Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(26): e2301258120, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37339224

RESUMEN

Novel transmission routes can allow infectious diseases to spread, often with devastating consequences. Ectoparasitic varroa mites vector a diversity of RNA viruses, having switched hosts from the eastern to western honey bees (Apis cerana to Apis mellifera). They provide an opportunity to explore how novel transmission routes shape disease epidemiology. As the principal driver of the spread of deformed wing viruses (mainly DWV-A and DWV-B), varroa infestation has also driven global honey bee health declines. The more virulent DWV-B strain has been replacing the original DWV-A strain in many regions over the past two decades. Yet, how these viruses originated and spread remains poorly understood. Here, we use a phylogeographic analysis based on whole-genome data to reconstruct the origins and demography of DWV spread. We found that, rather than reemerging in western honey bees after varroa switched hosts, as suggested by previous work, DWV-A most likely originated in East Asia and spread in the mid-20th century. It also showed a massive population size expansion following the varroa host switch. By contrast, DWV-B was most likely acquired more recently from a source outside East Asia and appears absent from the original varroa host. These results highlight the dynamic nature of viral adaptation, whereby a vector's host switch can give rise to competing and increasingly virulent disease pandemics. The evolutionary novelty and rapid global spread of these host-virus interactions, together with observed spillover into other species, illustrate how increasing globalization poses urgent threats to biodiversity and food security.


Asunto(s)
Virus ARN , Varroidae , Abejas , Animales , Virus ARN/genética , Evolución Biológica , Interacciones Microbiota-Huesped , Filogeografía
2.
J Evol Biol ; 31(6): 801-809, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29577506

RESUMEN

The Red Queen hypothesis predicts that host-parasite coevolutionary dynamics can select for host resistance through increased genetic diversity, recombination and evolutionary rates. However, in haplodiploid organisms such as the honeybee (Apis mellifera), models suggest the selective pressure is weaker than in diploids. Haplodiploid sex determination, found in A. mellifera, can allow deleterious recessive alleles to persist in the population through the diploid sex with negative effects predominantly expressed in the haploid sex. To overcome these negative effects in haploid genomes, epistatic interactions have been hypothesized to play an important role. Here, we use the interaction between A. mellifera and the parasitic mite Varroa destructor to test epistasis in the expression of resistance, through the inhibition of parasite reproduction, in haploid drones. We find novel loci on three chromosomes which explain over 45% of the resistance phenotype. Two of these loci interact only additively, suggesting their expression is independent of each other, but both loci interact epistatically with the third locus. With drone offspring inheriting only one copy of the queen's chromosomes, the drones will only possess one of two queen alleles throughout the years-long lifetime of the honeybee colony. Varroa, in comparison, completes its highly inbred reproductive cycle in a matter of weeks, allowing it to rapidly evolve resistance. Faced with the rapidly evolving Varroa, a diversity of pathways and epistatic interactions for the inhibition of Varroa reproduction could therefore provide a selective advantage to the high levels of recombination seen in A. mellifera. This allows for the remixing of phenotypes despite a fixed queen genotype.


Asunto(s)
Abejas/parasitología , Evolución Biológica , Epistasis Genética/fisiología , Haploidia , Varroidae/fisiología , Animales , Abejas/genética , ADN/genética , Interacciones Huésped-Parásitos , Masculino , Sitios de Carácter Cuantitativo , Varroidae/genética
3.
Issues Ment Health Nurs ; 37(1): 19-25, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26818929

RESUMEN

Latinos comprise the largest minority rural population in the US, and they are often exposed to adverse social health determinants that can detrimentally affect their mental health. Guided by community-based participatory research (CBPR) principles, this study aimed to describe faith-based organizations (FBOs) leaders' perceptions of the contexts affecting the mental well-being of rural Latino immigrants and potential approaches to mental health promotion for these immigrants. This is a descriptive, qualitative arm of a larger study in which community-academic members have partnered to develop a culturally-tailored mental health promotion intervention among rural Latinos. FBO leaders (N = 15) from different denominations in North Florida were interviewed until saturation was reached. FBO leaders remarked that in addition to religiosity, which Latinos already have, more community building and involvement are necessary for the promotion of mental health.


Asunto(s)
Clero , Hispánicos o Latinos/psicología , Salud Mental , Religión , Población Rural , Adulto , Anciano , Investigación Participativa Basada en la Comunidad , Florida , Promoción de la Salud , Humanos , Liderazgo , Persona de Mediana Edad
4.
Subst Abuse Treat Prev Policy ; 19(1): 24, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38689339

RESUMEN

BACKGROUND: Since 1996, an urban community-based organization whose primary mission is to serve diverse94 and emerging community health needs has provided screening, testing, overdose prevention and training, referrals, and access to treatment for substance use disorders (SUD) and communicable diseases such as HIV through its Life Points harm reduction program. METHODS: As a partner in a State survey in 2021, the community organization recruited a convenience sample of people who use drugs to participate in a survey focused on their substance use, healthcare, and barriers to SUD services. Community health workers conducted outreach and used an encrypted identifier to collect data from a convenience sample of harm reduction participants regarding demographics, legal justice, engagement in harm reduction and access to healthcare. Evaluators entered paper surveys into Qualtrics for reporting and summative analysis. RESULTS: A convenience sample of fifty-five people who use drugs were recruited and surveyed. The majority (86%, n = 47) were active participants in the agency Life Points (LP) harm reduction service. Participants' average age was 42.9 years (SD = 11.5). About half (51%, n = 28) were male, 48% (n = 26) were female, and 2% (n = 1) was transgender. About two-thirds (67%, n = 37) of participants were White/Caucasian, 13% (n = 7) were Black/African-American, 11% (n = 6) were Hispanic and 7% (n = 4) were Multi-Racial. Regarding current substance use, 98% (n = 54) reported use of heroin, 51% (n = 28) reported crack, 47% (n = 26) cocaine, 25% (n = 14) alcohol, 24% (n = 13) opioids, and 15% (n = 8) marijuana. The majority, 87% (n = 48) said they had health care insurance and over two-thirds (69%, n = 37) said they had been arrested for a felony. Almost three quarters (71%, n = 39) reported receiving services from the Department of Health & Human Services. A higher percentage of females compared to males (65% and 29% respectively) reported engagement in community mental health services and 69% of females (n = 18) compared to 15% (n = 4) of males reported needing to participate in sex to meet basic social needs. Participants described social determinants of health as barriers to services, including access to food, legal justice and transportation. About 44% (n = 24) said they would consider enrolling in a drug treatment program in the next 30 days. CONCLUSION: This sample was reflective of increased participation by White participants that began to appear about a decade ago. The majority of participants reported having healthcare insurance, which may be reflective of engagement with community health workers to access appropriate services. Community organizations and healthcare professionals should continue to explore social determinants of health that can impact the health of people who use drugs, including overcoming barriers to health care access such as investing in mobile unit outreach.


Asunto(s)
Reducción del Daño , Accesibilidad a los Servicios de Salud , Trastornos Relacionados con Sustancias , Humanos , Masculino , Femenino , Adulto , Trastornos Relacionados con Sustancias/terapia , Persona de Mediana Edad , Consumidores de Drogas/psicología , Consumidores de Drogas/estadística & datos numéricos , Adulto Joven , Servicios de Salud Comunitaria
5.
Int J Parasitol ; 53(10): 565-571, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37164049

RESUMEN

The ectoparasitic mite Varroa destructor is an invasive species of Western honey bees (Apis mellifera) and the largest pathogenic threat to their health world-wide. Its successful invasion and expansion is related to its ability to exploit the worker brood for reproduction, which results in an exponential population growth rate in the new host. With invasion of the mite, wild honeybee populations have been nearly eradicated from Europe and North America, and the survival of managed honeybee populations relies on mite population control treatments. However, there are a few documented honeybee populations surviving extended periods without control treatments due to adapted host traits that directly impact Varroa mite fitness. The aim of this study was to investigate if Varroa mite reproductive success was affected by traits of adult bee behaviours or by traits of the worker brood, in three mite-resistant honey bee populations from Sweden, France and Norway. The mite's reproductive success was measured and compared in broods that were either exposed to, or excluded from, adult bee access. Mite-resistant bee populations were also compared with a local mite-susceptible population, as a control group. Our results show that mite reproductive success rates and mite fecundity in the three mite-resistant populations were significantly different from the control population, with the French and Swedish populations having significantly lower reproductive rates than the Norwegian population. When comparing mite reproduction in exposed or excluded brood treatments, no differences were observed, regardless of population. This result clearly demonstrates that Varroa mite reproductive success can be suppressed by traits of the brood, independent of adult worker bees.


Asunto(s)
Varroidae , Abejas , Animales , Reproducción , Fertilidad , Europa (Continente) , Francia
6.
J Racial Ethn Health Disparities ; 10(3): 1432-1440, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-35641734

RESUMEN

Heart disease is a leading cause of death for African Americans. A community-academic partnership cross-trained community health workers to engage African American adults in a 6-month heart health education and risk reduction intervention. We conducted a one-group feasibility study using a one group (pre-posttest) design. A total of 100 adults were recruited from 27 zip codes in an African American majority city through community-based organizations (46%), churches (36%), and home visits (12%). Ninety-six percent were African American; 55% were female, 39% were male, and 6% were transgender. Their mean age was 44.6 years (SD = 15.9). Ninety-two percent had health insurance. Seventy-six percent of participants averaged blood pressure (BP) readings > 130/80 mmHg. Eleven percent of participants had a 30% or higher probability of developing cardiovascular disease in the next 10 years. Six-month follow-up was completed with 96% of participants. There were statistically significant increases in knowledge and in perception of personal risk for heart disease. However, slightly more participants (n = 77, 80.2%) had BP > 130/80 mmHg. The Community Advisory Group recommended expanding the intervention to 12 months and incorporating telehealth with home BP monitoring. Limited intervention duration did not meet longer term objectives such as better control of high BP and sharing risk reduction planning with primary care providers.


Asunto(s)
Negro o Afroamericano , Cardiopatías , Adulto , Humanos , Masculino , Femenino , Agentes Comunitarios de Salud , Educación en Salud , Conducta de Reducción del Riesgo
7.
Microbiol Res ; 274: 127418, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37315341

RESUMEN

The spread of the parasite Varroa destructor and associated viruses has resulted in massive honey bee colony losses with considerable economic and ecological impact. The gut microbiota has a major role in shaping honey bees tolerance and resistance to parasite infestation and viral infection, but the contribution of viruses to the assembly of the host microbiota in the context of varroa resistance and susceptibility remains unclear. Here, we used a network approach including viral and bacterial nodes to characterize the impact of five viruses, Apis Rhabdovirus-1 (ARV-1), Black Queen Cell virus (BQCV), Lake Sinai virus (LSV), Sacbrood virus (SBV) and Deformed wing virus (DWV) on the gut microbiota assembly of varroa-susceptible and Gotland varroa-surviving honey bees. We found that microbiota assembly was different in varroa-surviving and varroa-susceptible honey bees with the network of the latter having a whole module not present in the network of the former. Four viruses, ARV-1, BQCV, LSV, and SBV, were tightly associated with bacterial nodes of the core microbiota of varroa-susceptible honey bees, while only two viruses BQCV and LSV, appeared correlated with bacterial nodes in varroa-surviving honey bees. In silico removal of viral nodes caused major re-arrangement of microbial networks with changes in nodes centrality and significant reduction of the networks' robustness in varroa-susceptible, but not in varroa-surviving honey bees. Comparison of predicted functional pathways in bacterial communities using PICRUSt2 showed the superpathway for heme b biosynthesis from uroporphyrinogen-III and a pathway for arginine, proline, and ornithine interconversion as significantly increased in varroa-surviving honey bees. Notably, heme and its reduction products biliverdin and bilirubin have been reported as antiviral agents. These findings show that viral pathogens are differentially nested in the bacterial communities of varroa-surviving and varroa-susceptible honey bees. These results suggest that Gotland honey bees are associated with minimally-assembled and reduced bacterial communities that exclude viral pathogens and are resilient to viral nodes removal, which, together with the production of antiviral compounds, may explain the resiliency of Gotland honey bees to viral infections. In contrast, the intertwined virus-bacterium interactions in varroa-susceptible networks suggest that the complex assembly of microbial communities in this honey bee strain favor viral infections, which may explain viral persistence in this honey bee strain. Further understanding of protective mechanisms mediated by the microbiota could help developing novel ways to control devastating viral infections affecting honey bees worldwide.


Asunto(s)
Microbioma Gastrointestinal , Virus ARN , Varroidae , Virosis , Virus , Animales , Abejas
8.
Appl Environ Microbiol ; 78(1): 227-35, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22020517

RESUMEN

Honey bee (Apis mellifera) colonies are declining, and a number of stressors have been identified that affect, alone or in combination, the health of honey bees. The ectoparasitic mite Varroa destructor, honey bee viruses that are often closely associated with the mite, and pesticides used to control the mite population form a complex system of stressors that may affect honey bee health in different ways. During an acaricide treatment using Apistan (plastic strips coated with tau-fluvalinate), we analyzed the infection dynamics of deformed wing virus (DWV), sacbrood virus (SBV), and black queen cell virus (BQCV) in adult bees, mite-infested pupae, their associated Varroa mites, and uninfested pupae, comparing these to similar samples from untreated control colonies. Titers of DWV increased initially with the onset of the acaricide application and then slightly decreased progressively coinciding with the removal of the Varroa mite infestation. This initial increase in DWV titers suggests a physiological effect of tau-fluvalinate on the host's susceptibility to viral infection. DWV titers in adult bees and uninfested pupae remained higher in treated colonies than in untreated colonies. The titers of SBV and BQCV did not show any direct relationship with mite infestation and showed a variety of possible effects of the acaricide treatment. The results indicate that other factors besides Varroa mite infestation may be important to the development and maintenance of damaging DWV titers in colonies. Possible biochemical explanations for the observed synergistic effects between tau-fluvalinate and virus infections are discussed.


Asunto(s)
Acaricidas , Vectores Arácnidos/virología , Abejas/virología , Virus de Insectos/aislamiento & purificación , Infestaciones por Ácaros/virología , Nitrilos , Piretrinas , Varroidae/virología , Animales , Abejas/parasitología , Virus de Insectos/genética , ARN Viral/análisis , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Control de Ácaros y Garrapatas , Carga Viral
9.
Viruses ; 14(11)2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36366540

RESUMEN

Monitoring virus infections can be an important selection tool in honey bee breeding. A recent study pointed towards an association between the virus-free status of eggs and an increased virus resistance to deformed wing virus (DWV) at the colony level. In this study, eggs from both naturally surviving and traditionally managed colonies from across Europe were screened for the prevalence of different viruses. Screenings were performed using the phenotyping protocol of the 'suppressed in ovo virus infection' trait but with qPCR instead of end-point PCR and a primer set that covers all DWV genotypes. Of the 213 screened samples, 109 were infected with DWV, 54 were infected with black queen cell virus (BQCV), 3 were infected with the sacbrood virus, and 2 were infected with the acute bee paralyses virus. It was demonstrated that incidences of the vertical transmission of DWV were more frequent in naturally surviving than in traditionally managed colonies, although the virus loads in the eggs remained the same. When comparing virus infections with queen age, older queens showed significantly lower infection loads of DWV in both traditionally managed and naturally surviving colonies, as well as reduced DWV infection frequencies in traditionally managed colonies. We determined that the detection frequencies of DWV and BQCV in honey bee eggs were lower in samples obtained in the spring than in those collected in the summer, indicating that vertical transmission may be lower in spring. Together, these patterns in vertical transmission show that honey bee queens have the potential to reduce the degree of vertical transmission over time.


Asunto(s)
Virus ARN , Virosis , Virus , Animales , Abejas/virología , Prevalencia , Virus ARN/genética
10.
Issues Ment Health Nurs ; 32(8): 486-92, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21767250

RESUMEN

Using Community-Based Participatory Research, this study describes the ongoing collaboration between Latino community leaders and academic partners to develop a mental health promotion intervention for rural Latinos in Florida. Two strategies were used: (1) Community Advisory Board (CAB) members completed a Latino Community Partners Survey (LCPS) and (2) scribe notes were taken during CAB meetings. The LCPS demonstrated not only the CAB's knowledge about the community but the readiness of leaders to get involved in the community-academic partnership. Thematic analysis of scribe notes revealed four main categories: caring, knowledges, interpersonal dynamics, and future impact in the community. CAB members greatly enhanced academic partners' understanding of the community's needs as well as of their own culturally-specific knowledge.


Asunto(s)
Servicios Comunitarios de Salud Mental/organización & administración , Investigación Participativa Basada en la Comunidad/métodos , Promoción de la Salud/organización & administración , Hispánicos o Latinos , Servicios de Salud Rural/organización & administración , Comités Consultivos , Competencia Cultural , Florida , Humanos , Desarrollo de Programa
11.
Sci Rep ; 11(1): 9133, 2021 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-33911144

RESUMEN

Cell recapping is a behavioural trait of honeybees (Apis mellifera) where cells with developing pupae are uncapped, inspected, and then recapped, without removing the pupae. The ectoparasitic mite Varroa destructor, unarguably the most destructive pest in apiculture world-wide, invades the cells of developing pupae to feed and reproduce. Honeybees that target mite infested cells with this behaviour may disrupt the reproductive cycle of the mite. Hence, cell recapping has been associated with colony-level declines in mite reproduction. In this study we compared the colony-level efficacy of cell recapping (how often infested cells are recapped) to the average mite fecundity in A. mellifera. Our study populations, known to be adapted to V. destructor, were from Avignon, France, Gotland, Sweden, and Oslo, Norway, and were compared to geographically similar, treated control colonies. The results show that colonies with a higher recapping efficacy also have a lower average mite reproductive success. This pattern was likely driven by the adapted populations as they had the largest proportion of highly-targeted cell recapping. The consistent presence of this trait in mite-resistant and mite-susceptible colonies with varying degrees of expression may make it a good proxy trait for selective breeding on a large scale.


Asunto(s)
Abejas/parasitología , Varroidae/crecimiento & desarrollo , Animales , Abejas/crecimiento & desarrollo , Femenino , Interacciones Huésped-Parásitos , Pupa/crecimiento & desarrollo , Pupa/fisiología , Reproducción , Varroidae/fisiología
12.
Ecol Evol ; 11(11): 5937-5949, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34141194

RESUMEN

Comparative studies of genetic diversity and population structure can shed light on the ecological and evolutionary factors governing host-parasite interactions. Even though invasive parasites are considered of major biological importance, little is known about their adaptative potential when infesting the new hosts. Here, the genetic diversification of Varroa destructor, a novel parasite of Apis mellifera originating from Asia, was investigated using population genetics to determine how the genetic structure of the parasite changed in distinct European populations of its new host. To do so, mites infesting two categories of hosts in four European regions were compared: (a) adapted hosts surviving through means of natural selection, thereby expected to impose strong selective pressure on the mites, and (b) treated host populations, surviving mite infestations because acaricides are applied, therefore characterized by a relaxed selection imposed by the host on the mites. Significant genetic divergence was found across regions, partially reflecting the invasion pattern of V. destructor throughout Europe and indicating local adaptation of the mite to the host populations. Additionally, varying degrees of genotypic changes were found between mites from adapted and treated colonies. Altogether, these results indicate that V. destructor managed to overcome the genetic bottlenecks following its introduction in Europe and that host-mediated selection fostered changes in the genetic structure of this mite at diverse geographic scales. These findings highlight the potential of parasites to adapt to their local host populations and confirm that adaptations developed within coevolutionary dynamics are a major determinant of population genetic changes.

13.
Sci Rep ; 11(1): 12359, 2021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-34117296

RESUMEN

The ectoparasitic mite, Varroa destructor, is unarguably the leading cause of honeybee (Apis mellifera) mortality worldwide through its role as a vector for lethal viruses, in particular, strains of the Deformed wing virus (DWV) and Acute bee paralysis virus (ABPV) complexes. Several honeybee populations across Europe have well-documented adaptations of mite-resistant traits but little is known about host adaptations towards the virus infections vectored by the mite. The aim of this study was to assess and compare the possible contribution of adapted virus tolerance and/or resistance to the enhanced survival of four well-documented mite-resistant honeybee populations from Norway, Sweden, The Netherlands and France, in relation to unselected mite-susceptible honeybees. Caged adult bees and laboratory reared larvae, from colonies of these four populations, were inoculated with DWV and ABPV in a series of feeding infection experiments, while control groups received virus-free food. Virus infections were monitored using RT-qPCR assays in individuals sampled over a time course. In both adults and larvae the DWV and ABPV infection dynamics were nearly identical in all groups, but all mite-resistant honeybee populations had significantly higher survival rates compared to the mite-susceptible honeybees. These results suggest that adapted virus tolerance is an important component of survival mechanisms.


Asunto(s)
Abejas/virología , Resistencia a la Enfermedad , Interacciones Huésped-Patógeno , Varroidae/patogenicidad , Animales , Abejas/parasitología , Dicistroviridae/patogenicidad , Virus ARN/patogenicidad , Varroidae/virología
14.
Sci Rep ; 11(1): 23214, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34853367

RESUMEN

There is increasing evidence that honeybees (Apis mellifera L.) can adapt naturally to survive Varroa destructor, the primary cause of colony mortality world-wide. Most of the adaptive traits of naturally varroa-surviving honeybees concern varroa reproduction. Here we investigate whether factors in the honeybee metagenome also contribute to this survival. The quantitative and qualitative composition of the bacterial and viral metagenome fluctuated greatly during the active season, but with little overall difference between varroa-surviving and varroa-susceptible colonies. The main exceptions were Bartonella apis and sacbrood virus, particularly during early spring and autumn. Bombella apis was also strongly associated with early and late season, though equally for all colonies. All three affect colony protein management and metabolism. Lake Sinai virus was more abundant in varroa-surviving colonies during the summer. Lake Sinai virus and deformed wing virus also showed a tendency towards seasonal genetic change, but without any distinction between varroa-surviving and varroa-susceptible colonies. Whether the changes in these taxa contribute to survival or reflect demographic differences between the colonies (or both) remains unclear.


Asunto(s)
Abejas/genética , Abejas/parasitología , Metagenoma , Varroidae/fisiología , Animales , Abejas/microbiología , Abejas/virología , Genoma Bacteriano , Genoma de los Insectos , Genoma Viral , Virus ARN/genética , Virus ARN/aislamiento & purificación , Suecia
15.
Insects ; 12(6)2021 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-34207891

RESUMEN

Citizen Science contributes significantly to the conservation of biodiversity, but its application to honey bee research has remained minimal. Even though certain European honey bee (Apis mellifera) populations are known to naturally survive Varroa destructor infestations, it is unclear how widespread or common such populations are. Such colonies are highly valuable for investigating the mechanisms enabling colony survival, as well as for tracking the conservation status of free-living honey bees. Here, we use targeted Citizen Science to identify potentially new cases of managed or free-living A. mellifera populations that survive V. destructor without mite control strategies. In 2018, a survey containing 20 questions was developed, translated into 13 languages, and promoted at beekeeping conferences and online. After three years, 305 reports were collected from 28 countries: 241 from managed colonies and 64 from free-living colonies. The collected data suggest that there could be twice as many naturally surviving colonies worldwide than are currently known. Further, online and personal promotion seem to be key for successful recruitment of participants. Although the survivor status of these colonies still needs to be confirmed, the volume of reports and responses already illustrate how effectively Citizen Science can contribute to bee research by massively increasing generated data, broadening opportunities for comparative research, and fostering collaboration between scientists, beekeepers, and citizens. The success of this survey spurred the development of a more advanced Citizen Science platform, Honey Bee Watch, that will enable a more accurate reporting, confirmation, and monitoring of surviving colonies, and strengthen the ties between science, stakeholders, and citizens to foster the protection of both free-living and managed honey bees.

16.
J Gen Virol ; 91(Pt 10): 2524-30, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20519455

RESUMEN

Complete genome sequences were determined for two distinct strains of slow bee paralysis virus (SBPV) of honeybees (Apis mellifera). The SBPV genome is approximately 9.5 kb long and contains a single ORF flanked by 5'- and 3'-UTRs and a naturally polyadenylated 3' tail, with a genome organization typical of members of the family Iflaviridae. The two strains, labelled 'Rothamsted' and 'Harpenden', are 83% identical at the nucleotide level (94% identical at the amino acid level), although this variation is distributed unevenly over the genome. The two strains were found to co-exist at different proportions in two independently propagated SBPV preparations. The natural prevalence of SBPV for 847 colonies in 162 apiaries across five European countries was <2%, with positive samples found only in England and Switzerland, in colonies with variable degrees of Varroa infestation.


Asunto(s)
Abejas/virología , Genoma Viral , Virus ARN/genética , Virus ARN/aislamiento & purificación , ARN Viral/genética , Regiones no Traducidas 3' , Regiones no Traducidas 5' , Animales , Análisis por Conglomerados , Europa (Continente) , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Filogenia , ARN Mensajero/genética , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Homología de Secuencia de Ácido Nucleico
17.
Int J Parasitol ; 50(6-7): 433-447, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32380096

RESUMEN

The ectoparasitic mite Varroa destructor is the most significant pathological threat to the western honey bee, Apis mellifera, leading to the death of most colonies if left untreated. An alternative approach to chemical treatments is to selectively enhance heritable honey bee traits of resistance or tolerance to the mite through breeding programs, or select for naturally surviving untreated colonies. We conducted a literature review of all studies documenting traits of A. mellifera populations either selectively bred or naturally selected for resistance and tolerance to mite parasitism. This allowed us to conduct an analysis of the diversity, distribution and importance of the traits in different honey bee populations that can survive V. destructor globally. In a second analysis, we investigated the genetic bases of these different phenotypes by comparing 'omics studies (genomics, transcriptomics, and proteomics) of A. mellifera resistance and tolerance to the parasite. Altogether, this review provides a detailed overview of the current state of the research projects and breeding efforts against the most devastating parasite of A. mellifera. By highlighting the most promising traits of Varroa-surviving bees and our current knowledge on their genetic bases, this work will help direct future research efforts and selection programs to control this pest. Additionally, by comparing the diverse populations of honey bees that exhibit those traits, this review highlights the consequences of anthropogenic and natural selection in the interactions between hosts and parasites.


Asunto(s)
Abejas/genética , Abejas/parasitología , Varroidae , Animales , Genómica , Interacciones Huésped-Parásitos , Fenotipo , Varroidae/patogenicidad
18.
Prev Vet Med ; 167: 48-52, 2019 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-31027721

RESUMEN

The bacterial disease American Foulbrood (AFB), caused by the Gram-positive bacterium Paenibacillus larvae, is considered the most contagious and destructive infectious disease affecting honeybees world-wide. The resilient nature of P. larvae bacterial spores presents a difficult problem for the control of AFB. Burning clinically symptomatic colonies is widely considered the only workable strategy to prevent further spread of the disease. Antibiotic use is banned in EU countries, and although used commonly in the U.S. and Canada, it only masks symptoms and does not prevent the further spread of the disease. Not surprisingly, there is an increased demand for chemical-free strategies to prevent and control of AFB. The aim of this study was to implement a management program with a long-term perspective to reduce infection pressure and eliminate AFB outbreaks. The study was conducted within a commercial beekeeping operation in central Sweden that has previously experienced reoccurring AFB outbreaks. For 5 years, P. larvae were cultured from adult bee samples taken in the fall. The following spring, any identified sub-clinically infected colonies were shaken onto new material and quarantined from the rest of the beekeeping operation. After the first year clinical symptoms were not again observed, and during the 5 years of the study the proportion of apiaries harbouring P. larvae spores decreased from 74% to 4%. A multinomial regression analysis also clearly demonstrated that the proportion of infected colonies with the highest levels of spore counts disproportionately declined so that by the end of the study the only remaining infected apiaries were in the lowest spore count category (the three higher spore count categories having been eradicated). These results demonstrate the importance of management practices on AFB disease epidemiology. Early detection of subclinical spore prevelance and quarantine management as presented here can provide an effective sustainable chemical-free preventive solution to reduce both the incidence of AFB outbreaks and continued transmission risk at a large-scale.


Asunto(s)
Apicultura , Abejas/microbiología , Paenibacillus larvae/fisiología , Animales , Interacciones Huésped-Patógeno , Larva/microbiología , Esporas Bacterianas , Suecia
19.
Sci Rep ; 9(1): 11355, 2019 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-31388048

RESUMEN

The ectoparasitic mite, Varroa destructor, is the most severe biotic threat to honeybees (Apis mellifera) globally, usually causing colony death within a few years without treatments. While it is known that a few A. mellifera populations survive mite infestations by means of natural selection, the possible role of mite adaptations remains unclear. To investigate potential changes in mite populations in response to host adaptations, the genetic structure of V. destructor in the mite-resistant A. mellifera population on Gotland, Sweden, was studied. Spatio-temporal genetic changes were assessed by comparing mites collected in these colonies, as well as from neighboring mite-susceptible colonies, in historic (2009) and current (2017/2018) samples. The results show significant changes in the genetic structure of the mite populations during the time frame of this study. These changes were more pronounced in the V. destructor population infesting the mite-resistant honeybee colonies than in the mite-susceptible colonies. These results suggest that V. destructor populations are reciprocating, in a coevolutionary arms race, to the selection pressure induced by their honeybee host. Our data reveal exciting new insights into host-parasite interactions between A. mellifera and its major parasite.


Asunto(s)
Abejas/parasitología , Variación Genética , Interacciones Huésped-Parásitos , Varroidae/genética , Animales , Genética de Población , Varroidae/fisiología
20.
Sci Rep ; 9(1): 6221, 2019 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-30996279

RESUMEN

The ectoparasitic mite, Varroa destructor, is unarguably the leading cause of honeybee (Apis mellifera) mortality worldwide through its role as a vector for lethal viruses, in particular, strains of the Deformed wing virus (DWV) and Acute bee paralysis virus (ABPV) complexes. This multi-level system of host-parasite-pathogen interactions makes it difficult to investigate effects of either the mite or the virus on natural host survival. The aim of this study was to remove confounding effects of varroa to examine the role of virus susceptibility in the enhanced survival of a naturally adapted Swedish mite-resistant (MR) honeybee population, relative to mite-susceptible (MS) honeybees. Caged adult bees and laboratory reared larvae, from varroa-free colonies, were inoculated with DWV and ABPV in a series of feeding infection experiments, while control groups received virus-free food. Virus infections were monitored using RT-qPCR assays in individuals sampled over a time course. In both adults and larvae the DWV and ABPV infection dynamics were nearly identical between MR and MS groups, but MS adults suffered significantly higher mortality than MR adults. Results suggest virus tolerance, rather than reduced susceptibility or virus resistance, is an important component of the natural survival of this honeybee population.


Asunto(s)
Abejas/virología , Dicistroviridae/inmunología , Interacciones Huésped-Parásitos/inmunología , Tolerancia Inmunológica , Virus ARN/inmunología , Varroidae/virología , Virosis/inmunología , Adaptación Fisiológica/inmunología , Animales , ADN Viral/genética , Vectores de Enfermedades , Alimentos/virología , Larva/virología , Parásitos/virología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Suecia , Virosis/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA