Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
J Virol ; 88(4): 2056-70, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24307589

RESUMEN

Infectious clone technologies allow the rational design of live attenuated viral vaccines with the possibility of vaccine-driven coexpression of immunomodulatory molecules for additional vaccine safety and efficacy. The latter could lead to novel strategies for vaccine protection against infectious diseases where traditional approaches have failed. Here we show for the flavivirus Murray Valley encephalitis virus (MVEV) that incorporation of the internal ribosome entry site (IRES) of Encephalomyocarditis virus between the capsid and prM genes strongly attenuated virulence and that the resulting bicistronic virus was both genetically stable and potently immunogenic. Furthermore, the novel bicistronic genome organization facilitated the generation of a recombinant virus carrying an beta interferon (IFN-ß) gene. Given the importance of IFNs in limiting virus dissemination and in efficient induction of memory B and T cell antiviral immunity, we hypothesized that coexpression of the cytokine with the live vaccine might further increase virulence attenuation without loss of immunogenicity. We found that bicistronic mouse IFN-ß coexpressing MVEV yielded high virus and IFN titers in cultured cells that do not respond to the coexpressed IFN. However, in IFN response-sufficient cell cultures and mice, the virus produced a self-limiting infection. Nevertheless, the attenuated virus triggered robust innate and adaptive immune responses evidenced by the induced expression of Mx proteins (used as a sensitive biomarker for measuring the type I IFN response) and the generation of neutralizing antibodies, respectively. IMPORTANCE The family Flaviviridae includes a number of important human pathogens, such as Dengue virus, Yellow fever virus, Japanese encephalitis virus, West Nile virus, and Hepatitis C virus. Flaviviruses infect large numbers of individuals on all continents. For example, as many as 100 million people are infected annually with Dengue virus, and 150 million people suffer a chronic infection with Hepatitis C virus. However, protective vaccines against dengue and hepatitis C are still missing, and improved vaccines against other flaviviral diseases are needed. The present study investigated the effects of a redesigned flaviviral genome and the coexpression of an antiviral protein (interferon) on virus replication, pathogenicity, and immunogenicity. Our findings may aid in the rational design of a new class of well-tolerated and safe vaccines.


Asunto(s)
Clonación Molecular/métodos , Virus de la Encefalitis del Valle Murray/genética , Virus de la Encefalomiocarditis/genética , Inmunidad Celular/inmunología , Ribosomas/genética , Vacunas Sintéticas/genética , Vacunas Virales/biosíntesis , Animales , Anticuerpos Neutralizantes/inmunología , Chlorocebus aethiops , Cartilla de ADN/genética , Virus de la Encefalitis del Valle Murray/patogenicidad , Ingeniería Genética/métodos , Inmunohistoquímica , Interferón beta/metabolismo , Estimación de Kaplan-Meier , Ratones , Ratones Endogámicos C57BL , Proteínas de Resistencia a Mixovirus/inmunología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Vacunas Sintéticas/virología , Células Vero , Vacunas Virales/genética
2.
Virol J ; 12: 144, 2015 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-26377679

RESUMEN

BACKGROUND: Our understanding of the proteolytic processing events at the NS1-2A junction in the flavivirus polyprotein has not markedly progressed since the early work conducted on dengue virus (DENV). This work identified an octapeptide sequence located immediately upstream of the cleavage site thought to be important in substrate recognition by an as yet unknown, endoplasmic reticulum-resident host protease. Of the eight amino acid recognition sequence, the highly conserved residues at positions P1, P3, P5, P7 and P8 (with respect to N-terminus of NS2A) are particularly sensitive to amino acid substitutions in terms of DENV NS1-NS2A cleavage efficiency; however, the role of the octapeptide in efficient NS1 and NS2A production of other flaviviruses has not been experimentally addressed. METHODS AND RESULTS: Using site-directed mutagenesis at the NS1-2A cleavage site of Murray Valley encephalitis virus (MVEV), we confirmed the dominant role of conserved octapeptide residues for efficient NS1-2A cleavage, while changes at variable and the P1' residues were mostly tolerated. However, digressions from the consensus cleavage motif derived from studies on DENV were also found. Thus, comparison of the impact on cleavage of mutations at the NS1-2A junction of MVEV and DENV showed virus-specific differences at both conserved and variable residues. CONCLUSION: We show, with subgenomic expression and infectious clone-derived mutants of MVEV that conserved residues in the flavivirus octapeptide motif can be replaced with a different amino acid without markedly reducing cleavage efficiency of NS1 and NS2A.


Asunto(s)
Virus de la Encefalitis del Valle Murray/fisiología , Poliproteínas/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Virales/metabolismo , Análisis Mutacional de ADN , Virus del Dengue/fisiología , Virus de la Encefalitis del Valle Murray/genética , Mutagénesis Sitio-Dirigida , Poliproteínas/genética , Proteínas Virales/genética
3.
Eur J Immunol ; 43(7): 1789-98, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23568450

RESUMEN

Japanese encephalitis, caused by infection with the neurotropic flavivirus, Japanese encephalitis virus (JEV), is among the most important viral encephalitides in Asia. While previous studies established an essential role of Ab and type I IFN, it is still unclear if the cell-mediated immune responses, through their direct antiviral effector functions, contribute to protection against the fatal disease. We report here that mice defective in both the granule exocytosis and death receptor pathways of cytotoxicity display increased susceptibility to JEV. The two cell contact-dependent cytotoxic effector mechanisms act redundantly within the CNS to reduce disease severity. We also demonstrate that IFN-γ is critical in recovery from primary infection with JEV by a mechanism involving suppression of virus growth in the CNS, and that T cells are the main source of the cytokine that promotes viral clearance from the brain. Finally, we show by in vivo depletion of NK cells that this innate immune cell population is dispensable for control of JEV infection in the periphery and in the CNS. Accordingly, cell contact-dependent cytolytic and IFN-γ-dependent noncytolytic clearance of virus mediated by T cells trafficking into the CNS help in recovery from lethal infection in a mouse model of Japanese encephalitis.


Asunto(s)
Citotoxicidad Inmunológica/inmunología , Encefalitis Japonesa/inmunología , Interferón gamma/inmunología , Linfocitos T Citotóxicos/inmunología , Animales , Modelos Animales de Enfermedad , Inmunidad Celular/inmunología , Células Asesinas Naturales/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
4.
J Virol ; 87(8): 4395-402, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23388724

RESUMEN

JE-ADVAX is a new, delta inulin-adjuvanted, Japanese encephalitis (JE) candidate vaccine with a strong safety profile and potent immunogenicity that confers efficient immune protection not only against JE virus but also against related neurotropic flaviviruses such as West Nile virus. In this study, we investigated the immunological mechanism of protection by JE-ADVAX vaccine using knockout mice deficient in B cells or CD8(+) T cells and poor persistence of neutralizing antibody or by adoptive transfer of immune splenocyte subpopulations. We show that memory B cells induced by JE-ADVAX provide long-lived protection against JE even in the absence of detectable pre-exposure serum neutralizing antibodies and without the requirement of CD8(+) T cells. Upon virus encounter, these vaccine-induced memory B cells were rapidly triggered to produce neutralizing antibodies that then protected immunized mice from morbidity and mortality. The findings suggest that the extent of the B-cell memory compartment might be a better immunological correlate for clinical efficacy of JE vaccines than the currently recommended measure of serum neutralizing antibody. This may explain the paradox where JE protection is observed in some subjects even in the absence of detectable serum neutralizing antibody. Our investigation also established the suitability of a novel flavivirus challenge model (ß(2)-microglobulin-knockout mice) for studies of the role of B-cell memory responses in vaccine protection.


Asunto(s)
Adyuvantes Inmunológicos/administración & dosificación , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Encefalitis Japonesa/prevención & control , Inulina/análogos & derivados , Vacunas contra la Encefalitis Japonesa/inmunología , Animales , Linfocitos B/inmunología , Linfocitos T CD8-positivos/inmunología , Modelos Animales de Enfermedad , Encefalitis Japonesa/inmunología , Inulina/administración & dosificación , Vacunas contra la Encefalitis Japonesa/administración & dosificación , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
5.
J Virol ; 87(18): 10324-33, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23864620

RESUMEN

West Nile virus (WNV), currently the cause of a serious U.S. epidemic, is a mosquito-borne flavivirus and member of the Japanese encephalitis (JE) serocomplex. There is currently no approved human WNV vaccine, and treatment options remain limited, resulting in significant mortality and morbidity from human infection. Given the availability of approved human JE vaccines, this study asked whether the JE-ADVAX vaccine, which contains an inactivated cell culture JE virus antigen formulated with Advax delta inulin adjuvant, could provide heterologous protection against WNV infection in wild-type and ß2-microglobulin-deficient (ß2m(-/-)) murine models. Mice immunized twice or even once with JE-ADVAX were protected against lethal WNV challenge even when mice had low or absent serum cross-neutralizing WNV titers prior to challenge. Similarly, ß2m(-/-) mice immunized with JE-ADVAX were protected against lethal WNV challenge in the absence of CD8(+) T cells and prechallenge WNV antibody titers. Protection against WNV could be adoptively transferred to naive mice by memory B cells from JE-ADVAX-immunized animals. Hence, in addition to increasing serum cross-neutralizing antibody titers, JE-ADVAX induced a memory B-cell population able to provide heterologous protection against WNV challenge. Heterologous protection was reduced when JE vaccine antigen was administered alone without Advax, confirming the importance of the adjuvant to induction of cross-protective immunity. In the absence of an approved human WNV vaccine, JE-ADVAX could provide an alternative approach for control of a major human WNV epidemic.


Asunto(s)
Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Linfocitos B/inmunología , Protección Cruzada , Inulina/análogos & derivados , Vacunas contra la Encefalitis Japonesa/inmunología , Fiebre del Nilo Occidental/prevención & control , Adyuvantes Inmunológicos/administración & dosificación , Animales , Modelos Animales de Enfermedad , Femenino , Memoria Inmunológica , Inulina/administración & dosificación , Vacunas contra la Encefalitis Japonesa/administración & dosificación , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Análisis de Supervivencia , Vacunas de Productos Inactivados/administración & dosificación , Vacunas de Productos Inactivados/inmunología , Fiebre del Nilo Occidental/inmunología
6.
Virol J ; 11: 60, 2014 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-24678844

RESUMEN

BACKGROUND: The RGD motif in the mosquito-borne flaviviruses envelope protein domain III (EDIII) FG loop was shown to bind negatively charged cellular molecules and mediate virus entry in mammals. However, its importance in virus entry in the mosquito has not yet been defined. The sequences of RGD motifs are conserved in JEV-serocomplex members primarily transmitted by Culex mosquitoes but absent from members of the DENV serocomplex, which utilize Aedes mosquitoes as vectors. Interestingly, the RGD sequence is present in the attenuated 17D strain of yellow fever virus as a result of the T380R mutation in the EDIII of Asibi strain following extensive in vitro passage in mice and chicken embryos and was found to contribute to the more rapid clearance in mice challenged with 17D. However, viral infectivity and dissemination in mosquitoes had not been evaluated for this mutant. FINDINGS: The study utilized the reverse genetics system of YFV and Ae. aegypti RexD WE mosquitoes to assess the impact of a T380R mutation in YFV Asibi and 17D/Asibi M-E chimera. The T380R mutation led to higher infection rates but similar dissemination rates when introduced into the YFV Asibi strain and 17D/Asibi M-E chimera. CONCLUSIONS: While the increase of the positive charge in EDIII may reduce the virulence of YFV in mice, this mutation favored the establishment of the viral infection in Ae. aegypti. However, such gain in viral infectivity did not increase dissemination in infected mosquitoes.


Asunto(s)
Mutación Missense , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo , Internalización del Virus , Virus de la Fiebre Amarilla/fisiología , Aedes , Animales , Análisis Mutacional de ADN , Ratones , Mutagénesis , Genética Inversa , Virus de la Fiebre Amarilla/genética
7.
J Virol ; 85(11): 5446-55, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21450826

RESUMEN

The immunological correlates for recovery from primary Japanese encephalitis virus (JEV) infection in humans and experimental animals remain poorly defined. To investigate the relative importance of the adaptive immune responses, we have established a mouse model for Japanese encephalitis in which a low-dose virus inoculum was administered into the footpads of adult C57BL/6 mice. In this model, ~60% of the mice developed a fatal encephalitis and a virus burden in the central nervous system (CNS). Using mice lacking B cells (µMT(-/-) mice) and immune B cell transfer to wild-type mice, we show a critically important role for humoral immunity in preventing virus spread to the CNS. T cell help played an essential part in the maintenance of an effective antibody response necessary to combat the infection, since mice lacking major histocompatibility complex class II showed truncated IgM and blunted IgG responses and uniformly high lethality. JEV infection resulted in extensive CD8(+) T cell activation, judged by upregulation of surface markers CD69 and CD25 and cytokine production after stimulation with a JEV NS4B protein-derived H-2D(b)-binding peptide and trafficking of virus-immune CD8(+) T cells into the CNS. However, no significant effect of CD8(+) T cells on the survival phenotype was found, which was corroborated in knockout mice lacking key effector molecules (Fas receptor, perforin, or granzymes) of cytolytic pathways triggered by T lymphocytes. Accordingly, CD8(+) T cells are mostly dispensable for recovery from infection with JEV. This finding highlights the conflicting role that CD8(+) T cells play in the pathogenesis of JEV and closely related encephalitic flaviviruses such as West Nile virus.


Asunto(s)
Anticuerpos Antivirales/inmunología , Linfocitos T CD8-positivos/inmunología , Encefalitis Japonesa/inmunología , Animales , Sistema Nervioso Central/virología , Citocinas/inmunología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Encefalitis Japonesa/mortalidad , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Inmunoglobulina M/sangre , Inmunoglobulina M/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedades de los Roedores/inmunología , Enfermedades de los Roedores/mortalidad , Análisis de Supervivencia
8.
J Virol ; 85(21): 11170-82, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21849445

RESUMEN

Ectromelia virus (ECTV) is a natural pathogen of mice that causes mousepox, and many of its genes have been implicated in the modulation of host immune responses. Serine protease inhibitor 2 (SPI-2) is one of these putative ECTV host response modifier proteins. SPI-2 is conserved across orthopoxviruses, but results defining its mechanism of action and in vivo function are lacking or contradictory. We studied the role of SPI-2 in mousepox by deleting the SPI-2 gene or its serine protease inhibitor reactive site. We found that SPI-2 does not affect viral replication or cell-intrinsic apoptosis pathways, since mutant viruses replicate in vitro as efficiently as wild-type virus. However, in the absence of SPI-2 protein, ECTV is attenuated in mousepox-susceptible mice, resulting in lower viral loads in the liver, decreased spleen pathology, and substantially improved host survival. This attenuation correlates with more effective immune responses in the absence of SPI-2, including an earlier serum gamma interferon (IFN-γ) response, raised serum interleukin 18 (IL-18), increased numbers of granzyme B(+) CD8(+) T cells, and, most notably, increased numbers and activation of NK cells. Both virus attenuation and the improved immune responses associated with SPI-2 deletion from ECTV are lost when mice are depleted of NK cells. Consequently, SPI-2 renders mousepox lethal in susceptible strains by preventing protective NK cell defenses.


Asunto(s)
Virus de la Ectromelia/patogenicidad , Ectromelia Infecciosa/mortalidad , Interacciones Huésped-Patógeno , Células Asesinas Naturales/inmunología , Serpinas/metabolismo , Proteínas Virales/metabolismo , Factores de Virulencia/metabolismo , Animales , Virus de la Ectromelia/genética , Virus de la Ectromelia/inmunología , Ectromelia Infecciosa/virología , Eliminación de Gen , Interferón gamma/metabolismo , Interleucina-18/metabolismo , Hígado/virología , Subgrupos Linfocitarios/química , Subgrupos Linfocitarios/inmunología , Ratones , Serpinas/genética , Bazo/patología , Análisis de Supervivencia , Carga Viral , Proteínas Virales/genética , Replicación Viral
9.
J Gen Virol ; 92(Pt 10): 2286-2296, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21733886

RESUMEN

Murray Valley encephalitis virus (MVEV) is a mosquito-borne flavivirus endemic to Australia and Papua New Guinea. Most strains of MVEV cause potentially fatal cases of encephalitis in humans and horses, and have been shown to be highly neuroinvasive in weanling mice. In contrast, the naturally occurring subtype Alfuy virus (ALFV) has never been associated with human disease, nor is it neuroinvasive in weanling mice, even at high doses. To identify viral factors associated with ALFV attenuation, a chimeric infectious clone was constructed containing the structural genes premembrane (prM) and envelope (E) of ALFV swapped into the MVEV genome. The resulting virus (vMVEV/ALFVstr) was no longer neuroinvasive in mice, suggesting that motifs within prM-E of ALFV confer attenuation. To define these motifs further, mutants were constructed by targeting divergent sequences between the MVEV and ALFV E proteins that are known markers of virulence in other encephalitic flaviviruses. MVEV mutants containing a unique ALFV sequence in the flexible hinge region (residues 273-277) or lacking the conserved glycosylation site at position 154 were significantly less neuroinvasive in mice than wild-type MVEV, as determined by delayed time to death or increased LD(50). Conversely, when the corresponding MVEV sequences were inserted into the vMVEV/ALFVstr chimera, the mutant containing the MVEV hinge sequence was more neuroinvasive than the parental chimera, though not to the same level as wild-type MVEV. These results identify the hinge region and E protein glycosylation as motifs that contribute to the attenuation of ALFV.


Asunto(s)
Flavivirus/genética , Flavivirus/patogenicidad , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Animales , Modelos Animales de Enfermedad , Encefalitis Viral/mortalidad , Encefalitis Viral/patología , Encefalitis Viral/virología , Infecciones por Flavivirus/mortalidad , Infecciones por Flavivirus/patología , Infecciones por Flavivirus/virología , Glicosilación , Dosificación Letal Mediana , Ratones , Recombinación Genética , Enfermedades de los Roedores/mortalidad , Enfermedades de los Roedores/patología , Enfermedades de los Roedores/virología , Análisis de Supervivencia , Virulencia
10.
J Virol ; 84(10): 5171-80, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20219924

RESUMEN

The E protein of most flaviviruses is modified by Asn-linked glycosylation at residue 153/154 and in the case of the four dengue virus (DENV) serotypes by a second glycan at residue 67. However, the absence of E protein glycosylation among numerous natural isolates of different flaviviruses suggests that the glycan, per se, is not critically important in the virus life cycle. Consistent with this notion, we show that ablation of both glycans from the DENV-2 E protein reduces but does not prevent growth of the variant in mammalian and mosquito cells. We found a pronounced and opposing effect of glycan ablation on two stages of the virus growth cycle: infectivity and release. Loss of either of the two DENV E protein glycans markedly enhanced infectivity of variants for mosquito cells at the expense of efficient virion release. The variants also displayed reduced release in mammalian cells, which was more prominent for viruses lacking the Asn 67-linked glycan than for those lacking the Asn 153-linked glycan, without a marked change in infectivity. Mutations, which compensated for the defect in virus morphogenesis associated with ablation of the Asn 67-linked glycan in mammalian cells but interestingly not in mosquito cells, were identified at the glycosylation acceptor motif and a second site in E protein domain II. The dueling influences of infectivity and release on virus growth affected by the glycans may explain the plasticity in E protein glycosylation among the flaviviruses.


Asunto(s)
Virus del Dengue/fisiología , Virus del Dengue/patogenicidad , Proteínas del Envoltorio Viral/fisiología , Factores de Virulencia/fisiología , Liberación del Virus , Animales , Línea Celular , Chlorocebus aethiops , Cricetinae , Culicidae , Mutación Missense , Supresión Genética , Proteínas del Envoltorio Viral/genética , Virulencia
11.
J Virol ; 84(9): 4212-21, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20164231

RESUMEN

We previously demonstrated that a single dose of nonadjuvanted intranasal gamma-irradiated influenza A virus can provide robust protection in mice against both homologous and heterosubtypic challenges, including challenge with an H5N1 avian virus strain. We investigated the mechanism behind the observed cross-protection to define which arms of the adaptive immune response are involved in mediating this protection. Studies with gene knockout mice showed the cross-protective immunity to be mediated mainly by T cells and to be dependent on the cytolytic effector molecule perforin. Adoptive transfer of memory T cells from immunized mice, but not of memory B cells, protected naïve recipients against lethal heterosubtypic influenza virus challenge. Furthermore, gamma-irradiated influenza viruses induced cross-reactive Tc-cell responses but not cross-neutralizing or cross-protective antibodies. In addition, histological analysis showed reduced lung inflammation in vaccinated mice compared to that in unvaccinated controls following heterosubtypic challenge. This reduced inflammation was associated with enhanced early recruitment of T cells, both CD4(+) and CD8(+), and with early influenza virus-specific cytotoxic T-cell responses. Therefore, cross-protective immunity induced by vaccination with gamma-irradiated influenza A virus is mediated mainly by Tc-cell responses.


Asunto(s)
Protección Cruzada , Rayos gamma , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H3N2 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Linfocitos T Citotóxicos/inmunología , Traslado Adoptivo , Animales , Anticuerpos Antivirales/sangre , Peso Corporal , Subtipo H1N1 del Virus de la Influenza A/efectos de la radiación , Subtipo H3N2 del Virus de la Influenza A/efectos de la radiación , Pulmón/patología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Análisis de Supervivencia , Vacunas de Productos Inactivados/inmunología
12.
J Cell Biol ; 174(4): 509-19, 2006 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-16893972

RESUMEN

Aspergillus fumigatus infections cause high levels of morbidity and mortality in immunocompromised patients. Gliotoxin (GT), a secondary metabolite, is cytotoxic for mammalian cells, but the molecular basis and biological relevance of this toxicity remain speculative. We show that GT induces apoptotic cell death by activating the proapoptotic Bcl-2 family member Bak, but not Bax, to elicit the generation of reactive oxygen species, the mitochondrial release of apoptogenic factors, and caspase-3 activation. Activation of Bak by GT is direct, as GT triggers in vitro a dose-dependent release of cytochrome c from purified mitochondria isolated from wild-type and Bax- but not Bak-deficient cells. Resistance to A. fumigatus of mice lacking Bak compared to wild-type mice demonstrates the in vivo relevance of this GT-induced apoptotic pathway involving Bak and suggests a correlation between GT production and virulence. The elucidation of the molecular basis opens new strategies for the development of therapeutic regimens to combat A. fumigatus and related fungal infections.


Asunto(s)
Apoptosis/fisiología , Aspergilosis/metabolismo , Aspergillus fumigatus/metabolismo , Gliotoxina/toxicidad , Inmunidad Innata/genética , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo , Animales , Apoptosis/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis/metabolismo , Aspergilosis/inmunología , Aspergilosis/fisiopatología , Aspergillus fumigatus/patogenicidad , Caspasa 3 , Caspasas/metabolismo , Línea Celular Transformada , Citocromos c/metabolismo , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Fibroblastos/química , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Membranas Mitocondriales/efectos de los fármacos , Membranas Mitocondriales/metabolismo , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Especies Reactivas de Oxígeno/metabolismo , Virulencia , Proteína Destructora del Antagonista Homólogo bcl-2/genética
13.
J Gen Virol ; 91(Pt 6): 1450-60, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20147516

RESUMEN

We have recently shown that intranasal (i.n.) administration of gamma-irradiated A/PR/8 [A/Puerto Rico/8/34 (H1N1)] protects mice against lethal avian influenza A/Vietnam/1203/2004 (H5N1) and other heterosubtypic influenza A infections. Here, we used gamma-irradiated, formalin- and UV-inactivated A/PC [A/Port Chalmers/1/73 (H3N2)] virus preparations and compared their ability to induce both homologous and heterosubtypic protective immunity. Our data show that, in contrast to i.n. vaccination with formalin- or UV-inactivated virus, or the present commercially available trivalent influenza vaccine, a single dose of gamma-ray-inactivated A/PC (gamma-A/PC) conferred significant protection in mice against both homologous and heterosubtypic virus challenges. A multiple immunization regime was required for formalin-inactivated virus preparations to induce protective immunity against a homotypic virus challenge, but did not induce influenza A strain cross-protective immunity. The highly immunogenic gamma-A/PC, but not formalin- or UV-inactivated A/PC, nor the currently available subvirion vaccine, elicited cytotoxic T-cell responses that are most likely responsible for the cross-protective and long-lasting immunity against highly lethal influenza A infections in mice. Finally, freeze-drying of gamma-A/PC did not affect the ability to induce cross-protective immunity.


Asunto(s)
Protección Cruzada , Subtipo H3N2 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Inactivación de Virus , Animales , Peso Corporal , Femenino , Formaldehído/toxicidad , Rayos gamma , Subtipo H3N2 del Virus de la Influenza A/efectos de los fármacos , Subtipo H3N2 del Virus de la Influenza A/efectos de la radiación , Pulmón/virología , Ratones , Ratones Endogámicos BALB C , Análisis de Supervivencia , Linfocitos T Citotóxicos/inmunología , Rayos Ultravioleta , Vacunas de Productos Inactivados/inmunología , Carga Viral
14.
J Gen Virol ; 91(Pt 6): 1407-17, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20130134

RESUMEN

Advax is a polysaccharide-based adjuvant that potently stimulates vaccine immunogenicity without the increased reactogenicity seen with other adjuvants. This study investigated the immunogenicity of a novel Advax-adjuvanted Vero cell culture candidate vaccine against Japanese encephalitis virus (JEV) in mice and horses. The results showed that, in mice, a two-immunization, low-dose (50 ng JEV antigen) regimen with adjuvanted vaccine produced solid neutralizing immunity comparable to that elicited with live ChimeriVax-JE immunization and superior to that elicited with tenfold higher doses of a traditional non-adjuvanted JEV vaccine (JE-VAX; Biken Institute) or a newly approved alum-adjuvanted vaccine (Jespect; Novartis). Mice vaccinated with the Advax-adjuvanted, but not the unadjuvanted vaccine, were protected against live JEV challenge. Equine immunizations against JEV with Advax-formulated vaccine similarly showed enhanced vaccine immunogenicity, confirming that the adjuvant effects of Advax are not restricted to rodent models. Advax-adjuvanted JEV vaccine elicited a balanced T-helper 1 (Th1)/Th2 immune response against JEV with protective levels of cross-neutralizing antibody against other viruses belonging to the JEV serocomplex, including Murray Valley encephalitis virus (MVEV). The adjuvanted JEV vaccine was well tolerated with minimal reactogenicity and no systemic toxicity in immunized animals. The cessation of manufacture of traditional mouse brain-derived unadjuvanted JEV vaccine in Japan has resulted in a JEV vaccine shortage internationally. There is also an ongoing lack of human vaccines against other JEV serocomplex flaviviruses, such as MVEV, making this adjuvanted, cell culture-grown JEV vaccine a promising candidate to address both needs with one vaccine.


Asunto(s)
Adyuvantes Inmunológicos/administración & dosificación , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Flavivirus/inmunología , Inulina/análogos & derivados , Vacunas contra la Encefalitis Japonesa/inmunología , Animales , Chlorocebus aethiops , Reacciones Cruzadas , Encefalitis Japonesa/prevención & control , Femenino , Caballos , Inulina/administración & dosificación , Vacunas contra la Encefalitis Japonesa/administración & dosificación , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Análisis de Supervivencia , Células TH1/inmunología , Células Th2/inmunología , Vacunación/métodos , Vacunas de Productos Inactivados/administración & dosificación , Vacunas de Productos Inactivados/inmunología , Células Vero
15.
J Virol ; 83(6): 2436-45, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19109382

RESUMEN

The Japanese encephalitis virus (JEV) serocomplex, which also includes Murray Valley encephalitis virus (MVEV), is a group of antigenically closely related, mosquito-borne flaviviruses that are responsible for severe encephalitic disease in humans. While vaccines against the prominent members of this serocomplex are available or under development, it is unlikely that they will be produced specifically against those viruses which cause less-frequent disease, such as MVEV. Here we have evaluated the cross-protective values of an inactivated JEV vaccine (JE-VAX) and a live chimeric JEV vaccine (ChimeriVax-JE) against MVEV in two mouse models of flaviviral encephalitis. We show that (i) a three-dose vaccination schedule with JE-VAX provides cross-protective immunity, albeit only partial in the more severe challenge model; (ii) a single dose of ChimeriVax-JE gives complete protection in both challenge models; (iii) the cross-protective immunity elicited with ChimeriVax-JE is durable (>or=5 months) and broad (also giving protection against West Nile virus); (iv) humoral and cellular immunities elicited with ChimeriVax-JE contribute to protection against lethal challenge with MVEV; (v) ChimeriVax-JE remains fully attenuated in immunodeficient mice lacking type I and type II interferon responses; and (vi) immunization with JE-VAX, but not ChimeriVax-JE, can prime heterologous infection enhancement in recipients of vaccination on a low-dose schedule, designed to mimic vaccine failure or waning of vaccine-induced immunity. Our results suggest that the live chimeric JEV vaccine will protect against other viruses belonging to the JEV serocomplex, consistent with the observation of cross-protection following live virus infections.


Asunto(s)
Virus de la Encefalitis Japonesa (Especie)/inmunología , Virus de la Encefalitis del Valle Murray/inmunología , Encefalitis por Arbovirus/prevención & control , Animales , Anticuerpos Antivirales/sangre , Reacciones Cruzadas , Femenino , Humanos , Inmunización Secundaria , Memoria Inmunológica , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Análisis de Supervivencia , Factores de Tiempo , Vacunas Atenuadas/inmunología , Vacunas Sintéticas/inmunología
16.
J Virol ; 82(12): 6024-33, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18400851

RESUMEN

The yellow fever virus (YFV) 17D strain is one of the most effective live vaccines for human use, but the in vivo mechanisms for virulence attenuation of the vaccine and the corresponding molecular determinants remain elusive. The vaccine differs phenotypically from wild-type YFV by the loss of viscerotropism, despite replicative fitness in cell culture, and genetically by 20 amino acid changes predominantly located in the envelope (E) protein. We show that three residues in E protein domain III inhibit spread of 17D in extraneural tissues and attenuate virulence in type I/II interferon-deficient mice. One of these residues (Arg380) is a dominant glycosaminoglycan-binding determinant, which mainly accounts for more rapid in vivo clearance of 17D from the bloodstream in comparison to 17D-derived variants with wild-type-like E protein. While other mutations will account for loss of neurotropism and phenotypic stability, the described impact of E protein domain III changes on virus dissemination and virulence is the first rational explanation for the safety of the 17D vaccine in humans.


Asunto(s)
Glicosaminoglicanos/metabolismo , Proteínas del Envoltorio Viral/genética , Vacuna contra la Fiebre Amarilla , Virus de la Fiebre Amarilla/genética , Virus de la Fiebre Amarilla/inmunología , Virus de la Fiebre Amarilla/patogenicidad , Aedes/citología , Animales , Células Cultivadas , Chlorocebus aethiops , Cricetinae , Ratones , Ratones Noqueados , Células Vero , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/inmunología , Virulencia/genética , Virus de la Fiebre Amarilla/metabolismo
17.
Virology ; 506: 1-6, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28282567

RESUMEN

The genetic basis for a dramatically increased virus susceptibility phenotype of MHC-II knockout mice acquired during routine maintenance of the mouse strain was determined. Segregation of the susceptibility allele from the defective MHC-II locus combined with sequence capture and sequencing showed that a Y37L substitution in STAT1 accounted for high flavivirus susceptibility of a newly derived mouse strain, designated Tuara. Interestingly, the mutation in STAT1 gene gave only partial inactivation of the type I interferon antiviral pathway. Accordingly, merely a relatively small impairment of interferon α/ß signalling is sufficient to overcome the ability of the host to control the infection.


Asunto(s)
Infecciones por Flaviviridae/virología , Flaviviridae/fisiología , Factor de Transcripción STAT1/inmunología , Secuencias de Aminoácidos , Sustitución de Aminoácidos , Animales , Flaviviridae/genética , Infecciones por Flaviviridae/genética , Infecciones por Flaviviridae/inmunología , Humanos , Interferón Tipo I/genética , Interferón Tipo I/inmunología , Ratones , Ratones Endogámicos C57BL , Factor de Transcripción STAT1/química , Factor de Transcripción STAT1/genética
18.
Virus Res ; 228: 61-65, 2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-27865865

RESUMEN

Mousepox is caused by the orthopoxvirus ectromelia virus (ECTV), and is thought to be transmitted via skin abrasions. We studied the ECTV virulence factor N1 following subcutaneous infection of mousepox-susceptible BALB/c mice. In this model, ECTV lacking N1L gene was attenuated more than 1000-fold compared with wild-type virus and replication was profoundly reduced as early as four days after infection. However, in contrast to data from an intranasal model, N1 protein was not required for virus dissemination. Further, neither T cell nor cytokine responses were enhanced in the absence of N1. Together with the early timing of reduced virus titres, this suggests that in a cutaneous model, N1 exerts its function at the level of infected cells or in the inhibition of the very earliest effectors of innate immunity.


Asunto(s)
Virus de la Ectromelia/fisiología , Ectromelia Infecciosa/virología , Proteínas Virales/genética , Animales , Interacciones Huésped-Patógeno , Ratones , Carga Viral , Proteínas Virales/metabolismo , Virulencia , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Replicación Viral
19.
Antiviral Res ; 69(1): 31-8, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16309754

RESUMEN

Many viruses, including flaviviruses, display affinity for cell surface heparan sulfate (HS) proteoglycans with biological relevance in virus attachment/entry. This raises the possibility of the application of HS mimetics in antiviral therapy. We have evaluated the antiviral effect of the sulfated polysaccharides, suramin, pentosan polysulfate (PPS) and PI-88, which are currently approved or in trial for clinical use, against dengue virus (DEN) and the encephalitic flaviviruses, Japanese encephalitis virus, West Nile virus, and Murray Valley encephalitis virus. A flow cytometry-based method for the measurement of inhibition of virus infectivity was developed, which showed the in vitro antiviral activity of the three compounds, albeit with differences in efficiency which were virus-dependent. The 50% effective concentration (EC(50)) values for DEN inhibition were in the order: PPS

Asunto(s)
Antivirales/farmacología , Virus del Dengue/efectos de los fármacos , Dengue/tratamiento farmacológico , Virus de la Encefalitis Japonesa (Subgrupo)/efectos de los fármacos , Heparitina Sulfato/farmacología , Oligosacáridos/farmacología , Animales , Antivirales/química , Antivirales/uso terapéutico , Línea Celular , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Encefalitis por Arbovirus/tratamiento farmacológico , Femenino , Infecciones por Flavivirus/tratamiento farmacológico , Heparitina Sulfato/uso terapéutico , Inyecciones Intraperitoneales , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Oligosacáridos/química , Oligosacáridos/uso terapéutico , Poliéster Pentosan Sulfúrico/química , Poliéster Pentosan Sulfúrico/farmacología , Poliéster Pentosan Sulfúrico/uso terapéutico , Suramina/química , Suramina/farmacología , Suramina/uso terapéutico , Resultado del Tratamiento
20.
Expert Rev Vaccines ; 11(2): 177-87, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22309667

RESUMEN

Serological cross-reactivity providing cross-protective immunity between antigenically related viruses is a cornerstone of vaccination. It was the immunological basis for the first human vaccine against smallpox introduced more than 200 years ago, and continues to underpin modern vaccine development as has recently been shown for human papillomavirus vaccines, which confer cross-protection against other oncogenic papillomavirus types not present in the vaccine. Here, we review the feasibility of cross-protective vaccination against an antigenic group of clinically important viruses belonging to the Japanese encephalitis serocomplex in the Flaviviridae family. We will discuss evidence suggesting that 'new generation' flavivirus vaccines may provide effective cross-protective immunity against heterologous Japanese encephalitis serocomplex viruses, and appraise potential risks associated with cross-reactive vaccine immunity. The review will also focus on the structural and mechanistic basis for cross-protective immunity among this group of flaviviruses, which is predominantly mediated by antibodies against a single viral surface protein.


Asunto(s)
Anticuerpos Antivirales/inmunología , Protección Cruzada/inmunología , Virus de la Encefalitis Japonesa (Subgrupo)/clasificación , Infecciones por Flavivirus/prevención & control , Proteínas del Envoltorio Viral/inmunología , Vacunas Virales/inmunología , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Cricetinae , Virus de la Encefalitis Japonesa (Subgrupo)/inmunología , Infecciones por Flavivirus/inmunología , Infecciones por Flavivirus/virología , Humanos , Ratones , Modelos Moleculares , Vacunación , Proteínas del Envoltorio Viral/química , Vacunas Virales/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA