Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Ecol Lett ; 27(6): e14436, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38863413

RESUMEN

Von Schmalensee et al. present two concerns about our study. While the first stems from a general disagreement about our simulation methodology, the second is a useful observation of a modelling choice we made that affected simulation outcomes, but in ways that do not invalidate our original conclusions.


Asunto(s)
Modelos Biológicos , Simulación por Computador , Animales
2.
J Therm Biol ; 119: 103762, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38071898

RESUMEN

Predicting ecological responses to rapid environmental change has become one of the greatest challenges of modern biology. One of the major hurdles in forecasting these responses is accurately quantifying the thermal environments that organisms experience. The distribution of temperatures available within an organism's habitat is typically measured using data loggers called operative temperature models (OTMs) that are designed to mimic certain properties of heat exchange in the focal organism. The gold standard for OTM construction in studies of terrestrial ectotherms has been the use of copper electroforming which creates anatomically accurate models that equilibrate quickly to ambient thermal conditions. However, electroformed models require the use of caustic chemicals, are often brittle, and their production is expensive and time intensive. This has resulted in many researchers resorting to the use of simplified OTMs that can yield substantial measurement errors. 3D printing offers the prospect of robust, easily replicated, morphologically accurate, and cost-effective OTMs that capture the benefits but alleviate the problems associated with electroforming. Here, we validate the use of OTMs that were 3D printed using several materials across eight lizard species of different body sizes and living in habitats ranging from deserts to tropical forests. We show that 3D printed OTMs have low thermal inertia and predict the live animal's equilibration temperature with high accuracy across a wide range of body sizes and microhabitats. Finally, we developed a free online repository and database of 3D scans (https://www.3dotm.org/) to increase the accessibility of this tool to researchers around the world and facilitate ease of production of 3D printed models. 3D printing of OTMs is generalizable to taxa beyond lizards. If widely adopted, this approach promises greater accuracy and reproducibility in studies of terrestrial thermal ecology and should lead to improved forecasts of the biological impacts of climate change.


Asunto(s)
Regulación de la Temperatura Corporal , Lagartos , Animales , Análisis Costo-Beneficio , Reproducibilidad de los Resultados , Temperatura Corporal , Temperatura , Ecosistema , Lagartos/fisiología , Impresión Tridimensional
3.
Ecol Lett ; 26(4): 529-539, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36756845

RESUMEN

Mounting evidence suggests that rapid evolutionary adaptation may rescue some organisms from the impacts of climate change. However, evolutionary constraints might hinder this process, especially when different aspects of environmental change generate antagonistic selection on genetically correlated traits. Here, we use individual-based simulations to explore how genetic correlations underlying the thermal physiology of ectotherms might influence their responses to the two major components of climate change-increases in mean temperature and thermal variability. We found that genetic correlations can influence population dynamics under climate change, with declines in population size varying three-fold depending on the type of correlation present. Surprisingly, populations whose thermal performance curves were constrained by genetic correlations often declined less rapidly than unconstrained populations. Our results suggest that accurate forecasts of the impact of climate change on ectotherms will require an understanding of the genetic architecture of the traits under selection.


Asunto(s)
Adaptación Fisiológica , Cambio Climático , Adaptación Fisiológica/genética , Aclimatación , Evolución Biológica , Temperatura
4.
Proc Biol Sci ; 290(2000): 20230865, 2023 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-37312553

RESUMEN

In the era of human-driven climate change, understanding whether behavioural buffering of temperature change is linked with organismal fitness is essential. According to the 'cost-benefit' model of thermoregulation, animals that live in environments with high frequencies of favourable thermal microclimates should incur lower thermoregulatory costs, thermoregulate more efficiently and shunt the associated savings in time and energy towards other vital tasks such as feeding, territory defence and mate acquisition, increasing fitness. Here, we explore how thermal landscapes at the scale of individual territories, physiological performance and behaviour interact and shape fitness in the southern rock agama lizard (Agama atra). We integrated laboratory assays of whole organism performance with behavioural observations in the field, fine-scale estimates of environmental temperature, and paternity assignment of offspring to test whether fitness is predicted by territory thermal quality (i.e. the number of hours that operative temperatures in a territory fall within an individual's performance breadth). Male lizards that occupied territories of low thermal quality spent more time behaviourally compensating for sub-optimal temperatures and displayed less. Further, display rate was positively associated with lizard fitness, suggesting that there is an opportunity cost to engaging in thermoregulatory behaviour that will change as climate change progresses.


Asunto(s)
Técnicas de Observación Conductual , Lagartos , Animales , Humanos , Masculino , Fenotipo , Regulación de la Temperatura Corporal , Cambio Climático , Renta
5.
J Exp Biol ; 226(11)2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37249067

RESUMEN

Regional heterothermy is a pattern whereby different body regions are maintained at different temperatures, often to prioritize the function of certain body parts over others, or to maximize the function of organs and tissues that vary in thermal sensitivity. Regional heterothermy is relatively well understood in endotherms, where physiological mechanisms maintain heterogeneity. However, less is known about regional heterothermy in ectotherms, where behavioral mechanisms are more important for generating thermal variation. In particular, whether small and elongate ectotherms with high surface area to volume ratios such as diminutive snakes can maintain regional heterothermy, despite rapid thermal equilibration, is not yet known. We measured regional variation in body temperature and tested whether environmental heterogeneity is used to generate regional heterothermy in the ring-necked snake (Diadophis punctatus) using both field and laboratory studies. We found that ring-necked snakes have robust regional heterothermy in a variety of contexts, despite their small body size and elongate body shape. Temperature variation along the length of their bodies was not detectable when measured externally. However, snakes had higher mouth than cloacal temperatures both in the field and in laboratory thermal gradients. Further, this regional heterothermy was maintained even in ambient laboratory conditions, where the thermal environment was relatively homogeneous. Our results indicate that regional heterothermy in ring-necked snakes is not solely driven by environmental variation but is instead linked to physiological or morphological mechanisms that maintain regional variation in body temperature irrespective of environmental context.


Asunto(s)
Regulación de la Temperatura Corporal , Colubridae , Animales , Regulación de la Temperatura Corporal/fisiología , Temperatura , Tamaño Corporal
6.
Appl Environ Microbiol ; 88(19): e0053022, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36165625

RESUMEN

As rising temperatures threaten biodiversity across the globe, tropical ectotherms are thought to be particularly vulnerable due to their narrow thermal tolerance ranges. Nevertheless, physiology-based models highlighting the vulnerability of tropical organisms rarely consider the contributions of their gut microbiota, even though microbiomes influence numerous host traits, including thermal tolerance. We combined field and lab experiments to understand the response of the slender anole lizard (Anolis apletophallus) gut microbiome to climatic shifts of various magnitude and duration. First, to examine the effects of long-term climate warming in the wild, we transplanted lizards from the mainland Panama to a series of warmer islands in the Panama Canal and compared their gut microbiome compositions after three generations of divergence. Next, we mimicked the effects of a short-term "heat-wave" by using a greenhouse experiment and explored the link between gut microbiome composition and lizard thermal physiology. Finally, we examined variation in gut microbiomes in our mainland population in the years both before and after a naturally occurring drought. Our results suggest that slender anole microbiomes are surprisingly resilient to short-term warming. However, both the taxonomic and predicted functional compositions of the gut microbiome varied by sampling year across all sites, suggesting that the drought may have had a regional effect. We provide evidence that short-term heat waves may not substantially affect the gut microbiota, while more sustained climate anomalies may have effects at broad geographic scales. IMPORTANCE As climate change progresses, it is crucial to understand how animals will respond to shifts in their local environments. One component of this response involves changes in the microbial communities living in and on host organisms. These "microbiomes" can affect many processes that contribute to host health and survival, yet few studies have measured changes in the microbiomes of wild organisms experiencing novel climatic conditions. We examined the effects of shifting climates on the gut microbiome of the slender anole lizard (Anolis apletophallus) by using a combination of field and laboratory studies, including transplants to warm islands in the Panama Canal. We found that slender anole microbiomes remain stable in response to short-term warming but may be sensitive to sustained climate anomalies, such as droughts. We discuss the significance of these findings for a species that is considered highly vulnerable to climate change.


Asunto(s)
Microbioma Gastrointestinal , Lagartos , Animales , Biodiversidad , Cambio Climático , Sequías , Lagartos/fisiología
7.
J Exp Biol ; 224(Pt 2)2021 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-33328289

RESUMEN

If fitness optima for a given trait differ between males and females in a population, sexual dimorphism may evolve. Sex-biased trait variation may affect patterns of habitat use, and if the microhabitats used by each sex have dissimilar microclimates, this can drive sex-specific selection on thermal physiology. Nevertheless, tests of differences between the sexes in thermal physiology are uncommon, and studies linking these differences to microhabitat use or behavior are even rarer. We examined microhabitat use and thermal physiology in two ectothermic congeners that are ecologically similar but differ in their degree of sexual size dimorphism. Brown anoles (Anolis sagrei) exhibit male-biased sexual size dimorphism and live in thermally heterogeneous habitats, whereas slender anoles (Anolis apletophallus) are sexually monomorphic in body size and live in thermally homogeneous habitats. We hypothesized that differences in habitat use between the sexes would drive sexual divergence in thermal physiology in brown anoles, but not slender anoles, because male and female brown anoles may be exposed to divergent microclimates. We found that male and female brown anoles, but not slender anoles, used perches with different thermal characteristics and were sexually dimorphic in thermal tolerance traits. However, field-active body temperatures and behavior in a laboratory thermal arena did not differ between females and males in either species. Our results suggest that sexual dimorphism in thermal physiology can arise from phenotypic plasticity or sex-specific selection on traits that are linked to thermal tolerance, rather than from direct effects of thermal environments experienced by males and females.


Asunto(s)
Lagartos , Adaptación Fisiológica , Animales , Tamaño Corporal , Ecosistema , Femenino , Masculino , Caracteres Sexuales
8.
Biol Lett ; 16(8): 20200474, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32750271

RESUMEN

Introduced species can become invasive, damaging ecosystems and disrupting economies through explosive population growth. One mechanism underlying population expansion in invasive populations is 'enemy release', whereby the invader experiences relaxation of agonistic interactions with other species, including parasites. However, direct observational evidence of release from parasitism during invasion is rare. We mimicked the early stages of invasion by experimentally translocating populations of mite-parasitized slender anole lizards (Anolis apletophallus) to islands that varied in the number of native anoles. Two islands were anole-free prior to the introduction, whereas a third island had a resident population of Gaige's anole (Anolis gaigei). We then characterized changes in trombiculid mite parasitism over multiple generations post-introduction. We found that mites rapidly went extinct on one-species islands, but that lizards introduced to the two-species island retained mites. After three generations, the two-species island had the highest total density and biomass of lizards, but the lowest density of the introduced species, implying that the 'invasion' had been less successful. This field-transplant study suggests that native species can be 'enemy reservoirs' that facilitate co-colonization of ectoparasites with the invasive host. Broadly, these results indicate that the presence of intact and diverse native communities may help to curb invasiveness.


Asunto(s)
Lagartos , Parásitos , Animales , Ecosistema , Especies Introducidas , Islas
9.
J Therm Biol ; 94: 102755, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33292996

RESUMEN

Organismal performance is strongly linked to temperature because of the fundamental thermal dependence of chemical reaction rates. However, the relationship between the environment and body temperature can be altered by morphology and ecology. In particular, body size and body shape can impact thermal inertia, as high surface area to volume ratios will possess low thermal mass. Habitat type can also influence thermal physiology by altering the opportunity for thermoregulation. We studied the thermal ecology and physiology of an elongate invertebrate, the bark centipede (Scolopocryptops sexspinosus). We characterized field body temperature and environmental temperature distributions, measured thermal tolerance limits, and constructed thermal performance curves for a population in southern Georgia. We found evidence that bark centipedes behaviorally thermoregulate, despite living in sheltered microhabitats, and that performance was maintained over a broad range of temperatures (over 20 °C). However, both the thermal optimum for performance and upper thermal tolerance were much higher than mean body temperature in the field. Together, these results suggest that centipedes can thermoregulate and maintain performance over a broad range of temperatures but are sensitive to extreme temperatures. More broadly, our results suggest that wide performance breadth could be an adaptation to thermal heterogeneity in space and time for a species with low thermal inertia.


Asunto(s)
Quilópodos/fisiología , Termotolerancia , Animales , Temperatura Corporal , Locomoción , Temperatura
10.
Glob Chang Biol ; 25(9): 3110-3120, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31148329

RESUMEN

Laboratory measurements of physiological and demographic tolerances are important in understanding the impact of climate change on species diversity; however, it has been recognized that forecasts based solely on these laboratory estimates overestimate risk by omitting the capacity for species to utilize microclimatic variation via behavioral adjustments in activity patterns or habitat choice. The complex, and often context-dependent nature, of microclimate utilization has been an impediment to the advancement of general predictive models. Here, we overcome this impediment and estimate the potential impact of warming on the fitness of ectotherms using a benefit/cost trade-off derived from the simple and broadly documented thermal performance curve and a generalized cost function. Our framework reveals that, for certain environments, the cost of behavioral thermoregulation can be reduced as warming occurs, enabling behavioral buffering (e.g., the capacity for behavior to ameliorate detrimental impacts) and "behavioral rescue" from extinction in extreme cases. By applying our framework to operative temperature and physiological data collected at an extremely fine spatial scale in an African lizard, we show that new behavioral opportunities may emerge. Finally, we explore large-scale geographic differences in the impact of behavior on climate-impact projections using a global dataset of 38 insect species. These multiple lines of inference indicate that understanding the existing relationship between thermal characteristics (e.g., spatial configuration, spatial heterogeneity, and modal temperature) is essential for improving estimates of extinction risk.


Asunto(s)
Cambio Climático , Lagartos , Animales , Regulación de la Temperatura Corporal , Microclima , Temperatura
11.
Oecologia ; 191(4): 817-827, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31679039

RESUMEN

A classic question in evolutionary biology is whether behavioral flexibility hastens or hinders evolutionary change. The latter idea, that behavior reduces the number of environmental states experienced by an organism and buffers that organism against selection, has been dubbed the "Bogert Effect" after Charles Bogert, the biologist who first popularized the phenomenon using data from lizards. The Bogert Effect is pervasive when traits like body temperature, which tend to be invariant across space in species that behaviorally thermoregulate, are considered. Nevertheless, behavioral thermoregulation decreases or stops when spatial variation in operative temperature is low. We compared environmental temperatures, thermoregulatory behavior, and a suite of physiological and morphological traits between two populations of the southern rock agama (Agama atra) in South Africa that experience different climatic regimes. Individuals from both populations thermoregulated efficiently, maintaining body temperatures within their preferred temperature range throughout most of their activity cycle. Nevertheless, they differed in the thermal sensitivity of resting metabolic rate at cooler body temperatures and in morphology. Our results support the common assertion that thermoregulatory behavior may prevent divergence in traits like field-active body temperature, which are measured during periods of high environmental heterogeneity. Nevertheless, we show that other traits may be free to diverge if they are under selection during times when environments are homogenous. We argue that the importance of the Bogert Effect is critically dependent on the nature of environmental heterogeneity and will therefore be relevant to some traits and irrelevant to others in many populations.


Asunto(s)
Regulación de la Temperatura Corporal , Lagartos , Animales , Evolución Biológica , Sudáfrica , Temperatura
12.
Proc Biol Sci ; 285(1878)2018 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-29743257

RESUMEN

Ectothermic species are particularly sensitive to changes in temperature and may adapt to changes in thermal environments through evolutionary shifts in thermal physiology or thermoregulatory behaviour. Nevertheless, the heritability of thermal traits, which sets a limit on evolutionary potential, remains largely unexplored. In this study, we captured brown anole lizards (Anolis sagrei) from two populations that occur in contrasting thermal environments. We raised offspring from these populations in a laboratory common garden and compared the shape of their thermal performance curves to test for genetic divergence in thermal physiology. Thermal performance curves differed between populations in a common garden in ways partially consistent with divergent patterns of natural selection experienced by the source populations, implying that they had evolved in response to selection. Next, we estimated the heritability of thermal performance curves and of several traits related to thermoregulatory behaviour. We did not detect significant heritability in most components of the thermal performance curve or in several aspects of thermoregulatory behaviour, suggesting that contemporary selection is unlikely to result in rapid evolution. Our results indicate that the response to selection may be slow in the brown anole and that evolutionary change is unlikely to keep pace with current rates of environmental change.


Asunto(s)
Regulación de la Temperatura Corporal/genética , Flujo Genético , Lagartos/fisiología , Animales , Bahamas , Femenino , Lagartos/genética , Masculino , Selección Genética
13.
J Therm Biol ; 71: 232-236, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29301695

RESUMEN

Biochemical reaction rates are highly sensitive to temperature, and the body temperatures of ectotherms covary with their immediate environment. Therefore, ectotherms should choose microhabitats that permit the maintenance of physiological function. While some previous studies have found that squamate reptiles choose retreat sites that allow them to maintain physiologically optimal body temperatures, this research has been limited in context and taxonomic scope. We sought to test these empirical patterns by studying the properties of retreat sites in the context of physiological preferences and tolerances in a population of semifossorial ring-necked snakes (Diadophis punctatus). We measured environmental temperature distributions of retreat sites, field body temperatures, thermal preferences, and both upper voluntary temperature and critical thermal minima of snakes. We found that ring-necked snakes are under larger and warmer rocks, but that body temperatures in the field do not match thermal preferences measured in the laboratory. Specifically, we found aggregated ring-necked snakes (those occurring with multiple conspecifics) select rocks providing environmental temperatures averaging 3°C higher than their preferred temperature. By contrast, solitary snakes select rocks that allowed them to maintain their body temperatures very close to their preferred temperatures. These results imply that there is substantial within and among-species variation in the role of thermal considerations in retreat-site selection. Our work also highlights the complex tradeoffs between physiological and ecological requirements that organisms must navigate in heterogeneous habitats.


Asunto(s)
Aclimatación , Temperatura Corporal , Locomoción , Serpientes/fisiología , Animales , Frío , Ecosistema , Calor
14.
Proc Natl Acad Sci U S A ; 111(39): 14165-9, 2014 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-25225361

RESUMEN

Tropical ectotherms are thought to be especially vulnerable to climate change because they are adapted to relatively stable temperature regimes, such that even small increases in environmental temperature may lead to large decreases in physiological performance. One way in which tropical organisms may mitigate the detrimental effects of warming is through evolutionary change in thermal physiology. The speed and magnitude of this response depend, in part, on the strength of climate-driven selection. However, many ectotherms use behavioral adjustments to maintain preferred body temperatures in the face of environmental variation. These behaviors may shelter individuals from natural selection, preventing evolutionary adaptation to changing conditions. Here, we mimic the effects of climate change by experimentally transplanting a population of Anolis sagrei lizards to a novel thermal environment. Transplanted lizards experienced warmer and more thermally variable conditions, which resulted in strong directional selection on thermal performance traits. These same traits were not under selection in a reference population studied in a less thermally stressful environment. Our results indicate that climate change can exert strong natural selection on tropical ectotherms, despite their ability to thermoregulate behaviorally. To the extent that thermal performance traits are heritable, populations may be capable of rapid adaptation to anthropogenic warming.


Asunto(s)
Aclimatación/genética , Lagartos/genética , Lagartos/fisiología , Selección Genética , Animales , Bahamas , Regulación de la Temperatura Corporal/genética , Cambio Climático , Evolución Molecular , Masculino , Modelos Biológicos , Modelos Genéticos , Clima Tropical
15.
Ecol Evol Physiol ; 97(2): 81-96, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38728692

RESUMEN

AbstractTropical ectotherms are thought to be especially vulnerable to climate change because they have evolved in temporally stable thermal environments and therefore have decreased tolerance for thermal variability. Thus, they are expected to have narrow thermal tolerance ranges, live close to their upper thermal tolerance limits, and have decreased thermal acclimation capacity. Although models often predict that tropical forest ectotherms are especially vulnerable to rapid environmental shifts, these models rarely include the potential for plasticity of relevant traits. We measured phenotypic plasticity of thermal tolerance and thermal preference as well as multitissue transcriptome plasticity in response to warmer temperatures in a species that previous work has suggested is highly vulnerable to climate warming, the Panamanian slender anole lizard (Anolis apletophallus). We found that many genes, including heat shock proteins, were differentially expressed across tissues in response to short-term warming. Under long-term warming, the voluntary thermal maxima of lizards also increased, although thermal preference exhibited only limited plasticity. Using these data, we modeled changes in the activity time of slender anoles through the end of the century under climate change and found that plasticity should delay declines in activity time by at least two decades. Our results suggest that slender anoles, and possibly other tropical ectotherms, can alter the expression of genes and phenotypes when responding to shifting environmental temperatures and that plasticity should be considered when predicting the future of organisms under a changing climate.


Asunto(s)
Cambio Climático , Lagartos , Termotolerancia , Clima Tropical , Animales , Lagartos/genética , Lagartos/fisiología , Termotolerancia/genética , Bosques , Aclimatación/genética , Aclimatación/fisiología , Transcriptoma , Expresión Génica
16.
Glob Chang Biol ; 19(10): 3093-102, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23661358

RESUMEN

Much attention has been given to recent predictions that widespread extinctions of tropical ectotherms, and tropical forest lizards in particular, will result from anthropogenic climate change. Most of these predictions, however, are based on environmental temperature data measured at a maximum resolution of 1 km(2), whereas individuals of most species experience thermal variation on a much finer scale. To address this disconnect, we combined thermal performance curves for five populations of Anolis lizard from the Bay Islands of Honduras with high-resolution temperature distributions generated from physical models. Previous research has suggested that open-habitat species are likely to invade forest habitat and drive forest species to extinction. We test this hypothesis, and compare the vulnerabilities of closely related, but allopatric, forest species. Our data suggest that the open-habitat populations we studied will not invade forest habitat and may actually benefit from predicted warming for many decades. Conversely, one of the forest species we studied should experience reduced activity time as a result of warming, while two others are unlikely to experience a significant decline in performance. Our results suggest that global-scale predictions generated using low-resolution temperature data may overestimate the vulnerability of many tropical ectotherms to climate change.


Asunto(s)
Cambio Climático , Lagartos/fisiología , Animales , Temperatura Corporal , Ecosistema , Modelos Teóricos , Temperatura , Árboles , Clima Tropical
17.
Microb Biotechnol ; 16(9): 1736-1744, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37247194

RESUMEN

Climate change has rapidly altered many ecosystems, with detrimental effects for biodiversity across the globe. In recent years, it has become increasingly apparent that the microorganisms that live in and on animals can substantially affect host health and physiology, and the structure and function of these microbial communities can be highly sensitive to environmental variables. To date, most studies have focused on the effects of increasing mean temperature on gut microbiota, yet other aspects of climate are also shifting, including temperature variation, seasonal dynamics, precipitation and the frequency of severe weather events. This array of environmental pressures might interact in complex and non-intuitive ways to impact gut microbiota and consequently alter animal fitness. Therefore, understanding the impacts of climate change on animals requires a consideration of multiple types of environmental stressors and their interactive effects on gut microbiota. Here, we present an overview of some of the major findings in research on climatic effects on microbial communities in the animal gut. Although ample evidence has now accumulated that shifts in mean temperature can have important effects on gut microbiota and their hosts, much less work has been conducted on the effects of other climatic variables and their interactions. We provide recommendations for additional research needed to mechanistically link climate change with shifts in animal gut microbiota and host fitness.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Microbioma Gastrointestinal/fisiología , Cambio Climático , Calentamiento Global , Biodiversidad
18.
G3 (Bethesda) ; 14(1)2023 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-37875105

RESUMEN

The slender anole, Anolis apletophallus, is a small arboreal lizard of the rainforest understory of central and eastern Panama. This species has been the subject of numerous ecological and evolutionary studies over the past 60 years as a result of attributes that make it especially amenable to field and laboratory science. Slender anoles are highly abundant, short-lived (nearly 100% annual turnover), easy to manipulate in both the lab and field, and are ubiquitous in the forests surrounding the Smithsonian Tropical Research Institute in Panama, where researchers have access to high-quality laboratory facilities. Here, we present a high-quality genome for the slender anole, which is an important new resource for studying this model species. We assembled and annotated the slender anole genome by combining 3 technologies: Oxford Nanopore, 10× Genomics Linked-Reads, and Dovetail Omni-C. We compared this genome with the recently published brown anole (Anolis sagrei) and the canonical green anole (Anolis carolinensis) genomes. Our genome is the first assembled for an Anolis lizard from mainland Central or South America, the regions that host the majority of diversity in the genus. This new reference genome is one of the most complete genomes of any anole assembled to date and should facilitate deeper studies of slender anole evolution, as well as broader scale comparative genomic studies of both mainland and island species. In turn, such studies will further our understanding of the well-known adaptive radiation of Anolis lizards.


Asunto(s)
Genoma , Lagartos , Animales , Genómica , Lagartos/genética , Árboles/genética
19.
Integr Org Biol ; 4(1): obac025, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35958165

RESUMEN

Sexual size dimorphism is widespread in nature and often develops through sexual divergence in growth trajectories. In vertebrates, the growth hormone/insulin-like growth factor (GH/IGF) network is an important regulator of growth, and components of this network are often regulated in sex-specific fashion during the development of sexual size dimorphism. However, expression of the GH/IGF network is not well characterized outside of mammalian model systems, and the extent to which species differences in sexual size dimorphism are related to differences in GH/IGF network expression is unclear. To begin bridging this gap, we compared GH/IGF network expression in liver and muscle from 2 lizard congeners, one with extreme male-biased sexual size dimorphism (brown anole, Anolis sagrei), and one that is sexually monomorphic in size (slender anole, A. apletophallus). Specifically, we tested whether GH/IGF network expression in adult slender anoles resembles the highly sex-biased expression observed in adult brown anoles or the relatively unbiased expression observed in juvenile brown anoles. We found that adults of the 2 species differed significantly in the strength of sex-biased expression for several key upstream genes in the GH/IGF network, including insulin-like growth factors 1 and 2. However, species differences in sex-biased expression were minor when comparing adult slender anoles to juvenile brown anoles. Moreover, the multivariate expression of the entire GH/IGF network (as represented by the first two principal components describing network expression) was sex-biased for the liver and muscle of adult brown anoles, but not for either tissue in juvenile brown anoles or adult slender anoles. Our work suggests that species differences in sex-biased expression of genes in the GH/IGF network (particularly in the liver) may contribute to the evolution of species differences in sexual size dimorphism.

20.
Ecol Evol ; 12(10): e9402, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36248670

RESUMEN

Understanding the factors that facilitate or constrain establishment of populations in novel environments is crucial for conservation biology and the study of adaptive radiation. Important questions include: (1) Does the timing of colonization relative to stochastic events, such as climatic perturbations, impact the probability of successful establishment? (2) To what extent does community context (e.g., the presence of competitors) change the probability of establishment? (3) How do sources of intrapopulation variance, such as sex differences, affect success at an individual level during the process of establishment? Answers to these questions are rarely pursued in a field-experimental context or on the same time scales (months to years) as the processes of colonization and establishment. We introduced slender anole lizards (Anolis apletophallus) to eight islands in the Panama Canal and tracked them over multiple generations to investigate the factors that mediate establishment success. All islands were warmer than the mainland (ancestral) environment, and some islands had a native competitor. We transplanted half of these populations only 4 months before the onset of a severe regional drought and the other half 2 years (two generations) before the drought. We found that successful establishment depended on both the intensity of interspecific competition and the timing of colonization relative to the drought. The islands that were colonized shortly before the drought went functionally extinct by the second generation, and regardless of time before the drought, the populations on islands with interspecific competition declined continuously over the study period. Furthermore, the effect of the competitor interacted with sex, with males suffering, and females benefitting, from the presence of a native competitor. Our results reveal that community context and the timing of colonization relative to climactic events can combine to determine establishment success and that these factors can generate opposite effects on males and females.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA