Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Hum Mol Genet ; 29(22): 3631-3645, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33231680

RESUMEN

OPA1 mutations are the major cause of dominant optic atrophy (DOA) and the syndromic form DOA plus, pathologies for which there is no established cure. We used a 'drug repurposing' approach to identify FDA-approved molecules able to rescue the mitochondrial dysfunctions induced by OPA1 mutations. We screened two different chemical libraries by using two yeast strains carrying the mgm1I322M and the chim3P646L mutations, identifying 26 drugs able to rescue their oxidative growth phenotype. Six of them, able to reduce the mitochondrial DNA instability in yeast, have been then tested in Opa1 deleted mouse embryonic fibroblasts expressing the human OPA1 isoform 1 bearing the R445H and D603H mutations. Some of these molecules were able to ameliorate the energetic functions and/or the mitochondrial network morphology, depending on the type of OPA1 mutation. The final validation has been performed in patients' fibroblasts, allowing to select the most effective molecules. Our current results are instrumental to rapidly translating the findings of this drug repurposing approach into clinical trial for DOA and other neurodegenerations caused by OPA1 mutations.


Asunto(s)
Reposicionamiento de Medicamentos , GTP Fosfohidrolasas/genética , Enfermedades Neurodegenerativas/tratamiento farmacológico , Atrofia Óptica Autosómica Dominante/tratamiento farmacológico , Animales , ADN Mitocondrial/efectos de los fármacos , Fibroblastos/efectos de los fármacos , GTP Fosfohidrolasas/antagonistas & inhibidores , Humanos , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Mutación/efectos de los fármacos , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/patología , Atrofia Óptica Autosómica Dominante/genética , Atrofia Óptica Autosómica Dominante/patología , Linaje , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética
2.
Int J Mol Sci ; 22(22)2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34830106

RESUMEN

Mitochondrial DNA depletion syndromes (MDS) are clinically heterogenous and often severe diseases, characterized by a reduction of the number of copies of mitochondrial DNA (mtDNA) in affected tissues. In the context of MDS, yeast has proved to be both an excellent model for the study of the mechanisms underlying mitochondrial pathologies and for the discovery of new therapies via high-throughput assays. Among the several genes involved in MDS, it has been shown that recessive mutations in MPV17 cause a hepatocerebral form of MDS and Navajo neurohepatopathy. MPV17 encodes a non selective channel in the inner mitochondrial membrane, but its physiological role and the nature of its cargo remains elusive. In this study we identify ten drugs active against MPV17 disorder, modelled in yeast using the homologous gene SYM1. All ten of the identified molecules cause a concomitant increase of both the mitochondrial deoxyribonucleoside triphosphate (mtdNTP) pool and mtDNA stability, which suggests that the reduced availability of DNA synthesis precursors is the cause for the mtDNA deletion and depletion associated with Sym1 deficiency. We finally evaluated the effect of these molecules on mtDNA stability in two other MDS yeast models, extending the potential use of these drugs to a wider range of MDS patients.


Asunto(s)
ADN de Hongos , ADN Mitocondrial , Trastornos Heredodegenerativos del Sistema Nervioso , Hepatopatías , Proteínas de la Membrana , Mitocondrias , Enfermedades Mitocondriales , Proteínas Mitocondriales , Enfermedades del Sistema Nervioso Periférico , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , ADN de Hongos/genética , ADN de Hongos/metabolismo , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Trastornos Heredodegenerativos del Sistema Nervioso/genética , Trastornos Heredodegenerativos del Sistema Nervioso/metabolismo , Trastornos Heredodegenerativos del Sistema Nervioso/terapia , Humanos , Hepatopatías/genética , Hepatopatías/metabolismo , Hepatopatías/terapia , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/terapia , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Nucleótidos/genética , Nucleótidos/metabolismo , Enfermedades del Sistema Nervioso Periférico/genética , Enfermedades del Sistema Nervioso Periférico/metabolismo , Enfermedades del Sistema Nervioso Periférico/terapia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Síndrome
3.
Int J Mol Sci ; 22(9)2021 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-33923309

RESUMEN

Mitochondrial diseases result from inherited or spontaneous mutations in mitochondrial or nuclear DNA, leading to an impairment of the oxidative phosphorylation responsible for the synthesis of ATP. To date, there are no effective pharmacological therapies for these pathologies. We performed a yeast-based screening to search for therapeutic drugs to be used for treating mitochondrial diseases associated with dominant mutations in the nuclear ANT1 gene, which encodes for the mitochondrial ADP/ATP carrier. Dominant ANT1 mutations are involved in several degenerative mitochondrial pathologies characterized by the presence of multiple deletions or depletion of mitochondrial DNA in tissues of affected patients. Thanks to the presence in yeast of the AAC2 gene, orthologue of human ANT1, a yeast mutant strain carrying the M114P substitution equivalent to adPEO-associated L98P mutation was created. Five molecules were identified for their ability to suppress the defective respiratory growth phenotype of the haploid aac2M114P. Furthermore, these molecules rescued the mtDNA mutability in the heteroallelic AAC2/aac2M114P strain, which mimics the human heterozygous condition of adPEO patients. The drugs were effective in reducing mtDNA instability also in the heteroallelic strain carrying the R96H mutation equivalent to the more severe de novo dominant missense mutation R80H, suggesting a general therapeutic effect on diseases associated with dominant ANT1 mutations.


Asunto(s)
Translocador 1 del Nucleótido Adenina/genética , Ensayos Analíticos de Alto Rendimiento/métodos , Translocasas Mitocondriales de ADP y ATP/genética , Enfermedades Mitocondriales/tratamiento farmacológico , Mutación , Preparaciones Farmacéuticas/administración & dosificación , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , ADN Mitocondrial/genética , Genes Dominantes , Humanos , Enfermedades Mitocondriales/genética , Oftalmoplejía/tratamiento farmacológico , Oftalmoplejía/genética , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética
4.
Hum Mol Genet ; 26(21): 4257-4266, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28973171

RESUMEN

Defects in nuclear-encoded proteins of the mitochondrial translation machinery cause early-onset and tissue-specific deficiency of one or more OXPHOS complexes. Here, we report a 7-year-old Italian boy with childhood-onset rapidly progressive encephalomyopathy and stroke-like episodes. Multiple OXPHOS defects and decreased mtDNA copy number (40%) were detected in muscle homogenate. Clinical features combined with low level of plasma citrulline were highly suggestive of mitochondrial encephalopathy, lactic acidosis and stroke-like episodes (MELAS) syndrome, however, the common m.3243 A > G mutation was excluded. Targeted exome sequencing of genes encoding the mitochondrial proteome identified a damaging mutation, c.567 G > A, affecting a highly conserved amino acid residue (p.Gly189Arg) of the MRM2 protein. MRM2 has never before been linked to a human disease and encodes an enzyme responsible for 2'-O-methyl modification at position U1369 in the human mitochondrial 16S rRNA. We generated a knockout yeast model for the orthologous gene that showed a defect in respiration and the reduction of the 2'-O-methyl modification at the equivalent position (U2791) in the yeast mitochondrial 21S rRNA. Complementation with the mrm2 allele carrying the equivalent yeast mutation failed to rescue the respiratory phenotype, which was instead completely rescued by expressing the wild-type allele. Our findings establish that defective MRM2 causes a MELAS-like phenotype, and suggests the genetic screening of the MRM2 gene in patients with a m.3243 A > G negative MELAS-like presentation.


Asunto(s)
Síndrome MELAS/genética , Metiltransferasas/genética , Metiltransferasas/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Secuencia de Aminoácidos , Niño , ADN Mitocondrial/genética , Humanos , Síndrome MELAS/diagnóstico , Masculino , Mitocondrias/genética , Encefalomiopatías Mitocondriales/genética , Encefalomiopatías Mitocondriales/metabolismo , Mutación , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Saccharomyces cerevisiae/genética
5.
Am J Hum Genet ; 99(4): 860-876, 2016 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-27693233

RESUMEN

Mutations in SLC25A4 encoding the mitochondrial ADP/ATP carrier AAC1 are well-recognized causes of mitochondrial disease. Several heterozygous SLC25A4 mutations cause adult-onset autosomal-dominant progressive external ophthalmoplegia associated with multiple mitochondrial DNA deletions, whereas recessive SLC25A4 mutations cause childhood-onset mitochondrial myopathy and cardiomyopathy. Here, we describe the identification by whole-exome sequencing of seven probands harboring dominant, de novo SLC25A4 mutations. All affected individuals presented at birth, were ventilator dependent and, where tested, revealed severe combined mitochondrial respiratory chain deficiencies associated with a marked loss of mitochondrial DNA copy number in skeletal muscle. Strikingly, an identical c.239G>A (p.Arg80His) mutation was present in four of the seven subjects, and the other three case subjects harbored the same c.703C>G (p.Arg235Gly) mutation. Analysis of skeletal muscle revealed a marked decrease of AAC1 protein levels and loss of respiratory chain complexes containing mitochondrial DNA-encoded subunits. We show that both recombinant AAC1 mutant proteins are severely impaired in ADP/ATP transport, affecting most likely the substrate binding and mechanics of the carrier, respectively. This highly reduced capacity for transport probably affects mitochondrial DNA maintenance and in turn respiration, causing a severe energy crisis. The confirmation of the pathogenicity of these de novo SLC25A4 mutations highlights a third distinct clinical phenotype associated with mutation of this gene and demonstrates that early-onset mitochondrial disease can be caused by recurrent de novo mutations, which has significant implications for the application and analysis of whole-exome sequencing data in mitochondrial disease.


Asunto(s)
Translocador 1 del Nucleótido Adenina/genética , Variaciones en el Número de Copia de ADN/genética , ADN Mitocondrial/genética , Genes Dominantes/genética , Enfermedades Mitocondriales/genética , Mutación , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Edad de Inicio , Arilamina N-Acetiltransferasa/genética , Niño , Preescolar , Transporte de Electrón/genética , Exoma/genética , Femenino , Humanos , Lactante , Recién Nacido , Isoenzimas/genética , Masculino , Enfermedades Mitocondriales/patología , Músculo Esquelético/metabolismo
6.
Molecules ; 24(16)2019 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-31426298

RESUMEN

Amongst the various approaches to contain aflatoxin contamination of feed and food commodities, the use of inhibitors of fungal growth and/or toxin biosynthesis is showing great promise for the implementation or the replacement of conventional pesticide-based strategies. Several inhibition mechanisms were found taking place at different levels in the biology of the aflatoxin-producing fungal species such as Aspergillus flavus: compounds that influence aflatoxin production may block the biosynthetic pathway through the direct control of genes belonging to the aflatoxin gene cluster, or interfere with one or more of the several steps involved in the aflatoxin metabolism upstream. Recent findings pointed to mitochondrial functionality as one of the potential targets of some aflatoxin inhibitors. Additionally, we have recently reported that the effect of a compound belonging to the class of thiosemicarbazones might be related to the energy generation/carbon flow and redox homeostasis control by the fungal cell. Here, we report our investigation about a putative molecular target of the 3-isopropylbenzaldehyde thiosemicarbazone (mHtcum), using the yeast Saccharomyces cerevisiae as model system, to demonstrate how the compound can actually interfere with the mitochondrial respiratory chain.


Asunto(s)
Aflatoxinas/antagonistas & inhibidores , Antifúngicos/farmacología , Regulación Fúngica de la Expresión Génica , Mitocondrias/efectos de los fármacos , Saccharomyces cerevisiae/efectos de los fármacos , Tiosemicarbazonas/farmacología , Aflatoxinas/biosíntesis , Antifúngicos/química , Aspergillus flavus/efectos de los fármacos , Aspergillus flavus/enzimología , Aspergillus flavus/genética , Sitios de Unión , Transporte de Electrón/efectos de los fármacos , Complejo III de Transporte de Electrones/antagonistas & inhibidores , Complejo III de Transporte de Electrones/química , Complejo III de Transporte de Electrones/genética , Complejo III de Transporte de Electrones/metabolismo , Proteínas Fúngicas/antagonistas & inhibidores , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Mitocondrias/metabolismo , Modelos Biológicos , Simulación del Acoplamiento Molecular , Familia de Multigenes , Unión Proteica , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Tiosemicarbazonas/química
7.
Hum Mol Genet ; 25(4): 715-27, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26692522

RESUMEN

Mitochondria are organelles that have their own DNA (mitochondrial DNA, mtDNA) whose maintenance is necessary for the majority of ATP production in eukaryotic cells. Defects in mtDNA maintenance or integrity are responsible for numerous diseases. The DNA polymerase γ (POLG) ensures proper mtDNA replication and repair. Mutations in POLG are a major cause of mitochondrial disorders including hepatic insufficiency, Alpers syndrome, progressive external ophthalmoplegia, sensory neuropathy and ataxia. Mutations in POLG are also associated with parkinsonism. To date, no effective therapy is available. Based on the conservation of mitochondrial function from yeast to human, we used Saccharomyces cerevisiae and Caenorhabditis elegans as first pass filters to identify a chemical that suppresses mtDNA instability in cultured fibroblasts of a POLG-deficient patient. We showed that this unsuspected compound, clofilium tosylate (CLO), belonging to a class of anti-arrhythmic agents, prevents mtDNA loss of all yeast mitochondrial polymerase mutants tested, improves behavior and mtDNA content of polg-1-deficient worms and increases mtDNA content of quiescent POLG-deficient fibroblasts. Furthermore, the mode of action of the drug seems conserved as CLO increases POLG steady-state level in yeast and human cells. Two other anti-arrhythmic agents (FDA-approved) sharing common pharmacological properties and chemical structure also show potential benefit for POLG deficiency in C. elegans. Our findings provide evidence of the first mtDNA-stabilizing compound that may be an effective pharmacological alternative for the treatment of POLG-related diseases.


Asunto(s)
ADN Mitocondrial/genética , ADN Polimerasa Dirigida por ADN/genética , Enfermedades Mitocondriales/tratamiento farmacológico , Compuestos de Amonio Cuaternario/farmacología , Animales , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/enzimología , Caenorhabditis elegans/genética , ADN Polimerasa I/genética , ADN Polimerasa gamma , Replicación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/enzimología , Humanos , Enfermedades Mitocondriales/enzimología , Enfermedades Mitocondriales/genética , Mutación , Fenotipo , Cultivo Primario de Células , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
8.
Am J Hum Genet ; 96(5): 826-31, 2015 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-25913036

RESUMEN

Methionyl-tRNA synthetase (MARS) catalyzes the ligation of methionine to tRNA and is critical for protein biosynthesis. We identified biallelic missense mutations in MARS in a specific form of pediatric pulmonary alveolar proteinosis (PAP), a severe lung disorder that is prevalent on the island of Réunion and the molecular basis of which is unresolved. Mutations were found in 26 individuals from Réunion and nearby islands and in two families from other countries. Functional consequences of the mutated alleles were assessed by growth of wild-type and mutant strains and methionine-incorporation assays in yeast. Enzyme activity was attenuated in a liquid medium without methionine but could be restored by methionine supplementation. In summary, identification of a founder mutation in MARS led to the molecular definition of a specific type of PAP and will enable carrier screening in the affected community and possibly open new treatment opportunities.


Asunto(s)
Metionina-ARNt Ligasa/genética , Proteinosis Alveolar Pulmonar/genética , Adolescente , Alelos , Niño , Preescolar , Retículo Endoplásmico/genética , Retículo Endoplásmico/patología , Femenino , Aparato de Golgi/genética , Aparato de Golgi/patología , Humanos , Masculino , Mutación Missense , Biosíntesis de Proteínas , Proteinosis Alveolar Pulmonar/patología , Adulto Joven
9.
Biochem Biophys Res Commun ; 493(2): 909-913, 2017 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-28947214

RESUMEN

The mitochondrial ADP/ATP carrier is a nuclear encoded protein, which catalyzes the exchange of ATP generated in mitochondria with ADP produced in the cytosol. In humans, mutations in the major ADP/ATP carrier gene, ANT1, are involved in several degenerative mitochondrial pathologies, leading to instability of mitochondrial DNA. Recessive mutations have been associated with mitochondrial myopathy and cardiomyopathy whereas dominant mutations have been associated with autosomal dominant Progressive External Ophtalmoplegia (adPEO). Recently, two de novo dominant mutations, R80H and R235G, leading to extremely severe symptoms, have been identified. In order to evaluate if the dominance is due to haploinsufficiency or to a gain of function, the two mutations have been introduced in the equivalent positions of the AAC2 gene, the yeast orthologue of human ANT1, and their dominant effect has been studied in heteroallelic strains, containing both one copy of wild type AAC2 and one copy of mutant aac2 allele. Through phenotypic characterization of these yeast models we showed that the OXPHOS phenotypes in the heteroallelic strains were more affected than in the hemiallelic strain indicating that the dominant trait of the two mutations is due to gain of function.


Asunto(s)
Translocador 1 del Nucleótido Adenina/genética , ADN Mitocondrial/genética , Translocasas Mitocondriales de ADP y ATP/genética , Miopatías Mitocondriales/genética , Mutación Puntual , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Alelos , Humanos
10.
Appl Microbiol Biotechnol ; 101(17): 6683-6696, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28725928

RESUMEN

Aspergillus flavus is an opportunistic mold that represents a serious threat for human and animal health due to its ability to synthesize and release, on food and feed commodities, different toxic secondary metabolites. Among them, aflatoxin B1 is one of the most dangerous since it is provided with a strong cancerogenic and mutagenic activity. Controlling fungal contamination on the different crops that may host A. flavus is considered a priority by sanitary authorities of an increasing number of countries due also to the fact that, owing to global temperature increase, the geographic areas that are expected to be prone to experience sudden A. flavus outbreaks are widening. Among the different pre- and post-harvest strategies that may be put forward in order to prevent fungal and/or mycotoxin contamination, fungicides are still considered a prominent weapon. We have here analyzed different structural modifications of a natural-derived compound (cuminaldehyde thiosemicarbazone) for their fungistatic and anti-aflatoxigenic activity. In particular, we have focused our attention on one of the compound that presented a prominent anti-aflatoxin specificity, and performed a set of physiological and molecular analyses, taking also advantage of yeast (Saccharomyces cerevisiae) cell as an experimental model.


Asunto(s)
Aflatoxina B1/biosíntesis , Aspergillus flavus/metabolismo , Benzaldehídos/química , Tiosemicarbazonas/química , Aspergillus flavus/genética , Productos Agrícolas , Cimenos , Regulación Fúngica de la Expresión Génica , Proteómica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
11.
Biochem J ; 460(2): 199-210, 2014 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-24625320

RESUMEN

Erv1 (essential for respiration and viability 1), is an essential component of the MIA (mitochondrial import and assembly) pathway, playing an important role in the oxidative folding of mitochondrial intermembrane space proteins. In the MIA pathway, Mia40, a thiol oxidoreductase with a CPC motif at its active site, oxidizes newly imported substrate proteins. Erv1 a FAD-dependent thiol oxidase, in turn reoxidizes Mia40 via its N-terminal Cys30-Cys33 shuttle disulfide. However, it is unclear how the two shuttle cysteine residues of Erv1 relay electrons from the Mia40 CPC motif to the Erv1 active-site Cys130-Cys133 disulfide. In the present study, using yeast genetic approaches we showed that both shuttle cysteine residues of Erv1 are required for cell growth. In organelle and in vitro studies confirmed that both shuttle cysteine residues were indeed required for import of MIA pathway substrates and Erv1 enzyme function to oxidize Mia40. Furthermore, our results revealed that the two shuttle cysteine residues of Erv1 are functionally distinct. Although Cys33 is essential for forming the intermediate disulfide Cys33-Cys130' and transferring electrons to the redox active-site directly, Cys30 plays two important roles: (i) dominantly interacts and receives electrons from the Mia40 CPC motif; and (ii) resolves the Erv1 Cys33-Cys130 intermediate disulfide. Taken together, we conclude that both shuttle cysteine residues are required for Erv1 function, and play complementary, but distinct, roles to ensure rapid turnover of active Erv1.


Asunto(s)
Cisteína/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas Mitocondriales/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Disulfuros/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/química , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/química , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química
13.
Cell Death Dis ; 15(4): 281, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38643274

RESUMEN

The human mitochondrial DNA polymerase gamma is a holoenzyme, involved in mitochondrial DNA (mtDNA) replication and maintenance, composed of a catalytic subunit (POLG) and a dimeric accessory subunit (POLG2) conferring processivity. Mutations in POLG or POLG2 cause POLG-related diseases in humans, leading to a subset of Mendelian-inherited mitochondrial disorders characterized by mtDNA depletion (MDD) or accumulation of multiple deletions, presenting multi-organ defects and often leading to premature death at a young age. Considering the paucity of POLG2 models, we have generated a stable zebrafish polg2 mutant line (polg2ia304) by CRISPR/Cas9 technology, carrying a 10-nucleotide deletion with frameshift mutation and premature stop codon. Zebrafish polg2 homozygous mutants present slower development and decreased viability compared to wild type siblings, dying before the juvenile stage. Mutants display a set of POLG-related phenotypes comparable to the symptoms of human patients affected by POLG-related diseases, including remarkable MDD, altered mitochondrial network and dynamics, and reduced mitochondrial respiration. Histological analyses detected morphological alterations in high-energy demanding tissues, along with a significant disorganization of skeletal muscle fibres. Consistent with the last finding, locomotor assays highlighted a decreased larval motility. Of note, treatment with the Clofilium tosylate drug, previously shown to be effective in POLG models, could partially rescue MDD in Polg2 mutant animals. Altogether, our results point at zebrafish as an effective model to study the etiopathology of human POLG-related disorders linked to POLG2, and a suitable platform to screen the efficacy of POLG-directed drugs in POLG2-associated forms.


Asunto(s)
ADN Polimerasa Dirigida por ADN , Enfermedades Mitocondriales , Animales , Humanos , ADN Polimerasa Dirigida por ADN/genética , Pez Cebra/genética , ADN Polimerasa gamma/genética , ADN Mitocondrial/genética , Mitocondrias/genética , Mitocondrias/patología , Mutación/genética , Enfermedades Mitocondriales/tratamiento farmacológico , Enfermedades Mitocondriales/genética
14.
Am J Hum Genet ; 84(5): 594-604, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19409522

RESUMEN

A disulfide relay system (DRS) was recently identified in the yeast mitochondrial intermembrane space (IMS) that consists of two essential components: the sulfhydryl oxidase Erv1 and the redox-regulated import receptor Mia40. The DRS drives the import of cysteine-rich proteins into the IMS via an oxidative folding mechanism. Erv1p is reoxidized within this system, transferring its electrons to molecular oxygen through interactions with cytochrome c and cytochrome c oxidase (COX), thereby linking the DRS to the respiratory chain. The role of the human Erv1 ortholog, GFER, in the DRS has been poorly explored. Using homozygosity mapping, we discovered that a mutation in the GFER gene causes an infantile mitochondrial disorder. Three children born to healthy consanguineous parents presented with progressive myopathy and partial combined respiratory-chain deficiency, congenital cataract, sensorineural hearing loss, and developmental delay. The consequences of the mutation at the level of the patient's muscle tissue and fibroblasts were 1) a reduction in complex I, II, and IV activity; 2) a lower cysteine-rich protein content; 3) abnormal ultrastructural morphology of the mitochondria, with enlargement of the IMS space; and 4) accelerated time-dependent accumulation of multiple mtDNA deletions. Moreover, the Saccharomyces cerevisiae erv1(R182H) mutant strain reproduced the complex IV activity defect and exhibited genetic instability of the mtDNA and mitochondrial morphological defects. These findings shed light on the mechanisms of mitochondrial biogenesis, establish the role of GFER in the human DRS, and promote an understanding of the pathogenesis of a new mitochondrial disease.


Asunto(s)
Catarata/genética , Reductasas del Citocromo/fisiología , Enfermedades Mitocondriales/genética , Miopatías Mitocondriales/genética , Proteínas Mitocondriales/fisiología , Adolescente , Catarata/congénito , Niño , Preescolar , Consanguinidad , Reductasas del Citocromo/genética , ADN Mitocondrial/genética , ADN Mitocondrial/ultraestructura , Ligamiento Genético , Pérdida Auditiva/genética , Humanos , Membranas Intracelulares/metabolismo , Masculino , Proteínas Mitocondriales/genética , Mutación , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro
15.
FEMS Yeast Res ; 12(7): 864-6, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22805178

RESUMEN

Air-liquid biofilm formation is largely dependent on Flo11p and seems related to cell lipid content and composition. Here, it is shown that in the presence of cerulenin, a known inhibitor of the fatty acid synthase complex, biofilm formation is inhibited together with FLO11 transcription in a flor strain of Saccharomyces cerevisiae, while the administration of saturated fatty acids to cerulenin-containing medium restores biofilm formation and FLO11 transcription. It is also shown that, in biofilm cells, the FLO11 transcription is accompanied by the transcription of ACC1, ACS1 and INO1 key genes in lipid biosynthesis and that biofilm formation is affected by the lack of inositol in flor medium. These results are compatible with the hypothesis that the air-liquid biofilm formation depends on FLO11 transcription levels as well as on fatty acids biosynthesis.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Metabolismo de los Lípidos , Glicoproteínas de Membrana/biosíntesis , Proteínas de Saccharomyces cerevisiae/biosíntesis , Saccharomyces cerevisiae/fisiología , Microbiología del Aire , Cerulenina/metabolismo , Medios de Cultivo/química , Inhibidores Enzimáticos/metabolismo , Perfilación de la Expresión Génica , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Transcripción Genética , Microbiología del Agua
16.
Appl Environ Microbiol ; 77(9): 3141-6, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21421794

RESUMEN

Mupirocin is an antibiotic commonly used in selective media for the isolation of bifidobacteria. However, little is known about the genetic traits responsible for bifidobacterial resistance to mupirocin. Our investigation demonstrates that all of the bifidobacteria tested exhibit a phenotype of generally high resistance to this antibiotic. The genotypic reason for bifidobacterial mupirocin resistance was further characterized by sequencing of the isoleucyl-tRNA synthetase gene (ileS) coupled with three-dimensional modeling of the encoded protein and cloning of the ileS gene of Bifidobacterium bifidum PRL2010 in a mupirocin-sensitive Escherichia coli strain. These analyses revealed key amino acid residues of the IleS protein that apparently are crucial for conferring a mupirocin resistance phenotype to bifidobacteria.


Asunto(s)
Antibacterianos/farmacología , Bifidobacterium/efectos de los fármacos , Farmacorresistencia Bacteriana , Mupirocina/farmacología , Secuencia de Aminoácidos , Bifidobacterium/genética , Isoleucina-ARNt Ligasa/genética , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Análisis de Secuencia de ADN
17.
Genes (Basel) ; 12(2)2021 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-33672627

RESUMEN

The increasing application of next generation sequencing approaches to the analysis of human exome and whole genome data has enabled the identification of novel variants and new genes involved in mitochondrial diseases. The ability of surviving in the absence of oxidative phosphorylation (OXPHOS) and mitochondrial genome makes the yeast Saccharomyces cerevisiae an excellent model system for investigating the role of these new variants in mitochondrial-related conditions and dissecting the molecular mechanisms associated with these diseases. The aim of this review was to highlight the main advantages offered by this model for the study of mitochondrial diseases, from the validation and characterisation of novel mutations to the dissection of the role played by genes in mitochondrial functionality and the discovery of potential therapeutic molecules. The review also provides a summary of the main contributions to the understanding of mitochondrial diseases emerged from the study of this simple eukaryotic organism.


Asunto(s)
Predisposición Genética a la Enfermedad , Enfermedades Mitocondriales/genética , Modelos Biológicos , Mutación , Levaduras/genética , Núcleo Celular/genética , ADN Mitocondrial , Perfilación de la Expresión Génica , Genes Mitocondriales , Variación Genética , Humanos , Mitocondrias/genética , Enfermedades Mitocondriales/metabolismo , Fosforilación Oxidativa , Levaduras/metabolismo
18.
Cell Death Dis ; 12(1): 100, 2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33469036

RESUMEN

The DNA polymerase gamma (Polg) is a nuclear-encoded enzyme involved in DNA replication in animal mitochondria. In humans, mutations in the POLG gene underlie a set of mitochondrial diseases characterized by mitochondrial DNA (mtDNA) depletion or deletion and multiorgan defects, named POLG disorders, for which an effective therapy is still needed. By applying antisense strategies, ENU- and CRISPR/Cas9-based mutagenesis, we have generated embryonic, larval-lethal and adult-viable zebrafish Polg models. Morphological and functional characterizations detected a set of phenotypes remarkably associated to POLG disorders, including cardiac, skeletal muscle, hepatic and gonadal defects, as well as mitochondrial dysfunctions and, notably, a perturbed mitochondria-to-nucleus retrograde signaling (CREB and Hypoxia pathways). Next, taking advantage of preliminary evidence on the candidate molecule Clofilium tosylate (CLO), we tested CLO toxicity and then its efficacy in our zebrafish lines. Interestingly, at well tolerated doses, the CLO drug could successfully rescue mtDNA and Complex I respiratory activity to normal levels, even in mutant phenotypes worsened by treatment with Ethidium Bromide. In addition, the CLO drug could efficiently restore cardio-skeletal parameters and mitochondrial mass back to normal values. Altogether, these evidences point to zebrafish as a valuable vertebrate organism to faithfully phenocopy multiple defects detected in POLG patients. Moreover, this model represents an excellent platform to screen, at the whole-animal level, candidate molecules with therapeutic effects in POLG disorders.


Asunto(s)
Enfermedades Mitocondriales/genética , Compuestos de Amonio Cuaternario/metabolismo , Animales , Modelos Animales de Enfermedad , Fenotipo , Pez Cebra
19.
Sci Rep ; 10(1): 10524, 2020 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-32601343

RESUMEN

Thiosemicarbazones (TSC) and their metal complexes display diverse biological activities and are active against multiple pathological conditions ranging from microbial infections to abnormal cell proliferation. Ribonucleotide reductase (RNR) is considered one of the main targets of TSCs, yet, the existence of additional targets, differently responsible for the multifaceted activities of TSCs and their metal complexes has been proposed. To set the basis for a more comprehensive delineation of their mode of action, we chemogenomically profiled the cellular effects of bis(citronellalthiosemicarbazonato)nickel(II) [Ni(S-tcitr)2] using the unicellular eukaryote Saccharomyces cerevisiae as a model organism. Two complementary genomic phenotyping screens led to the identification of 269 sensitive and 56 tolerant deletion mutant strains and of 14 genes that when overexpressed make yeast cells resistant to an otherwise lethal concentration of Ni(S-tcitr)2. Chromatin remodeling, cytoskeleton organization, mitochondrial function and iron metabolism were identified as lead cellular processes responsible for Ni(S-tcitr)2 toxicity. The latter process, and particularly glutaredoxin-mediated iron loading of RNR, was found to be affected by Ni(S-tcitr)2. Given the multiple pathways regulated by glutaredoxins, targeting of these proteins by Ni(S-tcitr)2 can negatively affect various core cellular processes that may critically contribute to Ni(S-tcitr)2 cytotoxicity.


Asunto(s)
Complejos de Coordinación/farmacología , Níquel , Tiosemicarbazonas/farmacología , Línea Celular Tumoral , Ensamble y Desensamble de Cromatina/efectos de los fármacos , Citoesqueleto/efectos de los fármacos , Humanos , Hierro/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Saccharomyces cerevisiae
20.
Biochim Biophys Acta Gen Subj ; 1864(7): 129608, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32234506

RESUMEN

BACKGROUND: Mutations in human gene encoding the mitochondrial DNA polymerase γ (HsPolγ) are associated with a broad range of mitochondrial diseases. Here we studied the impact on DNA replication by disease variants clustered around residue HsPolγ-K1191, a residue that in several family-A DNA polymerases interacts with the 3' end of the primer. METHODS: Specifically, we examined the effect of HsPolγ carrying pathogenic variants in residues D1184, I1185, C1188, K1191, D1196, and a stop codon at residue T1199, using as a model the yeast mitochondrial DNA polymerase protein, Mip1p. RESULTS: The introduction of pathogenic variants C1188R (yV945R), and of a stop codon at residue T1199 (yT956X) abolished both polymerization and exonucleolysis in vitro. HsPolγ substitutions in residues D1184 (yD941), I1185 (yI942), K1191 (yK948) and D1196 (yD953) shifted the balance between polymerization and exonucleolysis in favor of exonucleolysis. HsPolγ pathogenic variants at residue K1191 (yK948) and D1184 (yD941) were capable of nucleotide incorporation albeit with reduced processivity. Structural analysis of mitochondrial DNAPs showed that residue HsPolγ-N864 is placed in an optimal distance to interact with the 3' end of the primer and the phosphate backbone previous to the 3' end. Amino acid changes in residue HsPolγ-N864 to Ala, Ser or Asp result in enzymes that did not decrease their polymerization activity on short templates but exhibited a substantial decrease for processive DNA synthesis. CONCLUSION: Our data suggest that in mitochondrial DNA polymerases multiple amino acids are involved in the primer-stand stabilization.


Asunto(s)
ADN Polimerasa gamma/genética , ADN Mitocondrial/metabolismo , Enfermedades Mitocondriales/metabolismo , ADN Polimerasa gamma/química , ADN Polimerasa gamma/metabolismo , Replicación del ADN/genética , ADN Mitocondrial/química , Humanos , Modelos Moleculares , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA