Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Pharmacol Res ; 202: 107138, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38467241

RESUMEN

Cancer incidence and mortality rates are increasing worldwide. Cancer treatment remains a real challenge for African countries, especially in sub-Saharan Africa where funding and resources are very limited. High costs, side effects and drug resistance associated with cancer treatment have encouraged scientists to invest in research into new herbal cancer drugs. In order to identify potential anticancer plants for drug development, this review aims to collect and summarize anticancer activities (in vitro/in vivo) and molecular mechanisms of sub-Saharan African medicinal plant extracts against cancer cell lines. Scientific databases such as ScienceDirect, Google Scholar and PubMed were used to search for research articles published from January 2013 to May 2023 on anticancer medicinal plants in sub-Saharan Africa. The data were analyzed to highlight the cytotoxicity and molecular mechanisms of action of these listed plants. A total of 85 research papers covering 204 medicinal plant species were selected for this review. These plants come from 57 families, the most dominant being the plants of the family Amaryllidaceae (16), Fabaceae (14), Annonaceae (10), Asteraceae (10). Plant extracts exert their anticancer activity mainly by inducing apoptosis and stopping the cell cycle of cancer cells. Several plant extracts from sub-Saharan Africa therefore have strong potential for the search for original anticancer phytochemicals. Chemoproteomics, multi-omics, genetic editing technology (CRISPR/Cas9), combined therapies and artificial intelligence tools are cutting edge emerging technologies that facilitate the discovery and structural understanding of anticancer molecules of medicinal plants, reveal their direct targets, explore their therapeutic uses and molecular bases.


Asunto(s)
Neoplasias , Plantas Medicinales , Humanos , Plantas Medicinales/química , Inteligencia Artificial , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Fitoterapia , África del Sur del Sahara , Neoplasias/tratamiento farmacológico
2.
PLoS Biol ; 18(12): e3000948, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33284790

RESUMEN

Chronic inflammation is now a well-known precursor for cancer development. Infectious prostatitis are the most common causes of prostate inflammation, but emerging evidence points the role of metabolic disorders as a potential source of cancer-related inflammation. Although the widely used treatment for prostate cancer based on androgen deprivation therapy (ADT) effectively decreases tumor size, it also causes profound alterations in immune tumor microenvironment within the prostate. Here, we demonstrate that prostates of a mouse model invalidated for nuclear receptors liver X receptors (LXRs), crucial lipid metabolism and inflammation integrators, respond in an unexpected way to androgen deprivation. Indeed, we observed profound alterations in immune cells composition, which was associated with chronic inflammation of the prostate. This was explained by the recruitment of phagocytosis-deficient macrophages leading to aberrant hyporesponse to castration. This phenotypic alteration was sufficient to allow prostatic neoplasia. Altogether, these data suggest that ADT and inflammation resulting from metabolic alterations interact to promote aberrant proliferation of epithelial prostate cells and development of neoplasia. This raises the question of the benefit of ADT for patients with metabolic disorders.


Asunto(s)
Inmunidad/fisiología , Receptores X del Hígado/metabolismo , Próstata/metabolismo , Antagonistas de Andrógenos/inmunología , Andrógenos/metabolismo , Animales , Modelos Animales de Enfermedad , Inmunidad/inmunología , Receptores X del Hígado/genética , Receptores X del Hígado/inmunología , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Neoplasias/etiología , Neoplasias/inmunología , Neoplasias/metabolismo , Próstata/patología , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/terapia , Receptores Citoplasmáticos y Nucleares/metabolismo , Microambiente Tumoral
3.
Molecules ; 28(11)2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37299034

RESUMEN

The aim of this research was to evaluate the essential oil of Cymbopogon schoenanthus (L.) Spreng. (C. schoenanthus) from Burkina Faso in terms of cytotoxic activity against LNCaP cells, derived from prostate cancer, and HeLa cells, derived from cervical cancer. Antioxidant activities were evaluated in vitro. Essential oil (EO) was extracted by hydrodistillation and analyzed by GC/FID and GC/MS. Thirty-seven compounds were identified, the major compounds being piperitone (49.9%), δ-2-carene (24.02%), elemol (5.79%) and limonene (4.31%). EO exhibited a poor antioxidant activity, as shown by the inhibition of DPPH radicals (IC50 = 1730 ± 80 µg/mL) and ABTS+. (IC50 = 2890 ± 26.9 µg/mL). Conversely, EO decreased the proliferation of LNCaP and HeLa cells with respective IC50 values of 135.53 ± 5.27 µg/mL and 146.17 ± 11 µg/mL. EO also prevented LNCaP cell migration and led to the arrest of their cell cycle in the G2/M phase. Altogether, this work points out for the first time that EO of C. schoenanthus from Burkina Faso could be an effective natural anticancer agent.


Asunto(s)
Cymbopogon , Aceites Volátiles , Neoplasias del Cuello Uterino , Masculino , Femenino , Humanos , Aceites Volátiles/farmacología , Aceites Volátiles/química , Cymbopogon/química , Próstata , Células HeLa , Burkina Faso , Neoplasias del Cuello Uterino/tratamiento farmacológico , Antioxidantes/farmacología
4.
Int J Mol Sci ; 21(10)2020 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-32456259

RESUMEN

: The great majority of breast and prostate tumors are hormone-dependent cancers; hence, estrogens and androgens can, respectively, drive their developments, making it possible to use pharmacological therapies in their hormone-dependent phases by targeting the levels of steroid or modulating their physiological activity through their respective nuclear receptors when the tumors relapse. Unfortunately, at some stage, both breast and prostate cancers become resistant to pharmacological treatments that aim to block their receptors, estrogen (ER) or androgen (AR) receptors, respectively. So far, antiestrogens and antiandrogens used in clinics have been designed based on their structural analogies with natural hormones, 17-ß estradiol and dihydrotestosterone. Plants are a potential source of drug discovery and the development of new pharmacological compounds. The aim of this review article is to highlight the recent advances in the pharmacological modulation of androgen or estrogen levels, and their activity through their cognate nuclear receptors in prostate or breast cancer and the effects of some plants extracts.


Asunto(s)
Andrógenos/metabolismo , Antineoplásicos Fitogénicos/uso terapéutico , Neoplasias de la Mama/metabolismo , Estrógenos/metabolismo , Antagonistas de Hormonas/uso terapéutico , Extractos Vegetales/uso terapéutico , Neoplasias de la Próstata/metabolismo , Animales , Neoplasias de la Mama/tratamiento farmacológico , Femenino , Humanos , Masculino , Extractos Vegetales/química , Neoplasias de la Próstata/tratamiento farmacológico
5.
Inflammopharmacology ; 27(1): 15-25, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30467620

RESUMEN

Stress is a reflex response, both psychological and physiological, of the body to a difficult situation that requires adaptation. Stress is at the intersection of the objective event and the subjective event. The physiological mechanisms involved in chronic stress are numerous and can contribute to a wide variety of disorders, in all systems including the immune system. Stress modifies the Th1/Th2 balance via the HPA axis and a set of immune mediators. This will make the body more vulnerable to external infections in a scientific way while others claim the opposite, stress could be considered immune stimulatory. The development of synthetic LXR ligands such as T0901317 and GW3965 as well as an understanding of the direct involvement of these receptors in the regulation of proopiomelanocortin (POMC) gene expression and indirectly by producing a variety of cytokines in a stressor response, will open in the near future new therapeutic methods against the undesirable effects of stress on the behavior of the immune system.


Asunto(s)
Factores Inmunológicos/inmunología , Receptores X del Hígado/inmunología , Estrés Fisiológico/inmunología , Estrés Psicológico/inmunología , Animales , Citocinas/inmunología , Humanos
6.
Int J Mol Sci ; 19(8)2018 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-30044452

RESUMEN

A close relationship exists between cholesterol and female reproductive physiology. Indeed, cholesterol is crucial for steroid synthesis by ovary and placenta, and primordial for cell structure during folliculogenesis. Furthermore, oxysterols, cholesterol-derived ligands, play a potential role in oocyte maturation. Anomalies of cholesterol metabolism are frequently linked to infertility. However, little is known about the molecular mechanisms. In parallel, increasing evidence describing the biological roles of liver X receptors (LXRs) in the regulation of steroid synthesis and inflammation, two processes necessary for follicle maturation and ovulation. Both of the isoforms of LXRs and their bona fide ligands are present in the ovary. LXR-deficient mice develop late sterility due to abnormal oocyte maturation and increased oocyte atresia. These mice also have an ovarian hyper stimulation syndrome in response to gonadotropin stimulation. Hence, further studies are necessary to explore their specific roles in oocyte, granulosa, and theca cells. LXRs also modulate estrogen signaling and this could explain the putative protective role of the LXRs in breast cancer growth. Altogether, clinical studies would be important for determining the physiological relevance of LXRs in reproductive disorders in women.


Asunto(s)
Colesterol/metabolismo , Infertilidad Femenina/metabolismo , Receptores X del Hígado/fisiología , Síndrome Metabólico/metabolismo , Obesidad/metabolismo , Animales , Neoplasias de la Mama/metabolismo , Estrógenos/metabolismo , Femenino , Humanos , Infertilidad Femenina/complicaciones , Infertilidad Femenina/genética , Receptores X del Hígado/genética , Síndrome Metabólico/complicaciones , Síndrome Metabólico/genética , Ratones , Obesidad/complicaciones , Obesidad/genética , Síndrome de Hiperestimulación Ovárica/genética , Síndrome de Hiperestimulación Ovárica/metabolismo , Ovario/fisiología , Placenta/fisiología , Embarazo
7.
Int J Mol Sci ; 19(9)2018 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-30154328

RESUMEN

Prostate cancer (PCa) incidence has been dramatically increasing these last years in westernized countries. Though localized PCa is usually treated by radical prostatectomy, androgen deprivation therapy is preferred in locally advanced disease in combination with chemotherapy. Unfortunately, PCa goes into a castration-resistant state in the vast majority of the cases, leading to questions about the molecular mechanisms involving the steroids and their respective nuclear receptors in this relapse. Interestingly, liver X receptors (LXRα/NR1H3 and LXRß/NR1H2) have emerged as new actors in prostate physiology, beyond their historical roles of cholesterol sensors. More importantly LXRs have been proposed to be good pharmacological targets in PCa. This rational has been based on numerous experiments performed in PCa cell lines and genetic animal models pointing out that using selective liver X receptor modulators (SLiMs) could actually be a good complementary therapy in patients with a castration resistant PCa. Hence, this review is focused on the interaction among the androgen receptors (AR/NR3C4), estrogen receptors (ERα/NR3A1 and ERß/NR3A2), and LXRs in prostate homeostasis and their putative pharmacological modulations in parallel to the patients' support.


Asunto(s)
Transformación Celular Neoplásica/metabolismo , Neoplasias de la Próstata/etiología , Neoplasias de la Próstata/metabolismo , Andrógenos/metabolismo , Animales , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/inmunología , Manejo de la Enfermedad , Disruptores Endocrinos/efectos adversos , Exposición a Riesgos Ambientales/efectos adversos , Estrógenos/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Metabolismo de los Lípidos , Receptores X del Hígado/genética , Receptores X del Hígado/metabolismo , Masculino , Neovascularización Patológica/inmunología , Neovascularización Patológica/metabolismo , Oxiesteroles/metabolismo , Próstata/metabolismo , Próstata/patología , Neoplasias de la Próstata/diagnóstico , Neoplasias de la Próstata/terapia , Receptores Citoplasmáticos y Nucleares/metabolismo , Transducción de Señal
8.
Arterioscler Thromb Vasc Biol ; 35(6): 1357-65, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25838428

RESUMEN

OBJECTIVE: Liver X receptors (LXRs) modulate cholesterol and fatty acid homeostasis as well as inflammation. This study aims to decipher the role of LXRs in the regulation of polyunsaturated fatty acid (PUFA) synthesis in macrophages in the context of atherosclerosis. APPROACH AND RESULTS: Transcriptomic analysis in human monocytes and macrophages was used to identify putative LXR target genes among enzymes involved in PUFA biosynthesis. In parallel, the consequences of LXR activation or LXR invalidation on PUFA synthesis and distribution were determined. Finally, we investigated the impact of LXR activation on PUFA metabolism in vivo in apolipoprotein E-deficient mice. mRNA levels of acyl-CoA synthase long-chain family member 3, fatty acid desaturases 1 and 2, and fatty acid elongase 5 were significantly increased in human macrophages after LXR agonist treatment, involving both direct and sterol responsive element binding protein-1-dependent mechanisms. Subsequently, pharmacological LXR agonist increased long chain PUFA synthesis and enhanced arachidonic acid content in the phospholipids of human macrophages. Increased fatty acid desaturases 1 and 2 and acyl-CoA synthase long-chain family member 3 mRNA levels as well as increased arachidonic acid to linoleic acid and docosahexaenoic acid to eicosapentaenoic acid ratios were also found in atheroma plaque and peritoneal foam cells from LXR agonist-treated mice. By contrast, murine LXR-deficient macrophages displayed reduced expression of fatty acid elongase 5, acyl-CoA synthase long-chain family member 3 and fatty acid desaturases 1, as well as decreased cellular levels of docosahexaenoic acid and arachidonic acid. CONCLUSIONS: Our results indicate that LXR activation triggers PUFA synthesis in macrophages, which results in significant alterations in the macrophage lipid composition. Moreover, we demonstrate here that LXR agonist treatment modulates PUFA metabolism in atherosclerotic arteries.


Asunto(s)
Aterosclerosis/metabolismo , Ácidos Grasos Insaturados/biosíntesis , Macrófagos/metabolismo , Receptores Nucleares Huérfanos/metabolismo , Animales , Ácido Araquidónico/metabolismo , Arterias/metabolismo , Células Espumosas/metabolismo , Humanos , Receptores X del Hígado , Ratones , Receptores Nucleares Huérfanos/agonistas , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo
9.
PLoS Genet ; 9(5): e1003483, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23675307

RESUMEN

LXR (Liver X Receptors) act as "sensor" proteins that regulate cholesterol uptake, storage, and efflux. LXR signaling is known to influence proliferation of different cell types including human prostatic carcinoma (PCa) cell lines. This study shows that deletion of LXR in mouse fed a high-cholesterol diet recapitulates initial steps of PCa development. Elevation of circulating cholesterol in Lxrαß-/- double knockout mice results in aberrant cholesterol ester accumulation and prostatic intra-epithelial neoplasia. This phenotype is linked to increased expression of the histone methyl transferase EZH2 (Enhancer of Zeste Homolog 2), which results in the down-regulation of the tumor suppressors Msmb and Nkx3.1 through increased methylation of lysine 27 of histone H3 (H3K27) on their promoter regions. Altogether, our data provide a novel link between LXR, cholesterol homeostasis, and epigenetic control of tumor suppressor gene expression.


Asunto(s)
Carcinoma/genética , Colesterol/metabolismo , Neoplasias Experimentales/genética , Receptores Nucleares Huérfanos/genética , Neoplasia Intraepitelial Prostática/genética , Neoplasias de la Próstata/genética , Animales , Carcinoma/metabolismo , Carcinoma/patología , Dieta Alta en Grasa , Regulación hacia Abajo , Proteína Potenciadora del Homólogo Zeste 2 , Regulación Neoplásica de la Expresión Génica , Histonas/genética , Proteínas de Homeodominio/metabolismo , Humanos , Receptores X del Hígado , Masculino , Metilación , Ratones , Ratones Noqueados , Neoplasias Experimentales/patología , Receptores Nucleares Huérfanos/metabolismo , Complejo Represivo Polycomb 2/metabolismo , Neoplasia Intraepitelial Prostática/patología , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Proteínas de Secreción Prostática/metabolismo , Factores de Transcripción/metabolismo
10.
Hepatology ; 60(3): 1054-65, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24798773

RESUMEN

UNLABELLED: Bile acids (BAs) are signaling molecules that are involved in many physiological functions, such as glucose and energy metabolism. These effects are mediated through activation of the nuclear and membrane receptors, farnesoid X receptor (FXR-α) and TGR5 (G-protein-coupled bile acid receptor 1; GPBAR1). Although both receptors are expressed within the testes, the potential effect of BAs on testis physiology and male fertility has not been explored thus far. Here, we demonstrate that mice fed a diet supplemented with cholic acid have reduced fertility subsequent to testicular defects. Initially, germ cell sloughing and rupture of the blood-testis barrier occur and are correlated with decreased protein accumulation of connexin-43 (Cx43) and N-cadherin, whereas at later stages, apoptosis of spermatids is observed. These abnormalities are associated with increased intratesticular BA levels in general and deoxycholic acid, a TGR5 agonist, in particular. We demonstrate here that Tgr5 is expressed within the germ cell lineage, where it represses Cx43 expression through regulation of the transcriptional repressor, T-box transcription factor 2 gene. Consistent with this finding, mice deficient for Tgr5 are protected against the deleterious testicular effects of BA exposure. CONCLUSIONS: These data identify the testis as a new target of BAs and emphasize TGR5 as a critical element in testicular pathophysiology. This work may open new perspectives on the potential effect of BAs on testis physiology during liver dysfunction.


Asunto(s)
Ácido Cólico/metabolismo , Fertilidad , Infertilidad Masculina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Testículo/efectos de los fármacos , Animales , Ácido Cólico/administración & dosificación , Factor I del Crecimiento Similar a la Insulina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Transducción de Señal , Espermatozoides/efectos de los fármacos , Testosterona/sangre
11.
Biochem Biophys Res Commun ; 446(3): 656-62, 2014 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-24333430

RESUMEN

Liver X receptors LXRα (NR1H3) and LXRß (NR1H2) are transcription factors belonging to the nuclear receptor superfamily, activated by specific oxysterols, oxidized derivatives of cholesterol. These receptors are involved in the regulation of testis physiology. Lxr-deficient mice pointed to the physiological roles of these nuclear receptors in steroid synthesis, lipid homeostasis and germ cell apoptosis and proliferation. Diethylstilbestrol (DES) is a synthetic estrogen considered as an endocrine disruptor that affects the functions of the testis. Various lines of evidences have made a clear link between estrogens, their nuclear receptors ERα (NR3A1) and ERß (NR3A2), and Lxrα/ß. As LXR activity could also be regulated by the nuclear receptor small heterodimer partner (SHP, NR0A2) and DES could act through SHP, we wondered whether LXR could be targeted by estrogen-like endocrine disruptors such as DES. For that purpose, wild-type and Lxr-deficient mice were daily treated with 0.75 µg DES from days 1 to 5 after birth. The effects of DES were investigated at 10 or 45 days of age. We demonstrated that DES induced a decrease of the body mass at 10 days only in the Lxr-deficient mice suggesting a protective effect of Lxr. We defined three categories of DES-target genes in testis: those whose accumulation is independent of Lxr; those whose accumulation is enhanced by the lack of both Lxrα/ß; those whose accumulation is repressed by the absence of Lxrα/ß. Lipid accumulation is also modified by neonatal DES injection. Lxr-deficient mice present different lipid profiles, demonstrating that DES could have its effects in part due to Lxrα/ß. Altogether, our study shows that both nuclear receptors Lxrα and Lxrß are not only basally important for testicular physiology but could also have a preventive effect against estrogen-like endocrine disruptors.


Asunto(s)
Dietilestilbestrol/toxicidad , Receptores Nucleares Huérfanos/genética , Testículo/efectos de los fármacos , Animales , Animales Recién Nacidos , Apoptosis/efectos de los fármacos , Apoptosis/genética , Peso Corporal/efectos de los fármacos , Dietilestilbestrol/metabolismo , Células Intersticiales del Testículo/efectos de los fármacos , Células Intersticiales del Testículo/patología , Metabolismo de los Lípidos/efectos de los fármacos , Metabolismo de los Lípidos/genética , Receptores X del Hígado , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Receptores Nucleares Huérfanos/metabolismo , Células de Sertoli/efectos de los fármacos , Células de Sertoli/patología , Testículo/patología
12.
Cell Mol Life Sci ; 70(23): 4511-26, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23784309

RESUMEN

Bile acids are cholesterol metabolites that have been extensively studied in recent decades. In addition to having ancestral roles in digestion and fat solubilization, bile acids have recently been described as signaling molecules involved in many physiological functions, such as glucose and energy metabolisms. These signaling pathways involve the activation of the nuclear receptor farnesoid X receptor (FXRα) or of the G protein-coupled receptor TGR5. In this review, we will focus on the emerging role of FXRα, suggesting important functions for the receptor in steroid metabolism. It has been described that FXRα is expressed in the adrenal glands and testes, where it seems to control steroid production. FXRα also participates in steroid catabolism in the liver and interferes with the steroid signaling pathways in target tissues via crosstalk with steroid receptors. In this review, we discuss the potential impacts of bile acid (BA), through its interactions with steroid metabolism, on glucose metabolism, sexual function, and prostate and breast cancers. Although several of the published reports rely on in vitro studies, they highlight the need to understand the interactions that may affect health. This effect is important because BA levels are increased in several pathophysiological conditions related to liver injuries. Additionally, BA receptors are targeted clinically using therapeutics to treat liver diseases, diabetes, and cancers.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Transducción de Señal , Esteroides/metabolismo , Neoplasias de la Mama/metabolismo , Femenino , Humanos , Masculino , Modelos Biológicos , Neoplasias de la Próstata/metabolismo
13.
Cancers (Basel) ; 16(11)2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38893271

RESUMEN

Epidemiological studies point to cholesterol as a possible key factor for both prostate cancer incidence and progression. It could represent a targetable metabolite as the most aggressive tumors also appear to be sensitive to therapies designed to decrease hypercholesterolemia, such as statins. However, it remains unknown whether and how cholesterol, through its dietary uptake and its metabolism, could be important for early tumorigenesis. Oncogene clonal induction in the Drosophila melanogaster accessory gland allows us to reproduce tumorigenesis from initiation to early progression, where tumor cells undergo basal extrusion to form extra-epithelial tumors. Here we show that these tumors accumulate lipids, and especially esterified cholesterol, as in human late carcinogenesis. Interestingly, a high-cholesterol diet has a limited effect on accessory gland tumorigenesis. On the contrary, cell-specific downregulation of cholesterol uptake, intracellular transport, or metabolic response impairs the formation of such tumors. Furthermore, in this context, a high-cholesterol diet suppresses this impairment. Interestingly, expression data from primary prostate cancer tissues indicate an early signature of redirection from cholesterol de novo synthesis to uptake. Taken together, these results reveal that during early tumorigenesis, tumor cells strongly increase their uptake and use of dietary cholesterol to specifically promote the step of basal extrusion. Hence, these results suggest the mechanism by which a reduction in dietary cholesterol could lower the risk and slow down the progression of prostate cancer.

14.
Am J Cancer Res ; 14(3): 1376-1401, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38590420

RESUMEN

Cancer is one of the leading causes of death worldwide. In recent years, African countries have been faced with a rapid increase in morbidity and mortality due to this pathology. Management is often complicated by the high treatment costs, side effects and the increasing occurrence of resistance to treatments. The identification of new active ingredients extracted from endemic medicinal plants is definitively an interesting approach for the implementation of new therapeutic strategies: their extraction is often lower cost; their identification is based on an ethnobotanical history and a tradipratic approach; their use by low-income populations is simpler; this can help in the development of new synthetic molecules that are more active, more effective and with fewer side effects. The objective of this review is to document the molecules derived from African medicinal plants whose in vitro anti-cancer activities and the mechanisms of molecular actions have been identified. From the scientific databases Science Direct, PubMed and Google Scholar, we searched for publications on compounds isolated from African medicinal plants and having activity on cancer cells in culture. The data were analyzed in particular with regard to the cytotoxicity of the compounds and their mode of action. A total of 90 compounds of these African medicinal plants were selected. They come from nine chemical groups: alkaloids, flavonoids, polyphenols, quinones, saponins, steroids, terpenoids, xanthones and organic sulfides. These compounds have been associated with several cellular effects: i) Cytotoxicity, including caspase activation, alteration of mitochondrial membrane potential, and/or induction of reactive oxygen species (ROS); ii) Anti-angiogenesis; iii) Anti-metastatic properties. This review points out that the cited African plants are rich in active ingredients with anticancer properties. It also stresses that screening of these anti-tumor active ingredients should be continued at the continental scale. Altogether, this work provides a rational basis for the selection of phytochemical compounds for use in clinical trials.

15.
J Hepatol ; 58(5): 984-92, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23333450

RESUMEN

BACKGROUND & AIMS: Nutrients influence non-alcoholic fatty liver disease. Essential fatty acids deficiency promotes various syndromes, including hepatic steatosis, through increased de novo lipogenesis. The mechanisms underlying such increased lipogenic response remain unidentified. METHODS: We used wild type mice and mice lacking Liver X Receptors to perform a nutrigenomic study that aimed at examining the role of these transcription factors. RESULTS: We showed that, in the absence of Liver X Receptors, essential fatty acids deficiency does not promote steatosis. Consistent with this, Liver X Receptors are required for the elevated expression of genes involved in lipogenesis in response to essential fatty acids deficiency. CONCLUSIONS: This work identifies, for the first time, the central role of Liver X Receptors in steatosis induced by essential fatty acids deficiency.


Asunto(s)
Ácidos Grasos Esenciales/deficiencia , Hígado Graso/fisiopatología , Expresión Génica/fisiología , Lipogénesis/genética , Lipogénesis/fisiología , Receptores Nucleares Huérfanos/fisiología , Animales , Colesterol/metabolismo , Enfermedades Carenciales/fisiopatología , Grasas de la Dieta/farmacología , Modelos Animales de Enfermedad , Femenino , Expresión Génica/efectos de los fármacos , Lipogénesis/efectos de los fármacos , Hígado/metabolismo , Receptores X del Hígado , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Receptores Nucleares Huérfanos/deficiencia , Receptores Nucleares Huérfanos/genética , Factores de Transcripción/fisiología , Triglicéridos/metabolismo , Regulación hacia Arriba/fisiología
16.
Cell Death Dis ; 14(2): 129, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36792589

RESUMEN

Lipid and cholesterol metabolism play a crucial role in tumor cell behavior and in shaping the tumor microenvironment. In particular, enzymatic and non-enzymatic cholesterol metabolism, and derived metabolites control dendritic cell (DC) functions, ultimately impacting tumor antigen presentation within and outside the tumor mass, dampening tumor immunity and immunotherapeutic attempts. The mechanisms accounting for such events remain largely to be defined. Here we perturbed (oxy)sterol metabolism genetically and pharmacologically and analyzed the tumor lipidome landscape in relation to the tumor-infiltrating immune cells. We report that perturbing the lipidome of tumor microenvironment by the expression of sulfotransferase 2B1b crucial in cholesterol and oxysterol sulfate synthesis, favored intratumoral representation of monocyte-derived antigen-presenting cells, including monocyte-DCs. We also found that treating mice with a newly developed antagonist of the oxysterol receptors Liver X Receptors (LXRs), promoted intratumoral monocyte-DC differentiation, delayed tumor growth and synergized with anti-PD-1 immunotherapy and adoptive T cell therapy. Of note, looking at LXR/cholesterol gene signature in melanoma patients treated with anti-PD-1-based immunotherapy predicted diverse clinical outcomes. Indeed, patients whose tumors were poorly infiltrated by monocytes/macrophages expressing LXR target genes showed improved survival over the course of therapy. Thus, our data support a role for (oxy)sterol metabolism in shaping monocyte-to-DC differentiation, and in tumor antigen presentation critical for responsiveness to immunotherapy. The identification of a new LXR antagonist opens new treatment avenues for cancer patients.


Asunto(s)
Melanoma , Monocitos , Ratones , Animales , Monocitos/metabolismo , Diferenciación Celular , Colesterol/metabolismo , Presentación de Antígeno , Células Dendríticas/metabolismo , Microambiente Tumoral
17.
J Neurosci ; 31(26): 9620-9, 2011 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-21715627

RESUMEN

Oxysterols are reactive molecules generated from the oxidation of cholesterol. Their implication in cholesterol homeostasis and in the progression of neurodegenerative disorders is well known, but few data are available for their functions in the peripheral nervous system. Our aim was to study the influence of oxysterols on myelin gene expression and myelin sheath formation in peripheral nerves. We show by gas chromatography/mass spectrometry that Schwann cells and sciatic nerves contain 24(S)-hydroxycholesterol, 25-hydroxycholesterol, and 27-hydroxycholesterol and that they express their biosynthetic enzymes and receptors (liver X receptors LXRα and LXRß). We demonstrate that oxysterols inhibit peripheral myelin gene expression [myelin protein zero (MPZ) and peripheral myelin protein-22 (PMP22)] in a Schwann cell line. This downregulation is mediated by either LXRα or LXRß, depending on the promoter context, as suggested by siRNA strategy and chromatin immunoprecipitation assays in Schwann cells and in the sciatic nerve of LXR knock-out mice. Importantly, the knock-out of LXR in mice results in thinner myelin sheaths surrounding the axons. Oxysterols repress myelin genes via two mechanisms: by binding of LXRs to myelin gene promoters and by inhibiting the Wnt/ß-catenin pathway that is crucial for the expression of myelin genes. The Wnt signaling components (Disheveled, TCF/LEF, ß-catenin) are strongly repressed by oxysterols. Furthermore, the recruitment of ß-catenin at the levels of the MPZ and PMP22 promoters is decreased. Our data reveal new endogenous mechanisms for the negative regulation of myelin gene expression, highlight the importance of oxysterols and LXR in peripheral nerve myelination, and open new perspectives of treating demyelinating diseases with LXR agonists.


Asunto(s)
Hidroxicolesteroles/metabolismo , Receptores Nucleares Huérfanos/metabolismo , Células de Schwann/metabolismo , Nervio Ciático/metabolismo , Transducción de Señal/fisiología , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Animales , Western Blotting , Inmunoprecipitación de Cromatina , Cromatografía de Gases y Espectrometría de Masas , Receptores X del Hígado , Masculino , Ratones , Proteína P0 de la Mielina/genética , Proteína P0 de la Mielina/metabolismo , Proteínas de la Mielina/genética , Proteínas de la Mielina/metabolismo , Vaina de Mielina/genética , Vaina de Mielina/metabolismo , Receptores Nucleares Huérfanos/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas Wnt/genética , beta Catenina/genética
18.
Biochim Biophys Acta ; 1812(8): 974-81, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21334438

RESUMEN

Liver X receptor (LXR) α and LXRß belong to the nuclear receptor superfamily. For many years, they have been called orphan receptors, as no natural ligand was identified. In the last decade, the LXR natural ligands have been shown to be oxysterols, molecules derived from cholesterol. While these nuclear receptors have been abundantly studied for their roles in the regulation of lipid metabolism, it appears that they also present crucial activities in reproductive organs such as testis and epididymis, as well as prostate. Phenotypic analyses of mice lacking LXRs (lxr-/-) pointed out their physiological activities in the various cells and organs regulating reproductive functions. This review summarizes the impact of LXR-deficiency in male reproduction, highlighting the novel information coming from the phenotypic analyses of lxrα-/-, lxrß-/- and lxrα;ß-/- mice. This article is part of a Special Issue entitled: Translating nuclear receptor from health to disease.


Asunto(s)
Lípidos/fisiología , Receptores Nucleares Huérfanos/fisiología , Reproducción , Animales , Epidídimo/anomalías , Humanos , Receptores X del Hígado , Masculino , Ratones , Ratones Noqueados , Receptores Nucleares Huérfanos/genética , Testículo/fisiología
19.
J Clin Invest ; 118(3): 956-64, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18292813

RESUMEN

The transcription factor carbohydrate-responsive element-binding protein (ChREBP) has emerged as a central regulator of lipid synthesis in liver because it is required for glucose-induced expression of the glycolytic enzyme liver-pyruvate kinase (L-PK) and acts in synergy with SREBP to induce lipogenic genes such as acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS). Liver X receptors (LXRs) are also important regulators of the lipogenic pathway, and the recent finding that ChREBP is a direct target of LXRs and that glucose itself can bind and activate LXRs prompted us to study the role of LXRs in the induction of glucose-regulated genes in liver. Using an LXR agonist in wild-type mice, we found that LXR stimulation did not promote ChREBP phosphorylation or nuclear localization in the absence of an increased intrahepatic glucose flux. Furthermore, the induction of ChREBP, L-PK, and ACC by glucose or high-carbohydrate diet was similar in LXRalpha/beta knockout compared with wild-type mice, suggesting that the activation of these genes by glucose occurs by an LXR-independent mechanism. We used fluorescence resonance energy transfer analysis to demonstrate that glucose failed to promote the interaction of LXRalpha/beta with specific cofactors. Finally, siRNA silencing of ChREBP in LXRalpha/beta knockout hepatocytes abrogated glucose-induced expression of L-PK and ACC, further demonstrating the central role of ChREBP in glucose signaling. Taken together, our results demonstrate that glucose is required for ChREBP functional activity and that LXRs are not necessary for the induction of glucose-regulated genes in liver.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Regulación de la Expresión Génica , Glucosa/metabolismo , Hígado/metabolismo , Proteínas Nucleares/fisiología , Receptores Citoplasmáticos y Nucleares/fisiología , Factores de Transcripción/fisiología , Acetil-CoA Carboxilasa/genética , Transporte Activo de Núcleo Celular , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Receptores X del Hígado , Masculino , Ratones , Ratones Endogámicos C57BL , Receptores Nucleares Huérfanos , Fosforilación , Piruvato Quinasa/genética
20.
Circ Res ; 105(4): 393-401, 2009 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-19628791

RESUMEN

RATIONALE: Liver X receptors (LXRs) are oxysterol-activated nuclear receptors that are involved in the control of cholesterol homeostasis and inflammatory response. Human monocytes and macrophages express high levels of these receptors and are appropriate cells to study the response to LXR agonists. OBJECTIVE: The purpose of this study was to identify new LXR targets in human primary monocytes and macrophages and the consequences of their activation. METHODS AND RESULTS: We show that LXR agonists significantly increase the mRNA and protein levels of the retinoic acid receptor (RAR)alpha in primary monocytes and macrophages. LXR agonists promote RARalpha gene transcription through binding to a specific LXR response element on RARalpha gene promoter. Preincubation of monocytes or macrophages with LXR agonists before RARalpha agonist treatment enhances synergistically the expression of several RARalpha target genes. One of these genes encodes transglutaminase (TGM)2, a key factor required for macrophage phagocytosis. Accordingly, the combination of LXR and RARalpha agonists at concentrations found in human atherosclerotic plaques markedly enhances the capabilities of macrophages to engulf apoptotic cells in a TGM2-dependent manner. CONCLUSIONS: These results indicate an important role for LXRs in the control of phagocytosis through an RARalpha-TGM2-dependent mechanism. A combination of LXR/RARalpha agonists that may operate in atherosclerosis could also constitute a promising strategy to improve the clearance of apoptotic cells by macrophages in other pathological situations.


Asunto(s)
Proteínas de Unión al ADN/agonistas , Proteínas de Unión al GTP/biosíntesis , Activación de Macrófagos , Macrófagos/enzimología , Fagocitosis , Receptores Citoplasmáticos y Nucleares/agonistas , Receptores de Ácido Retinoico/agonistas , Transglutaminasas/biosíntesis , Apoptosis , Aterosclerosis/enzimología , Línea Celular , Proteínas de Unión al ADN/metabolismo , Inducción Enzimática , Humanos , Receptores X del Hígado , Receptores Nucleares Huérfanos , Proteína Glutamina Gamma Glutamiltransferasa 2 , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores de Ácido Retinoico/metabolismo , Receptor alfa de Ácido Retinoico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA