Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
FASEB J ; 38(1): e23369, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38100642

RESUMEN

The human cardiovascular system has evolved to accommodate the gravity of Earth. Microgravity during spaceflight has been shown to induce vascular remodeling, leading to a decline in vascular function. The underlying mechanisms are not yet fully understood. Our previous study demonstrated that miR-214 plays a critical role in angiotensin II-induced vascular remodeling by reducing the levels of Smad7 and increasing the phosphorylation of Smad3. However, its role in vascular remodeling evoked by microgravity is not yet known. This study aimed to determine the contribution of miR-214 to the regulation of microgravity-induced vascular remodeling. The results of our study revealed that miR-214 expression was increased in the forebody arteries of both mice and monkeys after simulated microgravity treatment. In vitro, rotation-simulated microgravity-induced VSMC migration, hypertrophy, fibrosis, and inflammation were repressed by miR-214 knockout (KO) in VSMCs. Additionally, miR-214 KO increased the level of Smad7 and decreased the phosphorylation of Smad3, leading to a decrease in downstream gene expression. Furthermore, miR-214 cKO protected against simulated microgravity induced the decline in aorta function and the increase in stiffness. Histological analysis showed that miR-214 cKO inhibited the increases in vascular medial thickness that occurred after simulated microgravity treatment. Altogether, these results demonstrate that miR-214 has potential as a therapeutic target for the treatment of vascular remodeling caused by simulated microgravity.


Asunto(s)
MicroARNs , Ingravidez , Humanos , Ratones , Animales , Músculo Liso Vascular/metabolismo , MicroARNs/metabolismo , Remodelación Vascular/genética , Aorta/metabolismo , Miocitos del Músculo Liso/metabolismo
2.
Phys Chem Chem Phys ; 26(9): 7446-7457, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38353141

RESUMEN

Perfluorosulfonic acid, a widely recognized persistent organic pollutant, has attracted significant attention due to its severe environmental contamination, necessitating urgent resolution. To discover effective degradation strategies, this study implemented density functional theory, utilizing Gaussian 09 software with the WB97XD/6-311++G(2d,2p)//CCSD(T)/6-311++G(2df,2p) computational approach to conduct an in-depth reaction pathway analysis of perfluoroethane sulfonic acid (PFEtS) under subcritical hydrothermal alkaline conditions. It was revealed that PFEtS exhibits an uneven electron density distribution along the carbon chain backbone, with the bond energy of the C2-F4 bond being the lowest, followed by the C1-F1 bond, and the S-C1 bond energy being lower than those of C1-C2 and C-F bonds, rendering it susceptible to breakage. Based on these observations, seven potential degradation pathways of PFEtS were proposed under subcritical hydrothermal alkaline conditions, following optimization, and five reaction pathways have been identified. The degradation process unfolds in two stages. Initially, hydroxyl groups replace the sulfonate in PFEtS to form perfluoroethanol. Subsequently, full mineralization is achieved under alkaline conditions. The most probable reaction pathway involves hydroxyl groups attacking the C1 position, resulting in the generation of CO2 and inorganic fluoride ions. The first step of the reaction is the rate-determining step, with a theoretical rate constant calculated to be 8.41 × 10-5 L mol-1 s-1. This theoretical value is in close agreement with the experimentally determined degradation rate constant of perfluorooctane sulfonate under identical conditions, which is 8.67 × 10-4 L mol-1 s-1. This finding corroborates the experimental observation that longer-chain perfluoro-sulfonates degrade faster than their shorter-chain counterparts.

3.
Circulation ; 144(9): 694-711, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34139860

RESUMEN

BACKGROUND: Without adequate treatment, pathological cardiac hypertrophy induced by sustained pressure overload eventually leads to heart failure. WWP1 (WW domain-containing E3 ubiquitin protein ligase 1) is an important regulator of aging-related pathologies, including cancer and cardiovascular diseases. However, the role of WWP1 in pressure overload-induced cardiac remodeling and heart failure is yet to be determined. METHODS: To examine the correlation of WWP1 with hypertrophy, we analyzed WWP1 expression in patients with heart failure and mice subjected to transverse aortic constriction (TAC) by Western blotting and immunohistochemical staining. TAC surgery was performed on WWP1 knockout mice to assess the role of WWP1 in cardiac hypertrophy, heart function was examined by echocardiography, and related cellular and molecular markers were examined. Mass spectrometry and coimmunoprecipitation assays were conducted to identify the proteins that interacted with WWP1. Pulse-chase assay, ubiquitination assay, reporter gene assay, and an in vivo mouse model via AAV9 (adeno-associated virus serotype 9) were used to explore the mechanisms by which WWP1 regulates cardiac remodeling. AAV9 carrying cardiac troponin T (cTnT) promoter-driven small hairpin RNA targeting WWP1 (AAV9-cTnT-shWWP1) was administered to investigate its rescue role in TAC-induced cardiac dysfunction. RESULTS: The WWP1 level was significantly increased in the hypertrophic hearts from patients with heart failure and mice subjected to TAC. The results of echocardiography and histology demonstrated that WWP1 knockout protected the heart from TAC-induced hypertrophy. There was a direct interaction between WWP1 and DVL2 (disheveled segment polarity protein 2). DVL2 was stabilized by WWP1-mediated K27-linked polyubiquitination. The role of WWP1 in pressure overload-induced cardiac hypertrophy was mediated by the DVL2/CaMKII/HDAC4/MEF2C signaling pathway. Therapeutic targeting WWP1 almost abolished TAC induced heart dysfunction, suggesting WWP1 as a potential target for treating cardiac hypertrophy and failure. CONCLUSIONS: We identified WWP1 as a key therapeutic target for pressure overload induced cardiac remodeling. We also found a novel mechanism regulated by WWP1. WWP1 promotes atypical K27-linked ubiquitin multichain assembly on DVL2 and exacerbates cardiac hypertrophy by the DVL2/CaMKII/HDAC4/MEF2C pathway.


Asunto(s)
Cardiomegalia/metabolismo , Proteínas Dishevelled/metabolismo , Ubiquitina-Proteína Ligasas/genética , Animales , Biomarcadores , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Cardiomegalia/diagnóstico , Cardiomegalia/etiología , Cardiomegalia/prevención & control , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/prevención & control , Histona Desacetilasas/metabolismo , Humanos , Inmunohistoquímica , Factores de Transcripción MEF2/metabolismo , Ratones , Ratones Noqueados , Unión Proteica , Estabilidad Proteica , Proteínas Represoras/metabolismo , Transducción de Señal , Ubiquitina-Proteína Ligasas/antagonistas & inhibidores , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
4.
FASEB J ; 35(11): e21947, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34637552

RESUMEN

Vascular remodeling is a prominent trait during the development of hypertension, attributable to the phenotypic transition of vascular smooth muscle cells (VSMCs). Increasing studies demonstrate that microRNA plays an important role in this process. Here, we surprisingly found that smooth muscle cell-specific miR-214 knockout (miR-214 cKO) significantly alleviates angiotensin II (Ang II)-induced hypertension, which has the same effect as that of miR-214 global knockout mice in response to Ang II stimulation. Under the treatment of Ang II, miR-214 cKO mice exhibit substantially reduced systolic blood pressure. The vascular medial thickness and area in miR-214 cKO blood vessels were obviously reduced, the expression of collagen I and proinflammatory factors were also inhibited. VSMC-specific deletion of miR-214 blunts the response of blood vessels to the stimulation of endothelium-dependent and -independent vasorelaxation and phenylephrine and 5-HT induced vasocontraction. In vitro, Ang II-induced VSMC proliferation, migration, contraction, hypertrophy, and stiffness were all repressed with miR-214 KO in VSMC. To further explore the mechanism of miR-214 in the regulation of the VSMC function, it is very interesting to find that the TGF-ß signaling pathway is mostly enriched in miR-214 KO VSMC. Smad7, the potent negative regulator of the TGF-ß/Smad pathway, is identified to be the target of miR-214 in VSMC. By which, miR-214 KO sharply enhances Smad7 levels and decreases the phosphorylation of Smad3, and accordingly alleviates the downstream gene expression. Further, Ang II-induced hypertension and vascular dysfunction were reversed by antagomir-214. These results indicate that miR-214 in VSMC established a crosstalk between Ang II-induced AT1R signaling and TGF-ß induced TßRI /Smad signaling, by which it exerts a pivotal role in vascular remodeling and hypertension and imply that miR-214 has the potential as a therapeutic target for the treatment of hypertension.


Asunto(s)
Angiotensina II/farmacología , Técnicas de Inactivación de Genes/métodos , Hipertensión/inducido químicamente , Hipertensión/metabolismo , MicroARNs/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Transducción de Señal/genética , Proteína smad7/metabolismo , Regulación hacia Arriba/genética , Animales , Presión Sanguínea/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Células Cultivadas , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs/genética , Ratas , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Transducción de Señal/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Remodelación Vascular/genética
5.
Phys Chem Chem Phys ; 24(17): 10011-10024, 2022 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-35415725

RESUMEN

The reaction between HONO and HCl is a possible pathway for the generation of ClNO, which is prone to photolyze, produce chlorine radicals, and accelerate the oxidation of tropospheric VOCs. Current experimental and theoretical studies have significant differences in rate constants under similar conditions. This study aims to examine the reasons for this difference. In this study, the effects of a single water molecule, water dimer, water trimer, excess HCl and excess HONO on the reaction mechanism of HONO + HCl were studied at the CCSD(T)/aug-cc-pVTZ//M06-2X/6-311+G(2df,2p) level and the rate constants of each reaction channel were calculated. Our results showed that the reaction potential barrier of HONO with HCl was the lowest only when the water dimer was present, and the reaction rate constants were close to the experimental results, and both the cis-HONO⋯(H2O)2 + HCl and the trans-HONO⋯(H2O)2 + HCl reaction paths are likely to occur. We think that the reason for the inconsistency between experimental and theoretical results is that the water dimer is involved in the reaction in experiments.

6.
Eur Heart J ; 42(36): 3786-3799, 2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34347073

RESUMEN

AIMS: 3' untranslated region (3' UTR) of mRNA is more conserved than other non-coding sequences in vertebrate genomes, and its sequence space has substantially expanded during the evolution of higher organisms, which substantiates their significance in biological regulation. However, the independent role of 3' UTR in cardiovascular disease was largely unknown. METHODS AND RESULTS: Using bioinformatics, RNA fluorescent in situ hybridization and quantitative real-time polymerase chain reaction, we found that 3' UTR and coding sequence regions of Ckip-1 mRNA exhibited diverse expression and localization in cardiomyocytes. We generated cardiac-specific Ckip-1 3' UTR overexpression mice under wild type and casein kinase 2 interacting protein-1 (CKIP-1) knockout background. Cardiac remodelling was assessed by histological, echocardiography, and molecular analyses at 4 weeks after transverse aortic constriction (TAC) surgery. The results showed that cardiac Ckip-1 3' UTR significantly inhibited TAC-induced cardiac hypertrophy independent of CKIP-1 protein. To determine the mechanism of Ckip-1 3' UTR in cardiac hypertrophy, we performed transcriptome and metabolomics analyses, RNA immunoprecipitation, biotin-based RNA pull-down, and reporter gene assays. We found that Ckip-1 3' UTR promoted fatty acid metabolism through AMPK-PPARα-CPT1b axis, leading to its protection against pathological cardiac hypertrophy. Moreover, Ckip-1 3' UTR RNA therapy using adeno-associated virus obviously alleviates cardiac hypertrophy and improves heart function. CONCLUSIONS: These findings disclose that Ckip-1 3' UTR inhibits cardiac hypertrophy independently of its cognate protein. Ckip-1 3' UTR is an effective RNA-based therapy tool for treating cardiac hypertrophy and heart failure.


Asunto(s)
Cardiomegalia , Insuficiencia Cardíaca , Regiones no Traducidas 3'/genética , Animales , Cardiomegalia/genética , Cardiomegalia/prevención & control , Proteínas Portadoras , Insuficiencia Cardíaca/genética , Hibridación Fluorescente in Situ , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos
7.
Int J Mol Sci ; 23(23)2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36499306

RESUMEN

Strategies to enhance hippocampal precursor cells efficiently differentiate into neurons could be crucial for structural repair after neurodegenerative damage. FOXG1 has been shown to play an important role in pattern formation, cell proliferation, and cell specification during embryonic and early postnatal neurogenesis. Thus far, the role of FOXG1 in adult hippocampal neurogenesis is largely unknown. Utilizing CAG-loxp-stop-loxp-Foxg1-IRES-EGFP (Foxg1fl/fl), a specific mouse line combined with CreAAV infusion, we successfully forced FOXG1 overexpressed in the hippocampal dentate gyrus (DG) of the genotype mice. Thereafter, we explored the function of FOXG1 on neuronal lineage progression and hippocampal neurogenesis in adult mice. By inhibiting p21cip1 expression, FOXG1-regulated activities enable the expansion of the precursor cell population. Besides, FOXG1 induced quiescent radial-glia like type I neural progenitor, giving rise to intermediate progenitor cells, neuroblasts in the hippocampal DG. Through increasing the length of G1 phase, FOXG1 promoted lineage-committed cells to exit the cell cycle and differentiate into mature neurons. The present results suggest that FOXG1 likely promotes neuronal lineage progression and thereby contributes to adult hippocampal neurogenesis. Elevating FOXG1 levels either pharmacologically or through other means could present a therapeutic strategy for disease related with neuronal loss.


Asunto(s)
Células-Madre Neurales , Neurogénesis , Ratones , Animales , Neurogénesis/genética , Hipocampo/metabolismo , Células-Madre Neurales/metabolismo , Neuronas/metabolismo , Proliferación Celular , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo
8.
Rheumatology (Oxford) ; 59(5): 1159-1169, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-31846044

RESUMEN

OBJECTIVE: Bone loss is common in AS, and miR-214 plays an important role in regulating bone formation. The aim of this study was to investigate the effect of miR-214, the production of which is stimulated by IL-17A, on bone loss in AS. METHODS: Peripheral blood was obtained from 32 patients with AS and 24 healthy controls. Levels of IL-17A, soluble RANK ligand (RANKL) and osteoprotegerin in serum were evaluated by ELISA, and the relative level of miR-214 in serum was detected by real-time quantitative PCR. In addition, we assessed the relationship between levels of miR-214, IL-17A and bone loss in primary murine osteoblasts and mouse bone marrow cells. RESULTS: The expression of RANKL and miR-214 in osteoblasts was increased following stimulation by IL-17A, and osteoblasts stimulated by IL-17A promoted the expression of miR-214 in osteoclasts and the activity of osteoclasts. We showed that osteoblast-derived miR-214 could be transferred to osteoclasts and could then regulate their activity. The levels of IL-17A and miR-214 were much higher in the serum of patients with AS than in that of healthy controls, and the relative level of miR-214 was positively correlated with the level of IL-17A in the serum and synovial fluid of the patients with AS, not healthy controls. The level of miR-214 in the serum of AS patients has potential diagnostic value. CONCLUSION: The production of miR-214 in osteoblasts is stimulated by IL-17A. It is an important inhibitor of bone formation in AS, and the serum level of miR-214 might be of potential diagnostic value for AS.


Asunto(s)
Interleucina-17/metabolismo , Osteogénesis , Ligando RANK/metabolismo , Espondilitis Anquilosante/sangre , Espondilitis Anquilosante/metabolismo , Animales , Resorción Ósea , Estudios de Casos y Controles , Células Cultivadas , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Masculino , Ratones , MicroARNs/metabolismo , Osteoclastos/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Valores de Referencia , Investigación Biomédica Traslacional
9.
Inorg Chem ; 59(12): 8099-8107, 2020 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-32479061

RESUMEN

Nonclassical fullerene is a new member of the fullerene family. In the present work, a systematic investigation on LaxSc3-xN@C80 (x = 0-3) covering both classical and nonclassical C80 cages was performed utilizing density functional theory combined with statistical mechanics. At absolute zero, LaSc2N@Hept(6)-Cs(2)-C80 with a heptagon-containing nonclassical carbon is the second most stable isomer, whereas at the temperature range of endohedral metallofullerene (EMF) formation, due to the large vibrational frequencies, LaSc2N@Hept(6)-Cs(2)-C80 is the third most abundant isomer, and its mole fraction is very low, accounting for the low experimental yield of LaSc2N@Hept(6)-Cs(2)-C80; La2ScN@Hept(6)-Cs(2)-C80, and La3N@Hept(6)-Cs(2)-C80 are the overwhelming isomers of the corresponding series, but compared with the cases of Sc3N@C80 and LaSc2N@C80, La2ScN and La3N clusters suffer much larger constraints from the C80 cages, perhaps preventing the synthesis of La2ScN@C80 and La3N@C80 species. Because of the large mole fractions and large electron donation and back-donation of La2ScN@Hept(6)-Cs(2)-C80 and La3N@Hept(6)-Cs(2)-C80, it can be inferred that La2ScN and La3N clusters may be used to stabilize some other larger nonclassical fullerene cages. This work will provide useful insights into the origins of stabilization of nonclassical fullerene cages by endohedral derivation and guidelines for synthesis EMF with nonclassical cages.

10.
BMC Microbiol ; 16(1): 176, 2016 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-27492011

RESUMEN

BACKGROUND: The ability of Yersinia pestis to form a biofilm is an important characteristic in flea transmission of this pathogen. Y. pestis laterally acquired two plasmids (pPCP1and pMT1) and the ability to form biofilms when it evolved from Yersinia pseudotuberculosis. Small regulatory RNAs (sRNAs) are thought to play a crucial role in the processes of biofilm formation and pathogenesis. RESULTS: A pPCP1-derived sRNA HmsA (also known as sR084) was found to contribute to the enhanced biofilm formation phenotype of Y. pestis. The concentration of c-di-GMP was significantly reduced upon deletion of the hmsA gene in Y. pestis. The abundance of mRNA transcripts determining exopolysaccharide production, crucial for biofilm formation, was measured by primer extension, RT-PCR and lacZ transcriptional fusion assays in the wild-type and hmsA mutant strains. HmsA positively regulated biofilm synthesis-associated genes (hmsHFRS, hmsT and hmsCDE), but had no regulatory effect on the biofilm degradation-associated gene hmsP. Interestingly, the recently identified biofilm activator sRNA, HmsB, was rapidly degraded in the hmsA deletion mutant. Two genes (rovM and rovA) functioning as biofilm regulators were also found to be regulated by HmsA, whose regulatory effects were consistent with the HmsA-mediated biofilm phenotype. CONCLUSION: HmsA potentially functions as an activator of biofilm formation in Y. pestis, implying that sRNAs encoded on the laterally acquired plasmids might be involved in the chromosome-based regulatory networks implicated in Y. pestis-specific physiological processes.


Asunto(s)
Proteínas Bacterianas/genética , Biopelículas/crecimiento & desarrollo , Yersinia pestis/fisiología , Proteínas Bacterianas/metabolismo , GMP Cíclico/análogos & derivados , GMP Cíclico/genética , GMP Cíclico/metabolismo , Fenotipo , Plásmidos/genética , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Secuencia de ADN , Factores de Transcripción/genética , Yersinia pestis/enzimología , Yersinia pestis/genética , beta-Galactosidasa/metabolismo
11.
Mol Biomed ; 5(1): 23, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38871861

RESUMEN

Sleep deprivation (SD) has emerged as a critical concern impacting human health, leading to significant damage to the cardiovascular system. However, the underlying mechanisms are still unclear, and the development of targeted drugs is lagging. Here, we used mice to explore the effects of prolonged SD on cardiac structure and function. Echocardiography analysis revealed that cardiac function was significantly decreased in mice after five weeks of SD. Real-time quantitative PCR (RT-q-PCR) and Masson staining analysis showed that cardiac remodeling marker gene Anp (atrial natriuretic peptide) and fibrosis were increased, Elisa assay of serum showed that the levels of creatine kinase (CK), creatine kinase-MB (CK-MB), ANP, brain natriuretic peptide (BNP) and cardiac troponin T (cTn-T) were increased after SD, suggesting that cardiac remodeling and injury occurred. Transcript sequencing analysis indicated that genes involved in the regulation of calcium signaling pathway, dilated cardiomyopathy, and cardiac muscle contraction were changed after SD. Accordingly, Western blotting analysis demonstrated that the cardiac-contraction associated CaMKK2/AMPK/cTNI pathway was inhibited. Since our preliminary research has confirmed the vital role of Casein Kinase-2 -Interacting Protein-1 (CKIP-1, also known as PLEKHO1) in cardiac remodeling regulation. Here, we found the levels of the 3' untranslated region of Ckip-1 (Ckip-1 3'UTR) decreased, while the coding sequence of Ckip-1 (Ckip-1 CDS) remained unchanged after SD. Significantly, adenovirus-mediated overexpression of Ckip-1 3'UTR alleviated SD-induced cardiac dysfunction and remodeling by activating CaMKK2/AMPK/cTNI pathway, which proposed the therapeutic potential of Ckip-1 3'UTR in treating SD-induced heart disease.


Asunto(s)
Regiones no Traducidas 3' , Proteínas Quinasas Activadas por AMP , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina , Transducción de Señal , Privación de Sueño , Animales , Masculino , Ratones , Regiones no Traducidas 3'/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/genética , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Ratones Endogámicos C57BL , Miocardio/metabolismo , Miocardio/patología , Privación de Sueño/genética , Privación de Sueño/metabolismo , Privación de Sueño/complicaciones , Troponina I/metabolismo , Troponina I/genética
12.
Front Med (Lausanne) ; 10: 1251963, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37746071

RESUMEN

Background and objectives: To investigate the application of intelligent puncture blood collection robots in anticoagulated blood specimens, the satisfaction of subjects with the two blood collection methods, and the feasibility of intelligent blood collection devices to replace manual blood collection methods in clinical work. Materials and methods: A total of 154 volunteers from Zhongshan Hospital Fudan University were recruited to compare the test results of anticoagulant blood samples between blood collection robot and manual blood collection, a questionnaire was used to inquire about the volunteers' feelings about the two blood collection methods; the blood collection data of 6,255 patients willing to use the robot for blood collection were collected to analyze the success rate of blood collection. Results: The blood collection robot is superior to manual specimen collection in terms of volume and pain of specimen collection, and the puncture success rate is 94.3%. The anticoagulated blood specimens collected by the robot had 11 indexes statistically different from the results of manual blood collection, but the differences did not affect the clinical diagnosis and prognosis. Conclusion: The intelligent robotic blood collection is less painful and has better acceptance by patients, which can be used for clinical anticoagulated blood specimen collection.

13.
iScience ; 26(5): 106615, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37250329

RESUMEN

Spaceflight is rigorous and dangerous environment which can negatively affect astronauts' health and the entire mission. The 60 days of 6° head-down bed rest (HDBR) experiment provided us with an opportunity to trace the change of gut microbiota under simulated microgravity. The gut microbiota of volunteers was analyzed and characterized by 16S rRNA gene sequencing and metagenomic sequencing. Our results showed that the composition and function of the volunteers' gut microbiota were markedly was affected by 60 days of 6° HDBR. We further confirmed the species and diversity fluctuations. Resistance and virulence genes in the gut microbiota were also affected by 60 days of 6° HDBR, but the species attributions remained stable. The human gut microbiota affected by 60 days of 6° HDBR which was partially consistent with the effect of spaceflight, this implied that HDBR was a simulation of how spaceflight affects the human gut microbiota.

14.
Front Mol Neurosci ; 16: 1149906, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37822967

RESUMEN

Peroxisome proliferator-activated receptor PPARγ coactivator-α (PGC-1α) is concentrated in inhibitory interneurons and plays a vital role in neuropsychiatric diseases. We previously reported some characteristic features of schizophrenia (SZ) in GABAergic neuron-specific Pgc-1alpha knockout (KO) mice (Dlx5/6-Cre: Pgc-1alphaf/f). However, there is a fundamental gap in the molecular mechanism by which the Pgc-1alpha gene is involved in the neurobehavioral abnormalities of SZ. The loss of critical period (CP) triggers-maturations of parvalbumin interneurons (PVIs) and brakes-and the formation of perineuronal nets (PNNs) implicates mistimed trajectories during adult brain development. In this study, using the Pgc-1alpha KO mouse line, we investigated the association of Pgc-1alpha gene deletion with SZ-like behavioral deficits, PVI maturation, PNN integrity and synaptic ultrastructure. These findings suggest that Pgc-1alpha gene deletion resulted in a failure of CP onset and closure, thereby prolonging cortical plasticity timing. To determine whether the manipulation of the PNN structure is a potential method of altering neuronal plasticity, GM6001, a broad-spectrum matrix metalloproteinase (MMP)-inhibitor was applied. Here we confirmed that the treatment could effectively correct the CP plasticity window and ameliorate the synaptic ultrastructure in the Pgc-1alpha KO brain. Moreover, the intervention effect on neuronal plasticity was followed by the rescue of short-term habituation deficits and the mitigation of aberrant salience, which are some characteristic features of SZ. Taken collectively, these findings suggest that the role of PGC-1α in regulating cortical plasticity is mediated, at least partially, through the regulation of CP onset/closure. Strategically introduced reinforcement of molecular brakes may be a novel preventive therapy for psychiatric disorders associated with PGC-1α dysregulation.

15.
Bone Res ; 11(1): 53, 2023 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-37872163

RESUMEN

Bone marrow mesenchymal stem cell (BMSC) osteogenic differentiation and osteoblast function play critical roles in bone formation, which is a highly regulated process. Long noncoding RNAs (lncRNAs) perform diverse functions in a variety of biological processes, including BMSC osteogenic differentiation. Although several studies have reported that HOX transcript antisense RNA (HOTAIR) is involved in BMSC osteogenic differentiation, its effect on bone formation in vivo remains unclear. Here, by constructing transgenic mice with BMSC (Prx1-HOTAIR)- and osteoblast (Bglap-HOTAIR)-specific overexpression of HOTAIR, we found that Prx1-HOTAIR and Bglap-HOTAIR transgenic mice show different bone phenotypes in vivo. Specifically, Prx1-HOTAIR mice showed delayed bone formation, while Bglap-HOTAIR mice showed increased bone formation. HOTAIR inhibits BMSC osteogenic differentiation but promotes osteoblast function in vitro. Furthermore, we identified that HOTAIR is mainly located in the nucleus of BMSCs and in the cytoplasm of osteoblasts. HOTAIR displays a nucleocytoplasmic translocation pattern during BMSC osteogenic differentiation. We first identified that the RNA-binding protein human antigen R (HuR) is responsible for HOTAIR nucleocytoplasmic translocation. HOTAIR is essential for osteoblast function, and cytoplasmic HOTAIR binds to miR-214 and acts as a ceRNA to increase Atf4 protein levels and osteoblast function. Bglap-HOTAIR mice, but not Prx1-HOTAIR mice, showed alleviation of bone loss induced by unloading. This study reveals the importance of temporal and spatial regulation of HOTAIR in BMSC osteogenic differentiation and bone formation, which provides new insights into precise regulation as a target for bone loss.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Animales , Humanos , Ratones , Huesos/metabolismo , Diferenciación Celular/genética , Ratones Transgénicos , MicroARNs/genética , Osteogénesis/genética , ARN Largo no Codificante/genética
16.
iScience ; 26(12): 108556, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38125015

RESUMEN

Spaceflight is physically demanding and can negatively affect astronauts' health. It has been shown that the human gut microbiota and cardiac function are affected by spaceflight and simulated spaceflight. This study investigated the effects of the gut microbiota on simulated spaceflight-induced cardiac remodeling using 10° of head-down bed rest (HDBR) in rhesus macaques and 30° of hindlimb unloading (HU) in mice. The gut microbiota, fecal metabolites, and cardiac remodeling were markedly affected by HDBR in macaques and HU in mice, cardiac remodeling in control mice was affected by the gut microbiota of HU mice and that of HU mice was protected by the gut microbiota of control mice, and there was a correlation between cardiac remodeling and the gut microbial-derived metabolite trimethylamine N-oxide. These findings suggest that spaceflight can affect cardiac remodeling by modulating the gut microbiota and fecal metabolites.

17.
Commun Biol ; 6(1): 407, 2023 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-37055517

RESUMEN

Mechanical force loading is essential for maintaining bone homeostasis, and unloading exposure can lead to bone loss. Osteoclasts are the only bone resorbing cells and play a crucial role in bone remodeling. The molecular mechanisms underlying mechanical stimulation-induced changes in osteoclast function remain to be fully elucidated. Our previous research found Ca2+-activated Cl- channel Anoctamin 1 (Ano1) was an essential regulator for osteoclast function. Here, we report that Ano1 mediates osteoclast responses to mechanical stimulation. In vitro, osteoclast activities are obviously affected by mechanical stress, which is accompanied by the changes of Ano1 levels, intracellular Cl- concentration and Ca2+ downstream signaling. Ano1 knockout or calcium binding mutants blunts the response of osteoclast to mechanical stimulation. In vivo, Ano1 knockout in osteoclast blunts loading induced osteoclast inhibition and unloading induced bone loss and. These results demonstrate that Ano1 plays an important role in mechanical stimulation induced osteoclast activity changes.


Asunto(s)
Canales de Cloruro , Osteoclastos , Anoctamina-1/genética , Anoctamina-1/metabolismo , Canales de Cloruro/genética , Osteoclastos/metabolismo , Transducción de Señal/fisiología
18.
Front Bioeng Biotechnol ; 10: 850303, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35528209

RESUMEN

As hematopoietic stem cells can differentiate into all hematopoietic lineages, mitigating the damage to hematopoietic stem cells is important for recovery from overdose radiation injury. Cells in bone marrow microenvironment are essential for hematopoietic stem cells maintenance and protection, and many of the paracrine mediators have been discovered in shaping hematopoietic function. Several recent reports support exosomes as effective regulators of hematopoietic stem cells, but the role of osteoblast derived exosomes in hematopoietic stem cells protection is less understood. Here, we investigated that osteoblast derived exosomes could alleviate radiation damage to hematopoietic stem cells. We show that intravenous injection of osteoblast derived exosomes promoted WBC, lymphocyte, monocyte and hematopoietic stem cells recovery after irradiation significantly. By sequencing osteoblast derived exosomes derived miRNAs and verified in vitro, we identified miR-21 is involved in hematopoietic stem cells protection via targeting PDCD4. Collectively, our data demonstrate that osteoblast derived exosomes derived miR-21 is a resultful regulator to radio-protection of hematopoietic stem cells and provide a new strategy for reducing radiation induced hematopoietic injury.

19.
Bone Res ; 10(1): 18, 2022 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-35210394

RESUMEN

Mechanical stimulation plays an important role in bone remodeling. Exercise-induced mechanical loading enhances bone strength, whereas mechanical unloading leads to bone loss. Increasing evidence has demonstrated that long noncoding RNAs (lncRNAs) play key roles in diverse biological, physiological and pathological contexts. However, the roles of lncRNAs in mechanotransduction and their relationships with bone formation remain unknown. In this study, we screened mechanosensing lncRNAs in osteoblasts and identified Neat1, the most clearly decreased lncRNA under simulated microgravity. Of note, not only Neat1 expression but also the specific paraspeckle structure formed by Neat1 was sensitive to different mechanical stimulations, which were closely associated with osteoblast function. Paraspeckles exhibited small punctate aggregates under simulated microgravity and elongated prolate or larger irregular structures under mechanical loading. Neat1 knockout mice displayed disrupted bone formation, impaired bone structure and strength, and reduced bone mass. Neat1 deficiency in osteoblasts reduced the response of osteoblasts to mechanical stimulation. In vivo, Neat1 knockout in mice weakened the bone phenotypes in response to mechanical loading and hindlimb unloading stimulation. Mechanistically, paraspeckles promoted nuclear retention of E3 ubiquitin ligase Smurf1 mRNA and downregulation of their translation, thus inhibiting ubiquitination-mediated degradation of the osteoblast master transcription factor Runx2, a Smurf1 target. Our study revealed that Neat1 plays an essential role in osteoblast function under mechanical stimulation, which provides a paradigm for the function of the lncRNA-assembled structure in response to mechanical stimulation and offers a therapeutic strategy for long-term spaceflight- or bedrest-induced bone loss and age-related osteoporosis.

20.
Neurosci Lett ; 744: 135598, 2021 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-33373677

RESUMEN

Amyloid-ß (Aß) is the core component of amyloid plaques of Alzheimer's disease (AD). Recent evidence has confirmed that Aß triggers neurodegeneration by dramatically suppressing vitamin D receptor (VDR) expression. Thus far, the onset mechanisms and means of preventing AD are largely unknown. Perioxisome proliferator-activated receptor-γ coactivator (PGC-1α), as a transcriptional coactivator of VDR could protect cells against oxidative stress. Thus, upregulation of PGC-1α is a candidate therapeutic strategy for AD. To investigate the effect of PGC-1α in AD, and to illuminate the precise involvement of VDR in the neuroprotective strategy, the varies of molecular of PGC-1α and VDR were studied in APP/PS-1 double transgenic (2xTg-AD) mice at 6 months of age, significant reduction in the expression of PGC-1α and VDR was found in their hippocampus and the cortex. Besides, a specific mouse line, Dlx5/6-Cre:PGC-1αfl/fl in which the PGC-1α deficiency was limited to the hippocampus and the cortex, was used to study the target intervention of PGC-1α, decreased expression of VDR and increased oxidative damage were observed in AD-related brain regions by PGC-1α deficiency. To explore the function and therapeutic strategy of PGC-1α in AD, an adeno-associated virus (AAV) was used to induce PGC-1α overexpressed in the hippocampus of 2xTg-AD mice. Overexpressed PGC-1α results in a remarkable increase in the levels of VDR associated with a significant reduction in the expression of Aß plaques and of 8-oxo-dG in 2xTg-AD mice. These data may have ramifications for neuroprotective strategies targeting overexpression of PGC-1α in Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/biosíntesis , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/biosíntesis , Receptores de Calcitriol/biosíntesis , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/antagonistas & inhibidores , Péptidos beta-Amiloides/genética , Animales , Expresión Génica , Hipocampo/metabolismo , Ratones , Ratones Transgénicos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Receptores de Calcitriol/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA