin thickness of 1.4 mm. In addition, the marriage of mesoporous structure of M-BaM and light mass of graphene reduces the density of MBG.

5.
Opt Express ; 31(14): 23229-23244, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37475413

RESUMEN

Deterioration of the signal-to-noise ratio (SNR) is an important challenge in ultra-long multi optical line system (OLS) optical transmission systems. The non-uniform gain and cascading of the Erbium-doped fiber amplifier (EDFA) lead to SNR deterioration in transmission systems. In this paper, we propose two channel power equalization methods based on joint optimization of EDFA and Reconfigurable optical add-drop multiplexer (ROADM) configurations: 1) reinforcement learning (RL)-based channel power equalization (RL-PE) and 2) covariance matrix adaptive evolution strategy (CMA-ES) channel power equalization (CMA-PE). The simulation results indicate that the power equalization effect was improved by 1.9 dB through the CMA-PE method, while the RL-PE method led to a 1.5 dB improvement in an ultra-long 80-channel 7-OLS transmission system.

6.
Small ; 18(34): e2202575, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35908160

RESUMEN

Owing to the current global scenario of environmental pollution and the energy crisis, the development of new dielectrics using lead-free ceramics for application in advanced electronic and energy storage systems is essential because of the high power density and excellent stability of such ceramics. Unfortunately, most of them have low breakdown strength and/or low maximum polarization, resulting in low energy density and efficiency. To overcome this limitation here, lead-free ceramics comprising a layered structure are designed and fabricated. By optimizing the distribution of the layered structure, a large maximum polarization and high applied electric field (>500 kV cm-1 ) can be achieved; these result in an ultrahigh recoverable energy storage density (≈7 J cm-3 ) and near ideal energy storage efficiency (≈95%). Furthermore, the energy storage performance without obvious deterioration over a broad range of operating frequencies (1-100 Hz), working temperatures (30-160 °C), and fatigue cycles (1-104 ). In addition, the prepared ceramics exhibit extremely high discharge energy density (4.52 J cm-3 ) and power density (405.50 MW cm-3 ). Here, the results demonstrate that the strategy of layered structure design and optimization is promising for enhancing the energy storage performance of lead-free ceramics.

7.
Small ; 18(50): e2107168, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36257826

RESUMEN

High dielectric constant materials are of particular current interests as indispensable components in transistors, capacitors, etc. In this context, there are emerging trends to exploit defect engineering in dielectric ceramics for enhancing the performance. However, demonstrations of similar high dielectric performance in integration-compatible crystalline films are rare. Herein, such a breakthrough via the functionalization of donor-acceptor dipoles by compositional tuning in GaCu codoped ZnO films is reported. The dielectric constant reaches ~200 at 1 kHz and the optical transmittance in visible light reaches ~80%. Importantly, by analyzing the impedance spectroscopy data, prominent relaxation mechanisms in correlation with the dipole properties, enabling consistent explanations of the dielectric constant as a function of frequency are discriminated. The atomistic nature of the dipoles is revealed by the systematic X-ray spectroscopy analysis. Spectacularly, similar trends for the dielectric properties are observed, while synthesizing samples by pulsed laser deposition and ion implantation, indicating the general character of the phenomena.

8.
J Am Chem Soc ; 143(4): 2068-2077, 2021 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-33492148

RESUMEN

The detection of γ-rays at room temperature with high-energy resolution using semiconductors is one of the most challenging applications. The presence of even the smallest amount of defects is sufficient to kill the signal generated from γ-rays which makes the availability of semiconductors detectors a rarity. Lead halide perovskite semiconductors exhibit unusually high defect tolerance leading to outstanding and unique optoelectronic properties and are poised to strongly impact applications in photoelectric conversion/detection. Here we demonstrate for the first time that large size single crystals of the all-inorganic perovskite CsPbCl3 semiconductor can function as a high-performance detector for γ-ray nuclear radiation at room temperature. CsPbCl3 is a wide-gap semiconductor with a bandgap of 3.03 eV and possesses a high effective atomic number of 69.8. We identified the two distinct phase transitions in CsPbCl3, from cubic (Pm-3m) to tetragonal (P4/mbm) at 325 K and finally to orthorhombic (Pbnm) at 316 K. Despite crystal twinning induced by phase transitions, CsPbCl3 crystals in detector grade can be obtained with high electrical resistivity of ∼1.7 × 109 Ω·cm. The crystals were grown from the melt with volume over several cubic centimeters and have a low thermal conductivity of 0.6 W m-1 K-1. The mobilities for electron and hole carriers were determined to ∼30 cm2/(V s). Using photoemission yield spectroscopy in air (PYSA), we determined the valence band maximum at 5.66 ± 0.05 eV. Under γ-ray exposure, our Schottky-type planar CsPbCl3 detector achieved an excellent energy resolution (∼16% at 122 keV) accompanied by a high figure-of-merit hole mobility-lifetime product (3.2 × 10-4 cm2/V) and a long hole lifetime (16 µs). The results demonstrate considerable defect tolerance of CsPbCl3 and suggest its strong potential for γ-radiation and X-ray detection at room temperature and above.

9.
Anal Chem ; 91(1): 928-934, 2019 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-30520299

RESUMEN

A highly efficient liquid spray dielectric barrier discharge (LSDBD) plasma-induced vapor generation technique is developed for the simultaneous determination of selenium, silver, antimony, lead, and bismuth in liquid microsamples (20 µL) by inductively coupled plasma mass spectrometry (ICP-MS). It is demonstrated that the dissolved Se, Ag, Sb, Pb, and Bi ions in solution samples are readily and simultaneously converted to volatile species efficiently by LSDBD plasma-induced chemical processes under similar conditions. It eliminates the use of unstable and expensive reducing reagents, and only formic acid is required in the proposed LSDBD chemical vapor generation technique. It is also worth noting that this is the first report of using plasma-induced chemical processes for the vapor generation of Ag and Bi. The simultaneous sensitive determination of Se, Ag, Sb, Pb, and Bi is realized with a sample volume of only 20 µL and the sample throughput could be as high as 180 samples h-1. The limit of detection (LOD) for simultaneous determination of Se, Ag, Sb, Pb, and Bi is 10 ng L-1 (200 fg), 2 ng L-1 (40 fg), 5 ng L-1 (100 fg), 4 ng L-1 (80 fg), and 3 ng L-1 (60 fg), respectively. The precision of Se, Ag, Sb, Pb, and Bi in the present method is evaluated to be better than 4%. The utility of the proposed technique is demonstrated by the analysis of ultratrace Se, Ag, Sb, Pb, and Bi in archaea cells and single conodont samples.

10.
Anal Chem ; 91(3): 1912-1919, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30592209

RESUMEN

A novel interrupted gas flow (IF) technique has been proposed for highly sensitive determination of ultratrace levels of arsenic and antimony in water samples by atmospheric pressure glow discharge (APGD) excitation source coupled with HCl-KBH4 hydride generation (HG). It is demonstrated that the gas flow interruption technique provides a dramatic and reproducible enhancement of emission signals of 1-2 orders of magnitude for As and Sb over conventional continuous gas flow (CF) in APGD. The enhanced analyte emission sensitivities in IF-APGD were investigated from the viewpoint of changes in plasma excitation temperature and analyte density. With eight As lines as the thermometric probe, no measurable change in excitation temperature was found, suggesting that the enhancement is caused by an increase in analyte number density in the plasma immediately following the gas flow interruption. Furthermore, the enhancement factor was found to increase with the time interval in between the gas interruption, supporting an analyte adsorption (or trap)-release mechanism hypothesis. Under optimized conditions, the detection limits (DLs) of IF-APGD mode for As and Sb were calculated to be 0.02 and 0.003 µg L-1, which are, respectively, about 27- and 120-fold improved compared to CF-APGD mode. The linearity of calibration for both As and Sb reached R2 > 0.999 in the 0.1-5 µg L-1 range. The accuracy of the proposed method was validated by the determination of certified reference materials (CRMs), and the results agreed well with the certified values.

11.
Mikrochim Acta ; 186(1): 47, 2019 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-30610459

RESUMEN

A material is described for sensing NO2 in the gas phase. It has an architecture of type Au/MASnI3/SnO2 (where MA stands for methylammonium cation) and was fabricated by first synthesizing Au/MASnI3 and then crystallizing SnO2 on the surface by calcination. The physical and NO2 sensing properties of the composite were examined at room temperature without and with UV (365 nm) illumination, and the NO2-sensing mechanism was studied. The characterization demonstrated the formation of a p-n heterojunction structure between p-MASnI3 and n-SnO2. The sensor, best operated at a voltage of 1.1 V at room temperature, displays superior NO2 sensing performance. Figures of merit include (a) high response (Rg/Ra = 240 for 5 ppm NO2; where Rg stands for the resistance of a sensor in test gas, and Ra stands for the resistance of a sensor in air), (b) fast recovery (about 12 s), (c) excellent selectivity compared to sensors based on the use of SnO2 or Au/SnO2 only, both at room temperature under UV illumination; (d) a low detection limit (55 ppb), and (e) a linear response between 0.5 and 10 ppm of NO2. The enhanced sensing performance is mainly attributed to the high light absorption capacity of MASnI3, the easy generation and transfer of photo-induced electrons from MASnI3 to the conduction band of SnO2, and the catalytic effect of gold nanoparticles. Graphical abstract Schematic of the energy band diagrams of the gold-functionalized MASnI3/SnO2 system after equilibrium with UV illumination, by which the enhanced sensing performance for NO2 can be explained.

12.
Sensors (Basel) ; 19(5)2019 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-30857181

RESUMEN

This work reports a novel wireless microfluidic biosensor based on low temperature co-fired ceramic (LTCC) technology. The wireless biosensor consists of a planar spiral inductor and parallel plate capacitor (LC) resonant antenna, which integrates with microchannel bends in the LTCC substrate. The wireless response of the biosensor was associated to the changes of its resonant frequency due to the alteration in the permittivity of the liquid flow in the microchannel. The wireless sensing performance to different organic liquids with permittivity from 3 to 78.5 was presented. The measured results are in good agreement with the theoretical calculation. The wireless detection for the concentration of glucose in water solution was investigated, and an excellent linear response and repeatability were obtained. This kind of LC wireless microfluidic sensor is very promising in establishing wireless lab-on-a-chip for biomedical and chemical applications.

13.
Sensors (Basel) ; 19(5)2019 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-30841546

RESUMEN

In this work, we report a passive wireless eddy current proximity sensor based on inductive-capacitive (LC) resonance using a low temperature co-fired ceramic (LTCC) technology. The operation principle of the LC proximity sensor to the metal targets was comprehensively discussed through electromagnetic simulation and circuit model. Copper and aluminum were selected as the metal target materials for the measurements. Circular copper plates with different diameters and thickness were used to investigate the influence of the surface area and thickness of the target on the sensitivity. The decreases of the sensitivity with the decrease of the surface area and thickness were observed. The LC proximity sensor showed a high sensitivity of 11.2 MHz/mm for the proximity distance of 1⁻3 mm, and large detection range up to 10 mm. The developed LC proximity sensor is promising for passive wireless metal detections and proximity measurements under harsh environments.

14.
Sensors (Basel) ; 19(11)2019 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-31174328

RESUMEN

Tin(II) monosulfide (SnS) nanosheets were synthesized using SnCl4•5H2O and S powders as raw materials in the presence of H2O via a facile chemical bath method. Orthorhombic phase SnS nanosheets with a thickness of ~100 nm and lateral dimensions of 2~10 µm were obtained by controlling the synthesis parameters. The formation of a SnO2 intermediate is key to the valence reduction of Sn ions (from IV to II) and the formation of SnS. The gas sensors fabricated from SnS nanosheets exhibited an excellent response of 14.86 to 100 ppm ethanol vapor when operating at 160 °C, as well as fast response and recovery times of 23 s and 26 s, respectively. The sensors showed excellent selectivity for the detection of ethanol over acetone, methanol, and ammonia gases, which indicates the SnS nanosheets are promising for high-performance ethanol gas sensing applications.

15.
J Am Chem Soc ; 140(5): 1894-1899, 2018 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-29332382

RESUMEN

Cu2I2Se6 is a new wide-bandgap semiconductor with high stability and great potential toward hard radiation and photon detection. Cu2I2Se6 crystallizes in the rhombohedral R3̅m space group with a density of d = 5.287 g·cm-3 and a wide bandgap Eg of 1.95 eV. First-principles electronic band structure calculations at the density functional theory level indicate an indirect bandgap and a low electron effective mass me* of 0.32. The congruently melting compound was grown in centimeter-size Cu2I2Se6 single crystals using a vertical Bridgman method. A high electric resistivity of ∼1012 Ω·cm is readily achieved, and detectors made of Cu2I2Se6 single crystals demonstrate high photosensitivity to Ag Kα X-rays (22.4 keV) and show spectroscopic performance with energy resolutions under 241Am α-particles (5.5 MeV) radiation. The electron mobility is measured by a time-of-flight technique to be ∼46 cm2·V-1·s-1. This value is comparable to that of one of the leading γ-ray detector materials, TlBr, and is a factor of 30 higher than mobility values obtained for amorphous Se for X-ray detection.

16.
Sensors (Basel) ; 18(2)2018 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-29370099

RESUMEN

This paper presents a kind of passive wireless pressure sensor comprised of a planar spiral inductor and a cavity parallel plate capacitor fabricated through low-temperature co-fired ceramic (LTCC) technology. The LTCC material with a low Young's modulus of ~65 GPa prepared by our laboratory was used to obtain high sensitivity. A three-step lamination process was applied to construct a high quality cavity structure without using any sacrificial materials. The effects of the thickness of the sensing membranes on the sensitivity and detection range of the pressure sensors were investigated. The sensor with a 148 µm sensing membrane showed the highest sensitivity of 3.76 kHz/kPa, and the sensor with a 432 µm sensing membrane presented a high detection limit of 2660 kPa. The tunable sensitivity and detection limit of the wireless pressure sensors can meet the requirements of different scenes.

17.
J Am Chem Soc ; 139(23): 7939-7951, 2017 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-28505443

RESUMEN

The high Z chalcohalides Hg3Q2I2 (Q = S, Se, and Te) can be regarded as of antiperovskite structure with ordered vacancies and are demonstrated to be very promising candidates for X- and γ-ray semiconductor detectors. Depending on Q, the ordering of the Hg vacancies in these defect antiperovskites varies and yields a rich family of distinct crystal structures ranging from zero-dimensional to three-dimensional, with a dramatic effect on the properties of each compound. All three Hg3Q2I2 compounds show very suitable optical, electrical, and good mechanical properties required for radiation detection at room temperature. These compounds possess a high density (>7 g/cm3) and wide bandgaps (>1.9 eV), showing great stopping power for hard radiation and high intrinsic electrical resistivity, over 1011 Ω cm. Large single crystals are grown using the vapor transport method, and each material shows excellent photo sensitivity under energetic photons. Detectors made from thin Hg3Q2I2 crystals show reasonable response under a series of radiation sources, including 241Am and 57Co radiation. The dimensionality of Hg-Q motifs (in terms of ordering patterns of Hg vacancies) has a strong influence on the conduction band structure, which gives the quasi one-dimensional Hg3Se2I2 a more prominently dispersive conduction band structure and leads to a low electron effective mass (0.20 m0). For Hg3Se2I2 detectors, spectroscopic resolution is achieved for both 241Am α particles (5.49 MeV) and 241Am γ-rays (59.5 keV), with full widths at half-maximum (FWHM, in percentage) of 19% and 50%, respectively. The carrier mobility-lifetime µτ product for Hg3Q2I2 detectors is achieved as 10-5-10-6 cm2/V. The electron mobility for Hg3Se2I2 is estimated as 104 ± 12 cm2/(V·s). On the basis of these results, Hg3Se2I2 is the most promising for room-temperature radiation detection.

18.
Anal Chem ; 89(6): 3739-3746, 2017 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-28205438

RESUMEN

In this study, a novel high efficiency vapor generation strategy was proposed on the basis of solution anode glow discharge for the determination of Cd and Zn by atomic fluorescence spectrometry. In this approach, a glow discharge microplasma was acted as a gaseous cathode to initiate the plasma electrochemical vapor generation of Cd and Zn. Cadmium/zinc ions could be converted into molecular species efficiently at the plasma-liquid interface from a supporting electrolyte (HCl, pH = 3.2). It was found that the overall efficiency of the plasma electrochemical vapor generation (PEVG) system was much higher than the conventional electrochemical hydride generation (EcHG) and HCl-KBH4 system. With no requirement for other reducing reagents, this new approach enabled us to detect Cd and Zn with detection limits as low as 0.003 µg L-1 for Cd and 0.3 µg L-1 for Zn. Good repeatability (relative standard deviation (RSD), n = 5) was 2.4% for Cd (0.1 µg L-1) and 1.7% for Zn (10 µg L-1) standard. The accuracy of the proposed method was successfully validated through analysis of cadmium in reference material of stream sediment (GBW07311), soil (GBW07401), rice (GBW10045), and zinc in a simulated water sample (GSB 07-1184-2000). Replacing a metal electrode with a plasma offers the advantage of eliminating potential interactions between the species in liquid and the electrode, which solves the issues associated with electrode encountered in conventional EcHG. The ability to initiate electrochemical vapor generation reactions at the plasma-liquid interface opens a new approach for chemical vapor generation based on interactions between plasma gas-phase electrons and solutions.

19.
Anal Chem ; 89(6): 3694-3701, 2017 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-28205433

RESUMEN

In this paper, a sensitive atomic emission spectrometer (AES) based on a new low power and low argon consumption (<8 W, 100 mL min-1) miniature direct current (dc) atmospheric pressure glow discharge (APGD) plasma (3 mm × 5 mm) excitation source was developed for the determination of arsenic in water samples. In this method, arsenic in water was reduced to AsH3 by hydride generation (HG), which was then transported to the APGD source for excitation and detected by a compact CCD (charge-coupled device) microspectrometer. Different parameters affecting the APGD and the hydride generation reactions were investigated. The detection limit for arsenic with the proposed APGD-AES was 0.25 µg L-1, and the calibration curves were found to be linear up to 3 orders of magnitude. The proposed method was successfully applied to the determination of certified reference material (GBW08605), tap water, pond water, groundwater, and hot spring samples. Measurements from the APGD analyzer showed good agreement with the certified value/values obtained with well-established hydride generation atomic fluorescence spectrometry (HG-AFS). These results suggest that the developed robust, cost-effective, and fast analyzer can be used for field based arsenic determination and may provide an important tool for arsenic contamination and remediation programs.

20.
Opt Lett ; 41(23): 5531-5534, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27906231

RESUMEN

We report a photonic crystal (PhC) optical modulator operating in the optical C band (1530-1565 nm) using barium titanate epitaxial thin films as the electro-optic (EO) medium. The PhC has hexagonal lattice symmetry and an extinction ratio of 9 dB. Due to the slow light enhancement of the EO coefficient near the PhC band edge, the driving electrode can be as short as a one millimeter. We report for the first time, to the best of our knowledge, at microwave frequencies from 10 to 45 GHz the effective EO coefficient and its enhancement through slow light effects. A monotonic increase of the effective EO coefficient from 60 to 110 pm/V across the stopband edge is obtained, resulting in an enhancement as high as 1.8.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA