Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 175(4): 998-1013.e20, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30388456

RESUMEN

Treatment of cancer has been revolutionized by immune checkpoint blockade therapies. Despite the high rate of response in advanced melanoma, the majority of patients succumb to disease. To identify factors associated with success or failure of checkpoint therapy, we profiled transcriptomes of 16,291 individual immune cells from 48 tumor samples of melanoma patients treated with checkpoint inhibitors. Two distinct states of CD8+ T cells were defined by clustering and associated with patient tumor regression or progression. A single transcription factor, TCF7, was visualized within CD8+ T cells in fixed tumor samples and predicted positive clinical outcome in an independent cohort of checkpoint-treated patients. We delineated the epigenetic landscape and clonality of these T cell states and demonstrated enhanced antitumor immunity by targeting novel combinations of factors in exhausted cells. Our study of immune cell transcriptomes from tumors demonstrates a strategy for identifying predictors, mechanisms, and targets for enhancing checkpoint immunotherapy.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Inmunoterapia/métodos , Melanoma/inmunología , Transcriptoma , Animales , Anticuerpos Monoclonales Humanizados/inmunología , Anticuerpos Monoclonales Humanizados/farmacología , Antígenos CD/inmunología , Antineoplásicos Inmunológicos/inmunología , Antineoplásicos Inmunológicos/farmacología , Apirasa/antagonistas & inhibidores , Apirasa/inmunología , Línea Celular Tumoral , Humanos , Antígenos Comunes de Leucocito/antagonistas & inhibidores , Antígenos Comunes de Leucocito/inmunología , Melanoma/terapia , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Factor 1 de Transcripción de Linfocitos T/metabolismo
3.
Nature ; 613(7944): 565-574, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36410718

RESUMEN

Programming T cells to distinguish self from non-self is a vital, multi-step process that occurs in the thymus1-4. Signalling through the pre-T cell receptor (preTCR), a CD3-associated heterodimer comprising an invariant pTα chain and a clone-specific ß chain, is a critical early checkpoint in thymocyte development within the αß T cell lineage5,6. PreTCRs arrayed on CD4-CD8- double-negative thymocytes ligate peptides bound to major histocompatibility complex molecules (pMHC) on thymic stroma, similar to αß T cell receptors that appear on CD4+CD8+ double-positive thymocytes, but via a different molecular docking strategy7-10. Here we show the consequences of these distinct interactions for thymocyte progression using synchronized fetal thymic progenitor cultures that differ in the presence or absence of pMHC on support stroma, and single-cell transcriptomes at key thymocyte developmental transitions. Although major histocompatibility complex (MHC)-negative stroma fosters αß T cell differentiation, the absence of preTCR-pMHC interactions leads to deviant thymocyte transcriptional programming associated with dedifferentiation. Highly proliferative double-negative and double-positive thymocyte subsets emerge, with antecedent characteristics of T cell lymphoblastic and myeloid malignancies. Compensatory upregulation of diverse MHC class Ib proteins in B2m/H2-Ab1 MHC-knockout mice partially safeguards in vivo thymocyte progression, although disseminated double-positive thymic tumours may develop with ageing. Thus, as well as promoting ß chain repertoire broadening for subsequent αß T cell receptor utilization, preTCR-pMHC interactions limit cellular plasticity to facilitate normal thymocyte differentiation and proliferation that, if absent, introduce developmental vulnerabilities.


Asunto(s)
Desdiferenciación Celular , Antígenos de Histocompatibilidad Clase I , Receptores de Antígenos de Linfocitos T , Timocitos , Animales , Ratones , Ratones Noqueados , Simulación del Acoplamiento Molecular , Péptidos/inmunología , Péptidos/metabolismo , Timocitos/citología , Timocitos/inmunología , Timo/citología , Timo/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase I/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(28): e2111003119, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35787058

RESUMEN

Immunotherapy has had a tremendous impact on cancer treatment in the past decade, with hitherto unseen responses at advanced and metastatic stages of the disease. However, the aggressive brain tumor glioblastoma (GBM) is highly immunosuppressive and remains largely refractory to current immunotherapeutic approaches. The stimulator of interferon genes (STING) DNA sensing pathway has emerged as a next-generation immunotherapy target with potent local immune stimulatory properties. Here, we investigated the status of the STING pathway in GBM and the modulation of the brain tumor microenvironment (TME) with the STING agonist ADU-S100. Our data reveal the presence of STING in human GBM specimens, where it stains strongly in the tumor vasculature. We show that human GBM explants can respond to STING agonist treatment by secretion of inflammatory cytokines. In murine GBM models, we show a profound shift in the tumor immune landscape after STING agonist treatment, with massive infiltration of the tumor-bearing hemisphere with innate immune cells including inflammatory macrophages, neutrophils, and natural killer (NK) populations. Treatment of established murine intracranial GL261 and CT-2A tumors by biodegradable ADU-S100-loaded intracranial implants demonstrated a significant increase in survival in both models and long-term survival with immune memory in GL261. Responses to treatment were abolished by NK cell depletion. This study reveals therapeutic potential and deep remodeling of the TME by STING activation in GBM and warrants further examination of STING agonists alone or in combination with other immunotherapies such as cancer vaccines, chimeric antigen receptor T cells, NK therapies, and immune checkpoint blockade.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Células Asesinas Naturales , Animales , Neoplasias Encefálicas/terapia , Glioblastoma/terapia , Humanos , Inmunidad , Inmunoterapia , Proteínas de la Membrana/antagonistas & inhibidores , Ratones , Microambiente Tumoral
5.
Nat Chem Biol ; 17(6): 711-717, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34035522

RESUMEN

The zinc-finger transcription factor Helios is critical for maintaining the identity, anergic phenotype and suppressive activity of regulatory T (Treg) cells. While it is an attractive target to enhance the efficacy of currently approved immunotherapies, no existing approaches can directly modulate Helios activity or abundance. Here, we report the structure-guided development of small molecules that recruit the E3 ubiquitin ligase substrate receptor cereblon to Helios, thereby promoting its degradation. Pharmacological Helios degradation destabilized the anergic phenotype and reduced the suppressive activity of Treg cells, establishing a route towards Helios-targeting therapeutics. More generally, this study provides a framework for the development of small-molecule degraders for previously unligandable targets by reprogramming E3 ligase substrate specificity.


Asunto(s)
Proteínas de Unión al ADN/efectos de los fármacos , Factor de Transcripción Ikaros/efectos de los fármacos , Linfocitos T Reguladores/efectos de los fármacos , Factores de Transcripción/efectos de los fármacos , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Línea Celular , Proteínas de Unión al ADN/genética , Humanos , Factor de Transcripción Ikaros/genética , Células Jurkat , Ratones , Modelos Moleculares , Estructura Molecular , Mutación/genética , Bibliotecas de Moléculas Pequeñas , Especificidad por Sustrato , Factores de Transcripción/genética , Ubiquitina-Proteína Ligasas/metabolismo
6.
J Immunol ; 190(1): 469-78, 2013 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23225891

RESUMEN

Immune recognition of tumors can limit cancer development, but antitumor immune responses are often blocked by tumor-mediated immunosuppression. Because microbes or microbial constituents are powerful adjuvants to stimulate immune responses, we evaluated whether intratumoral administration of a highly immunogenic but attenuated parasite could induce rejection of an established poorly immunogenic tumor. We treated intradermal B16F10 murine melanoma by intratumoral injection of an attenuated strain of Toxoplasma gondii (cps) that cannot replicate in vivo and therefore is not infective. The cps treatment stimulated a strong CD8(+) T cell-mediated antitumor immune response in vivo that regressed established primary melanoma. The cps monotherapy rapidly modified the tumor microenvironment, halting tumor growth, and subsequently, as tumor-reactive T cells expanded, the tumors disappeared and rarely returned. The treatment required live cps that could invade cells and also required CD8(+) T cells and NK cells, but did not require CD4(+) T cells. Furthermore, we demonstrate that IL-12, IFN-γ, and the CXCR3-stimulating cytokines are required for full treatment efficacy. The treatment developed systemic antitumor immune activity as well as antitumor immune memory and therefore might have an impact against human metastatic disease. The approach is not specific for either B16F10 or melanoma. Direct intratumoral injection of cps has efficacy against an inducible genetic melanoma model and transplantable lung and ovarian tumors, demonstrating potential for broad clinical use. The combination of efficacy, systemic antitumor immune response, and complete attenuation with no observed host toxicity demonstrates the potential value of this novel cancer therapy.


Asunto(s)
Adyuvantes Inmunológicos/administración & dosificación , Vacunas contra el Cáncer/administración & dosificación , Melanoma Experimental/inmunología , Neoplasias Cutáneas/inmunología , Toxoplasma/inmunología , Adyuvantes Inmunológicos/uso terapéutico , Animales , Vacunas contra el Cáncer/inmunología , Línea Celular Tumoral , Inyecciones Intradérmicas , Melanoma Experimental/prevención & control , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Ratones Transgénicos , Recurrencia Local de Neoplasia/inmunología , Recurrencia Local de Neoplasia/prevención & control , Neoplasias Cutáneas/prevención & control , Escape del Tumor/inmunología , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/inmunología
7.
Proc Natl Acad Sci U S A ; 108(30): 12372-7, 2011 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-21746896

RESUMEN

A comprehensive understanding of the molecular vulnerabilities of every type of cancer will provide a powerful roadmap to guide therapeutic approaches. Efforts such as The Cancer Genome Atlas Project will identify genes with aberrant copy number, sequence, or expression in various cancer types, providing a survey of the genes that may have a causal role in cancer. A complementary approach is to perform systematic loss-of-function studies to identify essential genes in particular cancer cell types. We have begun a systematic effort, termed Project Achilles, aimed at identifying genetic vulnerabilities across large numbers of cancer cell lines. Here, we report the assessment of the essentiality of 11,194 genes in 102 human cancer cell lines. We show that the integration of these functional data with information derived from surveying cancer genomes pinpoints known and previously undescribed lineage-specific dependencies across a wide spectrum of cancers. In particular, we found 54 genes that are specifically essential for the proliferation and viability of ovarian cancer cells and also amplified in primary tumors or differentially overexpressed in ovarian cancer cell lines. One such gene, PAX8, is focally amplified in 16% of high-grade serous ovarian cancers and expressed at higher levels in ovarian tumors. Suppression of PAX8 selectively induces apoptotic cell death of ovarian cancer cells. These results identify PAX8 as an ovarian lineage-specific dependency. More generally, these observations demonstrate that the integration of genome-scale functional and structural studies provides an efficient path to identify dependencies of specific cancer types on particular genes and pathways.


Asunto(s)
Neoplasias Ováricas/genética , Oxidorreductasas de Alcohol , Secuencia de Bases , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular/genética , Femenino , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Oncogenes , Neoplasias Ováricas/patología , Factor de Transcripción PAX8 , Factores de Transcripción Paired Box/genética , ARN Neoplásico/genética , ARN Interferente Pequeño/genética
8.
Clin Cancer Res ; 30(9): 1934-1944, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38372707

RESUMEN

PURPOSE: Neoadjuvant anti-PD1 (aPD1) therapies are being explored in surgically resectable head and neck squamous cell carcinoma (HNSCC). Encouraging responses have been observed, but further insights into the mechanisms underlying resistance and approaches to improve responses are needed. EXPERIMENTAL DESIGN: We integrated data from syngeneic mouse oral carcinoma (MOC) models and neoadjuvant pembrolizumab HNSCC patient tumor RNA-sequencing data to explore the mechanism of aPD1 resistance. Tumors and tumor-draining lymph nodes (DLN) from MOC models were analyzed for antigen-specific priming. CCL5 expression was enforced in an aPD1-resistant model. RESULTS: An aPD1-resistant mouse model showed poor priming in the tumor DLN due to type 1 conventional dendritic cell (cDC1) dysfunction, which correlated with exhausted and poorly responsive antigen-specific T cells. Tumor microenvironment analysis also showed decreased cDC1 in aPD1-resistant tumors compared with sensitive tumors. Following neoadjuvant aPD1 therapy, pathologic responses in patients also positively correlated with baseline transcriptomic cDC1 signatures. In an aPD1-resistant model, intratumoral cDC1 vaccine was sufficient to restore aPD1 response by enhancing T-cell infiltration and increasing antigen-specific responses with improved tumor control. Mechanistically, CCL5 expression significantly correlated with neoadjuvant aPD1 response and enforced expression of CCL5 in an aPD1-resistant model, enhanced cDC1 tumor infiltration, restored antigen-specific responses, and recovered sensitivity to aPD1 treatment. CONCLUSIONS: These data highlight the contribution of tumor-infiltrating cDC1 in HNSCC aPD1 response and approaches to enhance cDC1 infiltration and function that may circumvent aPD1 resistance in patients with HNSCC.


Asunto(s)
Células Dendríticas , Resistencia a Antineoplásicos , Neoplasias de Cabeza y Cuello , Carcinoma de Células Escamosas de Cabeza y Cuello , Microambiente Tumoral , Animales , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Ratones , Humanos , Neoplasias de Cabeza y Cuello/inmunología , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/patología , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/metabolismo , Resistencia a Antineoplásicos/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/inmunología , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Microambiente Tumoral/inmunología , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Quimiocina CCL5/genética , Quimiocina CCL5/metabolismo , Anticuerpos Monoclonales Humanizados/farmacología , Anticuerpos Monoclonales Humanizados/uso terapéutico , Modelos Animales de Enfermedad , Terapia Neoadyuvante/métodos , Femenino , Línea Celular Tumoral
9.
J Clin Oncol ; 42(9): 1021-1030, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38252908

RESUMEN

PURPOSE: Cemiplimab is approved for treating locally advanced or metastatic cutaneous squamous cell carcinoma (CSCC). Solid organ transplant recipients have been excluded from immunotherapy trials, given concern for allograft rejection despite their increased risk of skin cancers. Chronic immunosuppression is necessary to prevent organ rejection but may attenuate antitumor response with PD-1 inhibitors. METHODS: We report a phase I study of cemiplimab for kidney transplant recipients (KTRs) with advanced CSCC. After cross-taper to a mammalian target of rapamycin (mTOR) inhibitor and pulsed dose corticosteroids (prednisone 40 mg once daily, the day before and on days 1-3 of each cycle, followed by 20 mg once daily on days 4-6, then 10 mg once daily until the day before each subsequent cycle), patients received cemiplimab 350 mg intravenously once every 3 weeks for up to 2 years and were assessed for response every 8 weeks. The primary end point was the rate of kidney rejection, with key secondary end points including rate and duration of response, and survival. RESULTS: Twelve patients were treated. No kidney rejection or loss was observed. A response to cemiplimab was observed in five of 11 evaluable patients (46%; 90% CI, 22 to 73), including two with durable responses beyond a year. Median follow-up was 6.8 months (range, 0.7-29.8). Treatment-related grade 3 or greater adverse events occurred in five patients (42%), including diarrhea, infection, and metabolic disturbances. One patient died of angioedema and anaphylaxis attributed to mTOR inhibitor cross-taper. CONCLUSION: mTOR inhibitor and corticosteroids represent a favorable immunosuppressive regimen for KTRs with advanced CSCC receiving immunotherapy. This combination resulted in durable antitumor responses with no kidney rejection events (funded by Regeneron Pharmaceuticals [ClinicalTrials.gov identifier: NCT04339062]).


Asunto(s)
Anticuerpos Monoclonales Humanizados , Carcinoma de Células Escamosas , Trasplante de Riñón , Neoplasias Cutáneas , Humanos , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/patología , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/patología , Trasplante de Riñón/efectos adversos , Inhibidores mTOR , Corticoesteroides/uso terapéutico
10.
JAMA Oncol ; 10(1): 32-41, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37971722

RESUMEN

Importance: Proliferative verrucous leukoplakia (PVL) is an aggressive oral precancerous disease characterized by a high risk of transformation to invasive oral squamous cell carcinoma (OSCC), and no therapies have been shown to affect its natural history. A recent study of the PVL immune landscape revealed a cytotoxic T-cell-rich microenvironment, providing strong rationale to investigate immune checkpoint therapy. Objective: To determine the safety and clinical activity of anti-programmed cell death 1 protein (PD-1) therapy to treat high-risk PVL. Design, Setting, and Participants: This nonrandomized, open-label, phase 2 clinical trial was conducted from January 2019 to December 2021 at a single academic medical center; median (range) follow-up was 21.1 (5.4-43.6) months. Participants were a population-based sample of patients with PVL (multifocal, contiguous, or a single lesion ≥4 cm with any degree of dysplasia). Intervention: Patients underwent pretreatment biopsy (1-3 sites) and then received 4 doses of nivolumab (480 mg intravenously) every 28 days, followed by rebiopsy and intraoral photographs at each visit. Main Outcomes and Measures: The primary end point was the change in composite score (size and degree of dysplasia) from before to after treatment (major response [MR]: >80% decrease in score; partial response: 40%-80% decrease). Secondary analyses included immune-related adverse events, cancer-free survival (CFS), PD-1 ligand 1 (PD-L1) expression, 9p21.3 deletion, and other exploratory immunologic and genomic associations of response. Results: A total of 33 patients were enrolled (median [range] age, 63 [32-80] years; 18 [55%] were female), including 8 (24%) with previously resected early-stage OSCC. Twelve patients (36%) (95% CI, 20.4%-54.8%) had a response by composite score (3 MRs [9%]), 4 had progressive disease (>10% composite score increase, or cancer). Nine patients (27%) developed OSCC during the trial, with a 2-year CFS of 73% (95% CI, 53%-86%). Two patients (6%) discontinued because of toxic effects; 7 (21%) experienced grade 3 to 4 immune-related adverse events. PD-L1 combined positive scores were not associated with response or CFS. Of 20 whole-exome sequenced patients, all 6 patients who had progression to OSCC after nivolumab treatment exhibited 9p21.3 somatic copy-number loss on pretreatment biopsy, while only 4 of the 14 patients (29%) who did not develop OSCC had 9p21.3 loss. Conclusions and Relevance: This immune checkpoint therapy precancer nonrandomized clinical trial met its prespecified response end point, suggesting potential clinical activity for nivolumab in high-risk PVL. Findings identified immunogenomic associations to inform future trials in this precancerous disease with unmet medical need that has been difficult to study. Trial Registration: ClinicalTrials.gov Identifier: NCT03692325.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de la Boca , Lesiones Precancerosas , Humanos , Femenino , Persona de Mediana Edad , Masculino , Nivolumab/efectos adversos , Nivolumab/administración & dosificación , Carcinoma de Células Escamosas/tratamiento farmacológico , Receptor de Muerte Celular Programada 1/inmunología , Antígeno B7-H1 , Neoplasias de la Boca/tratamiento farmacológico , Inmunoterapia , Leucoplasia Bucal/tratamiento farmacológico , Leucoplasia Bucal/inducido químicamente , Microambiente Tumoral
11.
Cancers (Basel) ; 15(16)2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37627156

RESUMEN

High-grade serous ovarian cancer (HGSOC) is responsible for the majority of gynecology cancer-related deaths. Patients in remission often relapse with more aggressive forms of disease within 2 years post-treatment. Alternative immuno-oncology (IO) strategies, such as immune checkpoint blockade (ICB) targeting the PD-(L)1 signaling axis, have proven inefficient so far. Our aim is to utilize epigenetic modulators to maximize the benefit of personalized IO combinations in ex vivo 3D patient-derived platforms and in vivo syngeneic models. Using patient-derived tumor ascites, we optimized an ex vivo 3D screening platform (PDOTS), which employs autologous immune cells and circulating ascites-derived tumor cells, to rapidly test personalized IO combinations. Most importantly, patient responses to platinum chemotherapy and poly-ADP ribose polymerase inhibitors in 3D platforms recapitulate clinical responses. Furthermore, similar to clinical trial results, responses to ICB in PDOTS tend to be low and positively correlated with the frequency of CD3+ immune cells and EPCAM+/PD-L1+ tumor cells. Thus, the greatest response observed with anti-PD-1/anti-PD-L1 immunotherapy alone is seen in patient-derived HGSOC ascites, which present with high levels of systemic CD3+ and PD-L1+ expression in immune and tumor cells, respectively. In addition, priming with epigenetic adjuvants greatly potentiates ICB in ex vivo 3D testing platforms and in vivo tumor models. We further find that epigenetic priming induces increased tumor secretion of several key cytokines known to augment T and NK cell activation and cytotoxicity, including IL-6, IP-10 (CXCL10), KC (CXCL1), and RANTES (CCL5). Moreover, epigenetic priming alone and in combination with ICB immunotherapy in patient-derived PDOTS induces rapid upregulation of CD69, a reliable early activation of immune markers in both CD4+ and CD8+ T cells. Consequently, this functional precision medicine approach could rapidly identify personalized therapeutic combinations able to potentiate ICB, which is a great advantage, especially given the current clinical difficulty of testing a high number of potential combinations in patients.

12.
Cell Rep Med ; 4(11): 101282, 2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-37992688

RESUMEN

Despite small cell lung cancers (SCLCs) having a high mutational burden, programmed death-ligand 1 (PD-L1) immunotherapy only modestly increases survival. A subset of SCLCs that lose their ASCL1 neuroendocrine phenotype and restore innate immune signaling (termed the "inflammatory" subtype) have durable responses to PD-L1. Some SCLCs are highly sensitive to Aurora kinase inhibitors, but early-phase trials show short-lived responses, suggesting effective therapeutic combinations are needed to increase their durability. Using immunocompetent SCLC genetically engineered mouse models (GEMMs) and syngeneic xenografts, we show durable efficacy with the combination of a highly specific Aurora A kinase inhibitor (LSN3321213) and PD-L1. LSN3321213 causes accumulation of tumor cells in mitosis with lower ASCL1 expression and higher expression of interferon target genes and antigen-presentation genes mimicking the inflammatory subtype in a cell-cycle-dependent manner. These data demonstrate that inflammatory gene expression is restored in mitosis in SCLC, which can be exploited by Aurora A kinase inhibition.


Asunto(s)
Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Humanos , Ratones , Animales , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Antígeno B7-H1/genética , Aurora Quinasa A/genética , Aurora Quinasa A/uso terapéutico , Carcinoma Pulmonar de Células Pequeñas/tratamiento farmacológico , Carcinoma Pulmonar de Células Pequeñas/genética , Carcinoma Pulmonar de Células Pequeñas/patología , Mitosis , Interferones/genética
13.
Sci Immunol ; 8(87): eadf4968, 2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37683037

RESUMEN

About 50% of patients with locally advanced head and neck squamous cell carcinoma (HNSCC) experience recurrences after definitive therapy. The presurgical administration of anti-programmed cell death protein 1 (PD-1) immunotherapy results in substantial pathologic tumor responses (pTR) within the tumor microenvironment (TME). However, the mechanisms underlying the dynamics of antitumor T cells upon neoadjuvant PD-1 blockade remain unresolved, and approaches to increase pathologic responses are lacking. In a phase 2 trial (NCT02296684), we observed that 45% of patients treated with two doses of neoadjuvant pembrolizumab experienced marked pTRs (≥50%). Single-cell analysis of 17,158 CD8+ T cells from 14 tumor biopsies, including 6 matched pre-post neoadjuvant treatment, revealed that responding tumors had clonally expanded putative tumor-specific exhausted CD8+ tumor-infiltrating lymphocytes (TILs) with a tissue-resident memory program, characterized by high cytotoxic potential (CTX+) and ZNF683 expression, within the baseline TME. Pathologic responses after 5 weeks of PD-1 blockade were consistent with activation of preexisting CTX+ZNF683+CD8+ TILs, paralleling loss of viable tumor and associated tumor antigens. Response was associated with high numbers of CD103+PD-1+CD8+ T cells infiltrating pretreatment lesions, whereas revival of nonexhausted persisting clones and clonal replacement were modest. By contrast, nonresponder baseline TME exhibited a relative absence of ZNF683+CTX+ TILs and subsequent accumulation of highly exhausted clones. In HNSCC, revival of preexisting ZNF683+CTX+ TILs is a major mechanism of response in the immediate postneoadjuvant setting.


Asunto(s)
Antineoplásicos , Neoplasias de Cabeza y Cuello , Humanos , Terapia Neoadyuvante , Linfocitos T CD8-positivos , Carcinoma de Células Escamosas de Cabeza y Cuello , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Microambiente Tumoral
15.
Cancer Res ; 82(21): 4079-4092, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-36066413

RESUMEN

Immunotherapy has shown limited efficacy in patients with EGFR-mutated lung cancer. Efforts to enhance the immunogenicity of EGFR-mutated lung cancer have been unsuccessful to date. Here, we discover that MET amplification, the most common mechanism of resistance to third-generation EGFR tyrosine kinase inhibitors (TKI), activates tumor cell STING, an emerging determinant of cancer immunogenicity (1). However, STING activation was restrained by ectonucleosidase CD73, which is induced in MET-amplified, EGFR-TKI-resistant cells. Systematic genomic analyses and cell line studies confirmed upregulation of CD73 in MET-amplified and MET-activated lung cancer contexts, which depends on coinduction of FOSL1. Pemetrexed (PEM), which is commonly used following EGFR-TKI treatment failure, was identified as an effective potentiator of STING-dependent TBK1-IRF3-STAT1 signaling in MET-amplified, EGFR-TKI-resistant cells. However, PEM treatment also induced adenosine production, which inhibited T-cell responsiveness. In an allogenic humanized mouse model, CD73 deletion enhanced immunogenicity of MET-amplified, EGFR-TKI-resistant cells, and PEM treatment promoted robust responses regardless of CD73 status. Using a physiologic antigen recognition model, inactivation of CD73 significantly increased antigen-specific CD8+ T-cell immunogenicity following PEM treatment. These data reveal that combined PEM and CD73 inhibition can co-opt tumor cell STING induction in TKI-resistant EGFR-mutated lung cancers and promote immunogenicity. SIGNIFICANCE: MET amplification upregulates CD73 to suppress tumor cell STING induction and T-cell responsiveness in TKI-resistant, EGFR-mutated lung cancer, identifying a strategy to enhance immunogenicity and improve treatment.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Animales , Ratones , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Receptores ErbB/metabolismo , Amplificación de Genes , Neoplasias Pulmonares/patología , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-met/metabolismo , 5'-Nucleotidasa/metabolismo
16.
Clin Cancer Res ; 28(3): 468-478, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34667025

RESUMEN

PURPOSE: Surgery often represents the best chance for disease control in locoregionally recurrent squamous cell carcinoma of the head and neck (SCCHN). We investigated dual immune-checkpoint inhibition [anti-PD-1, nivolumab (N), and anti-KIR, lirilumab (L)] before and after salvage surgery to improve disease-free survival (DFS). PATIENTS AND METHODS: In this phase II study, patients received N (240 mg) + L (240 mg) 7 to 21 days before surgery, followed by six cycles of adjuvant N + L. Primary endpoint was 1-year DFS; secondary endpoints were safety, pre-op radiologic response, and overall survival (OS). Correlatives included tumor sequencing, PD-L1 scoring, and immunoprofiling. RESULTS: Among 28 patients, the median age was 66, 86% were smokers; primary site: 9 oral cavity, 9 oropharynx, and 10 larynx/hypopharynx; 96% had prior radiation. There were no delays to surgery. Grade 3+ adverse events: 11%. At the time of surgery, 96% had stable disease radiologically, one had progression. Pathologic response to N + L was observed in 43% (12/28): 4/28 (14%) major (tumor viability, TV ≤ 10%) and 8/28 (29%) partial (TV ≤ 50%). PD-L1 combined positive score (CPS) at surgery was similar regardless of pathologic response (P = 0.71). Thirteen (46%) recurred (loco-regional = 10, distant = 3). Five of 28 (18%) had positive margins, 4 later recurred. At median follow-up of 22.8 months, 1-year DFS was 55.2% (95% CI, 34.8-71.7) and 1-year OS was 85.7% (95% CI, 66.3-94.4). Two-year DFS and OS were 64% and 80% among pathologic responders. CONCLUSIONS: (Neo)adjuvant N + L was well tolerated, with a 43% pathologic response rate. We observed favorable DFS and excellent 2-year OS among high-risk, previously treated patients exhibiting a pathologic response. Further evaluation of this strategy is warranted.See related commentary by Sacco and Cohen, p. 435.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias de Cabeza y Cuello , Inhibidores de Puntos de Control Inmunológico , Terapia Neoadyuvante , Recurrencia Local de Neoplasia , Nivolumab , Carcinoma de Células Escamosas de Cabeza y Cuello , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Supervivencia sin Enfermedad , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/mortalidad , Neoplasias de Cabeza y Cuello/patología , Neoplasias de Cabeza y Cuello/cirugía , Inhibidores de Puntos de Control Inmunológico/administración & dosificación , Recurrencia Local de Neoplasia/tratamiento farmacológico , Nivolumab/administración & dosificación , Terapia Recuperativa , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Carcinoma de Células Escamosas de Cabeza y Cuello/mortalidad , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Carcinoma de Células Escamosas de Cabeza y Cuello/cirugía , Resultado del Tratamiento
17.
Cancer Cell ; 40(10): 1128-1144.e8, 2022 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-36150391

RESUMEN

KRAS-LKB1 (KL) mutant lung cancers silence STING owing to intrinsic mitochondrial dysfunction, resulting in T cell exclusion and resistance to programmed cell death (ligand) 1 (PD-[L]1) blockade. Here we discover that KL cells also minimize intracellular accumulation of 2'3'-cyclic GMP-AMP (2'3'-cGAMP) to further avoid downstream STING and STAT1 activation. An unbiased screen to co-opt this vulnerability reveals that transient MPS1 inhibition (MPS1i) potently re-engages this pathway in KL cells via micronuclei generation. This effect is markedly amplified by epigenetic de-repression of STING and only requires pulse MPS1i treatment, creating a therapeutic window compared with non-dividing cells. A single course of decitabine treatment followed by pulse MPS1i therapy restores T cell infiltration in vivo, enhances anti-PD-1 efficacy, and results in a durable response without evidence of significant toxicity.


Asunto(s)
Neoplasias Pulmonares , Proteínas Proto-Oncogénicas p21(ras) , Decitabina , Genes ras , Humanos , Ligandos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo
18.
Cancer Immunol Res ; 10(8): 947-961, 2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35678717

RESUMEN

Activation of the stimulator of interferon genes (STING) pathway promotes antitumor immunity but STING agonists have yet to achieve clinical success. Increased understanding of the mechanism of action of STING agonists in human tumors is key to developing therapeutic combinations that activate effective innate antitumor immunity. Here, we report that malignant pleural mesothelioma cells robustly express STING and are responsive to STING agonist treatment ex vivo. Using dynamic single-cell RNA sequencing of explants treated with a STING agonist, we observed CXCR3 chemokine activation primarily in tumor cells and cancer-associated fibroblasts, as well as T-cell cytotoxicity. In contrast, primary natural killer (NK) cells resisted STING agonist-induced cytotoxicity. STING agonists enhanced migration and killing of NK cells and mesothelin-targeted chimeric antigen receptor (CAR)-NK cells, improving therapeutic activity in patient-derived organotypic tumor spheroids. These studies reveal the fundamental importance of using human tumor samples to assess innate and cellular immune therapies. By functionally profiling mesothelioma tumor explants with elevated STING expression in tumor cells, we uncovered distinct consequences of STING agonist treatment in humans that support testing combining STING agonists with NK and CAR-NK cell therapies.


Asunto(s)
Inmunoterapia Adoptiva , Células Asesinas Naturales , Proteínas de la Membrana , Mesotelioma Maligno , Línea Celular Tumoral , Tratamiento Basado en Trasplante de Células y Tejidos , Humanos , Proteínas de la Membrana/agonistas , Receptores Quiméricos de Antígenos
19.
Front Oncol ; 11: 696512, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34552864

RESUMEN

BACKGROUND: Histone deacetylase (HDAC) overexpression has been documented in various cancers and may be associated with worse outcomes. Data from early-phase studies of advanced non-small cell lung cancer (NSCLC) suggest encouraging antitumor activity with the combination of an HDAC inhibitor and either platinum-based chemotherapy or an EGFR inhibitor; however, toxicity is a limiting factor in the use of pan-HDAC inhibitors. Selective inhibition of HDAC6 may represent a potential therapeutic target and preclinical studies revealed immunomodulatory effects with HDAC6 inhibition, suggesting the potential for combination with immune checkpoint inhibitors. This phase Ib, multicenter, single-arm, open-label, dose-escalation study investigated the HDAC6 inhibitor ACY-241 (citarinostat) plus nivolumab in patients with previously treated advanced NSCLC who had not received a prior HDAC or immune checkpoint inhibitor. METHODS: The orally administered ACY-241 dose was escalated (180, 360, or 480 mg once daily). Nivolumab was administered at 240 mg (day 15 of cycle 1, then every 2 weeks thereafter). The primary endpoint was to determine the maximum tolerated dose (MTD) of ACY-241 plus nivolumab. Secondary endpoints included safety, tolerability, and preliminary antitumor activity. Pharmacodynamics was an exploratory endpoint. RESULTS: A total of 18 patients were enrolled, with 17 patients treated. No dose-limiting toxicities (DLTs) occurred with ACY-241 at 180 or 360 mg; 2 DLTs occurred at 480 mg. The MTD of ACY-241 was 360 mg. The most common grade ≥ 3 treatment-emergent adverse events were dyspnea (n = 3; 18%) and pneumonia (n = 3; 18%). At the 180-mg dose, 1 complete response and 2 partial responses (PRs) were observed. At the 360-mg dose, 3 PRs were observed; 1 patient achieved stable disease (SD) and 1 experienced progressive disease (PD). At the 480-mg dose, no responses were observed; 1 patient achieved SD and 3 experienced PD. Acetylation analyses revealed transient increases in histone and tubulin acetylation levels following treatment. An increase in infiltrating total CD3+ T cells was observed following treatment. CONCLUSIONS: The study identified an MTD for ACY-241 plus nivolumab and the data suggest that the combination may be feasible in patients with advanced NSCLC. Responses were observed in patients with advanced NSCLC. CLINICAL TRIAL REGISTRATION: https://clinicaltrials.gov/ct2/show/NCT02635061 (identifier, NCT02635061).

20.
J Clin Invest ; 131(2)2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33151910

RESUMEN

Resistance to oncogene-targeted therapies involves discrete drug-tolerant persister cells, originally discovered through in vitro assays. Whether a similar phenomenon limits efficacy of programmed cell death 1 (PD-1) blockade is poorly understood. Here, we performed dynamic single-cell RNA-Seq of murine organotypic tumor spheroids undergoing PD-1 blockade, identifying a discrete subpopulation of immunotherapy persister cells (IPCs) that resisted CD8+ T cell-mediated killing. These cells expressed Snai1 and stem cell antigen 1 (Sca-1) and exhibited hybrid epithelial-mesenchymal features characteristic of a stem cell-like state. IPCs were expanded by IL-6 but were vulnerable to TNF-α-induced cytotoxicity, relying on baculoviral IAP repeat-containing protein 2 (Birc2) and Birc3 as survival factors. Combining PD-1 blockade with Birc2/3 antagonism in mice reduced IPCs and enhanced tumor cell killing in vivo, resulting in durable responsiveness that matched TNF cytotoxicity thresholds in vitro. Together, these data demonstrate the power of high-resolution functional ex vivo profiling to uncover fundamental mechanisms of immune escape from durable anti-PD-1 responses, while identifying IPCs as a cancer cell subpopulation targetable by specific therapeutic combinations.


Asunto(s)
Inmunoterapia , Proteínas de Neoplasias , Neoplasias Experimentales , Receptor de Muerte Celular Programada 1 , RNA-Seq , Análisis de la Célula Individual , Esferoides Celulares , Animales , Línea Celular Tumoral , Ratones , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/inmunología , Neoplasias Experimentales/genética , Neoplasias Experimentales/inmunología , Neoplasias Experimentales/terapia , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/genética , Receptor de Muerte Celular Programada 1/inmunología , Esferoides Celulares/inmunología , Esferoides Celulares/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA