Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Phytopathology ; 112(4): 741-751, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34491796

RESUMEN

Fusarium graminearum is ranked among the five most destructive fungal pathogens that affect agroecosystems. It causes floral diseases in small grain cereals including wheat, barley, and oats, as well as maize and rice. We conducted a systematic review of peer-reviewed studies reporting species within the F. graminearum species complex (FGSC) and created two main data tables. The first contained summarized data from the articles including bibliographic, geographic, methodological (ID methods), host of origin and species, while the second data table contains information about the described strains such as publication, isolate code(s), host/substrate, year of isolation, geographical coordinates, species and trichothecene genotype. Analyses of the bibliographic data obtained from 123 publications from 2000 to 2021 by 498 unique authors and published in 40 journals are summarized. We describe the frequency of species and chemotypes for 16,274 strains for which geographical information was available, either provided as raw data or extracted from the publications, and sampled across six continents and 32 countries. The database and interactive interface are publicly available, allowing for searches, summarization, and mapping of strains according to several criteria including article, country, host, species and trichothecene genotype. The database will be updated as new articles are published and should be useful for guiding future surveys and exploring factors associated with species distribution such as climate and land use. Authors are encouraged to submit data at the strain level to the database, which is accessible at https://fgsc.netlify.app.


Asunto(s)
Fusarium , Tricotecenos , Grano Comestible/microbiología , Fusarium/genética , Enfermedades de las Plantas/microbiología
2.
Fungal Genet Biol ; 156: 103613, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34332072

RESUMEN

Fusarium verticillioides is one of the most important fungal pathogens of maize since it causes severe yield losses and produces the mycotoxins fumonisins that represent a major concern for human and animal health. Information about genetic diversity and population structure of fungal pathogens is essential for developing disease management strategies. The aim of this research was to investigate the genetic structure of F. verticillioides isolated from different provinces of Iran through determination of mating type idiomorphs, phylogenetic analyses based on translation elongation factor-1 alpha (EF-1α), RNA Polymerase II Subunit (RPB2), beta-tubulin (tub2) and Calmodulin (cmdA) genes and genetic diversity analyses based on 6 simple-sequence repeats (SSRs). Both mating types were detected in Iranian populations of F. verticillioides, particularly in Qazvin and Khuzestan, with equal frequency, which highlighted that sexual reproduction is favorable under field conditions. However, the linkage disequilibrium indices did not support the hypothesis of random mating in Khuzestan and Fars. Although assessment of nucleotide diversity based on housekeeping genes showed low level of variation among strains, genotype diversity based on SSRs revealed a high level of genetic diversity within Iranian populations. AMOVA analysis highlighted that the genetic variation of F. verticillioides in Iran was mainly distributed within population of a single area (97%), while a small proportion of genetic variation (3%) resided among populations. These patterns of variation are likely explained by the continuous gene flow among populations isolated from different areas. On the other hand, principal coordinate analysis indicated that the distribution of genetic variation among populations could be explained by the geographical distances. Consequently, to reduce pathogen gene flow among regions, the quarantine processes in Iran should be intensified.


Asunto(s)
Repeticiones de Microsatélite , Zea mays , Fusarium , Humanos , Irán , Filogenia
3.
Plant Dis ; 105(3): 525-537, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32915118

RESUMEN

During the last decade, there have been many advances in research and technology that have greatly contributed to expanded capabilities and knowledge in detection and measurement, characterization, biosynthesis, and management of mycotoxins in maize. MycoKey, an EU-funded Horizon 2020 project, was established to advance knowledge and technology transfer around the globe to address mycotoxin impacts in key food and feed chains. MycoKey included several working groups comprising international experts in different fields of mycotoxicology. The MycoKey Maize Working Group recently convened to gather information and strategize for the development and implementation of solutions to the maize mycotoxin problem in light of current and emerging technologies. This feature summarizes the Maize WG discussion and recommendations for addressing mycotoxin problems in maize. Discussions focused on aflatoxins, deoxynivalenol, fumonisins, and zearalenone, which are the most widespread and persistently important mycotoxins in maize. Although regional differences were recognized, there was consensus about many of the priorities for research and effective management strategies. For preharvest management, genetic resistance and selecting adapted maize genotypes, along with insect management, were among the most fruitful strategies identified across the mycotoxin groups. For postharvest management, the most important practices included timely harvest, rapid grain drying, grain cleaning, and carefully managed storage conditions. Remediation practices such as optical sorting, density separation, milling, and chemical detoxification were also suggested. Future research and communication priorities included advanced breeding technologies, development of risk assessment tools, and the development and dissemination of regionally relevant management guidelines.


Asunto(s)
Fumonisinas , Micotoxinas , Contaminación de Alimentos/análisis , Fitomejoramiento , Zea mays
4.
Int J Mol Sci ; 22(17)2021 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-34502209

RESUMEN

The contamination of maize by Fusarium species able to produce mycotoxins raises great concern worldwide since they can accumulate these toxic metabolites in field crop products. Furthermore, little information exists today on the ability of Fusarium proliferatum and Fusarium graminearum, two well know mycotoxigenic species, to translocate from the seeds to the plants up to the kernels. Marketing seeds coated with fungicide molecules is a common practice; however, since there is a growing need for reducing chemicals in agriculture, new eco-friendly strategies are increasingly tested. Technologies based on ionized gases, known as plasmas, have been used for decades, with newer material surfaces, products, and approaches developed continuously. In this research, we tested a plasma-generated bilayer coating for encapsulating prothioconazole at the surface of maize seeds, to protect them from F. graminearum and F. proliferatum infection. A minimum amount of chemical was used, in direct contact with the seeds, with no dispersion in the soil. The ability of F. graminearum and F. proliferatum species to translocate from seeds to seedlings of maize has been clearly proven in our in vitro experiments. As for the use of plasma technology, the combined use of the plasma-generated coating with embedded prothioconazole was the most efficient approach, with a higher reduction of the infection of the maize seminal root system and stems. The debated capability of the two Fusarium species to translocate from seeds to seedlings has been demonstrated. The plasma-generated coating with embedded prothioconazole resulted in a promising sustainable approach for the protection of maize seedlings.


Asunto(s)
Contaminación de Alimentos/análisis , Fungicidas Industriales/farmacología , Fusarium/crecimiento & desarrollo , Gases em Plasma/farmacología , Plantones/crecimiento & desarrollo , Triazoles/farmacología , Zea mays/crecimiento & desarrollo , Contaminación de Alimentos/prevención & control , Fusarium/efectos de los fármacos , Plantones/efectos de los fármacos , Plantones/microbiología , Zea mays/efectos de los fármacos , Zea mays/microbiología
5.
Molecules ; 26(8)2021 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-33917980

RESUMEN

A wide variety of polyphenols are reported to have considerable antioxidant and skin photoprotective effects, although the mechanisms of action are not fully known. Environmentally friendly and inexpensive sources of natural bioactive compounds, such as olive mill wastewater (OMWW), the by-product of olive-oil processing, can be considered an economic source of bioactive polyphenols, with a range of biological activities, useful as chemotherapeutic or cosmeceutical agents. Green strategies, such as the process based on membrane technologies, allow to recover active polyphenols from this complex matrix. This study aims to evaluate the antioxidant, pro-oxidant, and photoprotective effects, including the underlying action mechanism(s), of the ultra-filtered (UF) OMWW fractions, in order to substantiate their use as natural cosmeceutical ingredient. Six chemically characterized UF-OMWW fractions, from Italian and Greek olive cultivar processing, were investigated for their antioxidant activities, measured by Trolox Equivalent Antioxidant Capacity (TEAC), LDL oxidation inhibition, and ROS-quenching ability in UVA-irradiated HEKa (Human Epidermal Keratinocytes adult) cultures. The photoprotective properties of UF-OMWW were assayed as a pro-oxidant-mediated pro-apoptotic effect on the UVA-damaged HEKa cells, which can be potentially involved in the carcinogenesis process. All the UF-OMWW fractions exerted an effective antioxidant activity in vitro and in cells when administered together with UV-radiation on HEKa. A pro-oxidative and pro-apoptotic effect on the UVA-damaged HEKa cells were observed, suggesting some protective actions of polyphenol fraction on keratinocyte cell cultures.


Asunto(s)
Antioxidantes/farmacología , Queratinocitos/efectos de la radiación , Olea/química , Oxidantes/toxicidad , Polifenoles/farmacología , Rayos Ultravioleta , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cromatografía Líquida de Alta Presión , Colorantes Fluorescentes/metabolismo , Humanos , Queratinocitos/efectos de los fármacos , Lipoproteínas LDL/metabolismo , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo , Ultrafiltración
6.
Crit Rev Food Sci Nutr ; 60(18): 3103-3132, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31656083

RESUMEN

Yeasts are eukaryotic microorganisms which have a long history in the biotechnology of food production, as they have been used since centuries in bread-making or in the production of alcoholic beverages such as wines or beers. Relative to this importance, a lot of research has been devoted to the study of yeasts involved in making these important products. The role of yeasts in other fermentations in association with other microorganisms - mainly lactic acid bacteria - has been relatively less studied, and often it is not clear if yeasts occurring in such fermentations are contaminants with no role in the fermentation, spoilage microorganisms or whether they actually serve a technological or functional purpose. Some knowledge is available for yeasts used as starter cultures in fermented raw sausages or in the production of acid curd cheeses. This review aimed to summarize the current knowledge on the taxonomy, the presence and potential functional or technological roles of yeasts in traditional fermented plant, dairy, fish and meat fermentations.


Asunto(s)
Microbiología de Alimentos , Levaduras , Animales , Cerveza , Pan , Fermentación
7.
Appl Microbiol Biotechnol ; 104(18): 7879-7899, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32719911

RESUMEN

FvatfA from the maize pathogen Fusarium verticillioides putatively encodes the Aspergillus nidulans AtfA and Schizasaccharomyces pombe Atf1 orthologous bZIP-type transcription factor, FvAtfA. In this study, a ΔFvatfA deletion mutant was constructed and then genetically complemented with the fully functional FvatfA gene. Comparing phenotypic features of the wild-type parental, the deletion mutant and the restored strains shed light on the versatile regulatory functions played by FvAtfA in (i) the maintenance of vegetative growth on Czapek-Dox and Potato Dextrose agars and invasive growth on unwounded tomato fruits, (ii) the preservation of conidiospore yield and size, (iii) the orchestration of oxidative (H2O2, menadione sodium bisulphite) and cell wall integrity (Congo Red) stress defences and (iv) the regulation of mycotoxin (fumonisins) and pigment (bikaverin, carotenoid) productions. Expression of selected biosynthetic genes both in the fumonisin (fum1, fum8) and the carotenoid (carRA, carB) pathways were down-regulated in the ΔFvatfA strain resulting in defected fumonisin production and considerably decreased carotenoid yields. The expression of bik1, encoding the polyketide synthase needed in bikaverin biosynthesis, was not up-regulated by the deletion of FvatfA meanwhile the ΔFvatfA strain produced approximately ten times more bikaverin than the wild-type or the genetically complemented strains. The abolishment of fumonisin production of the ΔFvatfA strain may lead to the development of new-type, biology-based mycotoxin control strategies. The novel information gained on the regulation of pigment production by this fungus can be interesting for experts working on new, Fusarium-based biomass and pigment production technologies. Key points • FvatfA regulates vegetative and invasive growths of F. verticillioides. • FvatfA also orchestrates oxidative and cell wall integrity stress defenses. • The ΔFvatfA mutant was deficient in fumonisin production. • FvatfA deletion resulted in decreased carotenoid and increased bikaverin yields.


Asunto(s)
Fumonisinas , Fusarium , Micotoxinas , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fusarium/genética , Fusarium/metabolismo , Regulación Fúngica de la Expresión Génica , Peróxido de Hidrógeno , Zea mays/metabolismo
8.
Food Microbiol ; 90: 103469, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32336366

RESUMEN

Fumonisins contamination of food commodities is a worldwide problem, especially for maize. The ability to produce fumonisinsis a trait of several species of Fusarium, mainly F. verticillioides and F. proliferatum on maize, and some Aspergillus species. A. niger and its sister species A. welwitschiae, can contribute to fumonisin B2 (FB2) accumulation in maize kernels, although to a lesser extent than fumonisin-producing Fusarium species. Fumonisins risk monitoring represents an effective strategy in the integrated approach for mycotoxin risk management and reduction. The availability of a user-friendlymolecular assay for the detection oftoxigenic fungal species represents a valuable tool in understanding and managing upcoming mycotoxin contamination. In this study, we developed a LAMP assay, based on the detection of fum10, for a rapid and specific molecular detection of FB2-producing A. niger and A. welwistchiae, potentially useful to perform monitoring directly "on site" in maize chain. Results showed that very low amounts of conidia are suitable to detect the presence of the target gene, thus providing information about the presence of FB2-producing Aspergillus species and the possible upcoming fumonisins contamination in maize. The assay was combined with a suitable protocol for "in field" crude DNA extraction and a colorimetric method for easy naked-eye evaluationof results, offering a reliable and user-friendly tool to support effective reduction strategies of mycotoxin contamination in crop management programs.


Asunto(s)
Aspergillus/aislamiento & purificación , Aspergillus/metabolismo , Fumonisinas/metabolismo , Técnicas de Amplificación de Ácido Nucleico/métodos , Aspergillus/clasificación , Bioensayo , Colorimetría , ADN de Hongos/genética , Contaminación de Alimentos/análisis , Microbiología de Alimentos , Temperatura , Zea mays/microbiología
9.
J Basic Microbiol ; 60(11-12): 994-1003, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33226136

RESUMEN

Superoxide dismutases are key enzymes in elimination of the superoxide anion radical (O2 •- ) generated intracellularly or by exogenous oxidative stress eliciting agents, like menadione. In this study, we investigated the physiological role of the manganese superoxide dismutase-encoding gene in Fusarium verticillioides via the construction of a gene deletion mutant, ΔFvmnSOD and comparing its phenotype with that of the wild-type parental strain and a ΔFvmnSOD' C strain, complemented with the functional manganese superoxide dismutase gene. Deletion of FvmnSOD had no effect on the relative intracellular superoxide ratio but increased the sensitivity of the fungus to menadione sodium bisulphite on Czapek-Dox stress agar plates. The lack of FvmnSOD caused changes in mitochondrial morphology and physiology: The volumetric ratio of these cell organelles in the second hyphal segment, as well as the total, the KCN-sensitive cytochrome c-dependent and the KCN+SHAM (salicylhidroxamic acid)-resistant residual respiration rates, were higher in the mutant as compared to the wild-type and the complemented strains. Nevertheless, changes in the respiration rates were attributable to the higher volumetric ratio of mitochondria found in the gene deletion mutant. Changes in the mitochondrial functions also brought about higher sensitivity to apoptotic cell death elicited by the Penicillium chrysogenum antifungal protein. The gene deletion mutant developed significantly thinner hyphae in comparison to the wild-type strain. Deletion of FvmnSOD had no effect on fumonisin B1 and B2 production of the fungus grown in Myro medium as a static culture.


Asunto(s)
Apoptosis , Proteínas Fúngicas/metabolismo , Fusarium/fisiología , Mitocondrias/fisiología , Estrés Oxidativo , Superóxido Dismutasa/metabolismo , Fumonisinas/metabolismo , Proteínas Fúngicas/genética , Fusarium/genética , Fusarium/crecimiento & desarrollo , Fusarium/metabolismo , Prueba de Complementación Genética , Hifa/genética , Hifa/crecimiento & desarrollo , Hifa/metabolismo , Mitocondrias/enzimología , Mutación , Oxígeno/metabolismo , Fenotipo , Superóxido Dismutasa/genética
10.
Molecules ; 25(20)2020 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-33081360

RESUMEN

The aim of this work was to evaluate the antifungal activity in vapor phase of thymol, p-cymene, and γ-terpinene, the red thyme essential oil compounds (RTOCs). The Minimum Inhibitory Concentration (MIC) of RTOCs was determined against postharvest spoilage fungi of the genera Botrytis, Penicillium, Alternaria, and Monilinia, by measuring the reduction of the fungal biomass after exposure for 72 h at 25 °C. Thymol showed the lowest MIC (7.0 µg/L), followed by γ-terpinene (28.4 µg/L) and p-cymene (40.0 µg/L). In the case of P. digitatum ITEM 9569, resistant to commercial RTO, a better evaluation of interactions among RTOCs was performed using the checkerboard assay and the calculation of the Fractional Inhibitory Concentration Index (FICI). During incubation, changes in the RTOCs concentration were measured by GC-MS analysis. A synergistic effect between thymol (0.013 ± 0.003 L/L) and γ-terpinene (0.990 ± 0.030 L/L) (FICI = 0.50) in binary combinations, and between p-cymene (0.700 ± 0.010 L/L) and γ-terpinene (0.290 ± 0.010 L/L) in presence of thymol (0.008 ± 0.001 L/L) (FICI = 0.19), in ternary combinations was found. The synergistic effect against the strain P. digitatum ITEM 9569 suggests that different combinations among RTOCs could be defined to control fungal strains causing different food spoilage phenomena.


Asunto(s)
Antifúngicos/química , Aceites Volátiles/farmacología , Aceites de Plantas/química , Thymus (Planta)/química , Antifúngicos/farmacología , Botrytis/efectos de los fármacos , Botrytis/patogenicidad , Sinergismo Farmacológico , Cromatografía de Gases y Espectrometría de Masas , Pruebas de Sensibilidad Microbiana , Monoterpenos/química , Monoterpenos/farmacología , Aceites Volátiles/química , Penicillium/efectos de los fármacos , Penicillium/patogenicidad , Aceites de Plantas/farmacología
11.
Molecules ; 25(9)2020 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-32384787

RESUMEN

The Opuntia ficus indica (L.) (OFI) is used as a nutritional and pharmaceutical agent in various dietary and value added products. This study underlines the possible use of native prickly pear cladode powder as a functional ingredient for health-promoting food production. To summarise, chemical characterization of polyphenols, minerals and soluble dietary fibre was performed; furthermore, the antioxidant activity and bioaccessibility of polyphenols and minerals were assessed. Eleven compounds between phenolic acids and flavonoids were identified, with piscidic acid and isorhamnetin derivatives being the most abundant. Opuntia's dietary fibre was mainly constituted of mucilage and pectin, and was composed of arabinose, galactose, glucose, mannose, rhamnose, and xylose sugars. The polyphenols' bioaccessibility was very high: piscidic acid at 200%, eucomic and ferulic acids >110% and flavonoids from 89% to 100%. The prickly pear cladode powder is also a source of minerals, as cations (calcium, sodium, potassium and magnesium) and anions (sulphate and chloride), with high magnesium bioaccessibilty (93%). OFI powder showed good capacity of radical scavenging measured by DPPH and ABTS methods, with 740 and 775 µmol Trolox/100 g OFI, respectively. Finally, the presented results allow the consideration of this natural product as a source of several essential nutrients, with a possible use in the food industry as a functional ingredient.


Asunto(s)
Antioxidantes/análisis , Fibras de la Dieta/análisis , Frutas/química , Micronutrientes/análisis , Opuntia/química , Polifenoles/análisis , Polisacáridos/análisis , Aniones/análisis , Arabinosa/análisis , Benzotiazoles/química , Disponibilidad Biológica , Compuestos de Bifenilo/química , Cationes/análisis , Ácidos Cumáricos/análisis , Flavonoides/análisis , Galactosa/análisis , Glucosa/análisis , Hidroxibenzoatos/análisis , Manosa/análisis , Minerales/análisis , Pectinas/análisis , Pectinas/aislamiento & purificación , Picratos/química , Mucílago de Planta/análisis , Mucílago de Planta/aislamiento & purificación , Ramnosa/análisis , Ácidos Sulfónicos/química , Xilosa/análisis
12.
Compr Rev Food Sci Food Saf ; 19(4): 2013-2049, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-33337106

RESUMEN

Milk and milk products have been utilized by humans for many thousands of years. With the advent of metagenomic studies, our knowledge on the microbiota of milk and milk products, especially as affected by the environment, production, and storage parameters, has increased. Milk quality depends on chemical parameters (fat and protein content and absence of inhibitory substances), as well as microbial and somatic cells counts, and affects the price of milk. The effects of hygiene and effective cooling on the spoilage microbiota have shown that proteolytic and lipolytic bacteria such as Pseudomonas or Acinetobacter spp. predominate the spoilage bacterial populations. These bacteria can produce heat-stable proteases and lipases, which remain active after pasteurization and thus can spoil the milk during prolonged storage. Additionally, milk can become contaminated after pasteurization and therefore there is still a high demand on developing better cleaning and sanitation regimes and equipment, as well as test systems to (quantitatively) detect relevant pathogenic or spoilage microorganisms. Raw milk and raw milk cheese consumption is also increasing worldwide with the growing demand of minimally processed, sustainable, healthy, and local foods. In this context, emerging and re-emerging pathogens once again represent a major food safety challenge. As a result of global warming, it is conceivable that not only microbiological risks but also chemical risks relating to presence of mycotoxins or plant toxins in milk will increase. Herein, we provide an overview of the major microbial hazards occurring in the 21st century.


Asunto(s)
Productos Lácteos/microbiología , Microbiología de Alimentos , Leche/microbiología , Animales , Bacterias/crecimiento & desarrollo , Productos Lácteos/normas , Calidad de los Alimentos , Inocuidad de los Alimentos , Leche/normas
13.
BMC Genomics ; 20(1): 314, 2019 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-31014248

RESUMEN

BACKGROUND: The Fusarium incarnatum-equiseti species complex (FIESC) comprises 33 phylogenetically distinct species that have been recovered from diverse biological sources, but have been most often isolated from agricultural plants and soils. Collectively, members of FIESC can produce diverse mycotoxins. However, because the species diversity of FIESC has been recognized only recently, the potential of species to cause mycotoxin contamination of crop plants is unclear. In this study, therefore, we used comparative genomics to investigate the distribution of and variation in genes and gene clusters responsible for the synthesis of mycotoxins and other secondary metabolites (SMs) in FIESC. RESULTS: We examined genomes of 13 members of FIESC that were selected based primarily on their phylogenetic diversity and/or occurrence on crops. The presence and absence of SM biosynthetic gene clusters varied markedly among the genomes. For example, the trichothecene mycotoxin as well as the carotenoid and fusarubin pigment clusters were present in all genomes examined, whereas the enniatin, fusarin, and zearalenone mycotoxin clusters were present in only some genomes. Some clusters exhibited discontinuous patterns of distribution in that their presence and absence was not correlated with the phylogenetic relationships of species. We also found evidence that cluster loss and horizontal gene transfer have contributed to such distribution patterns. For example, a combination of multiple phylogenetic analyses suggest that five NRPS and seven PKS genes were introduced into FIESC from other Fusarium lineages. CONCLUSION: Our results suggest that although the portion of the genome devoted to SM biosynthesis has remained similar during the evolutionary diversification of FIESC, the ability to produce SMs could be affected by the different distribution of related functional and complete gene clusters.


Asunto(s)
Fusarium/genética , Fusarium/metabolismo , Genoma Fúngico/genética , Evolución Molecular , Genes Fúngicos/genética , Genómica , Familia de Multigenes/genética , Filogenia , Homología de Secuencia de Ácido Nucleico
14.
Food Microbiol ; 78: 62-72, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30497609

RESUMEN

Cave cheese is a surface mold-ripened variety of cheese produced also in South of Italy, exploiting fungal population naturally occurring on cave walls, as part of secondary microbiota for ripening. In this study, 148 fungal strains were isolated from 22 independent cave cheese samples, collected in 13 Italian geographical locations, mostly in Apulian area. DNA-based identification showed the presence of twenty-four fungal species in the outer part of the cheese ripened in caves. Aspergillus westerdijkiae and Penicillium biforme resulted the most frequently isolated species, followed by Penicillium roqueforti and Penicillium solitum. The 86% of cheese sample presented at least one toxigenic species and the 45% revealed the presence of ochratoxigenic species, A. westerdijkiae and A. steynii, suggesting possible mycotoxin risk during ripening stage in caves, confirmed by the presence of ochratoxin A (OTA) in the rind of 36% of samples. In conclusion, cave cheese is a susceptible product for toxigenic mold growth and in particular OTA contamination, therefore adeguate scientific tools for matching organolectic consumer expectations and complete safety of food should be developed, as well as spontaneously molded and not monitored cheeses should not be consumed to avoid mycotoxin risk.


Asunto(s)
Cuevas/microbiología , Queso/microbiología , Hongos/crecimiento & desarrollo , Microbiota/genética , Micotoxinas/aislamiento & purificación , Aspergillus/genética , Aspergillus/crecimiento & desarrollo , Aspergillus/aislamiento & purificación , Aspergillus/fisiología , Microbiología de Alimentos , Inocuidad de los Alimentos/métodos , Hongos/genética , Hongos/aislamiento & purificación , Hongos/fisiología , Humanos , Italia , Micotoxinas/genética , Ocratoxinas/análisis , Penicillium/genética , Penicillium/crecimiento & desarrollo , Penicillium/aislamiento & purificación , Penicillium/fisiología
15.
Food Microbiol ; 82: 177-193, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31027772

RESUMEN

Pseudomonas fluorescens is implicated in food spoilage especially under cold storage. Due to its ability to form biofilm P. fluorescens resists to common disinfection strategies increasing its persistance especially across fresh food chain. Biofilm formation is promoted by several environmental stimuli, but gene expression and protein changes involved in this lifestyle are poorly investigated in this species. In this work a comparative proteomic analysis was performed to investigate metabolic pathways of underlying biofilm formation of the blue cheese pigmenting P. fluorescens ITEM 17298 after incubation at 15 and 30 °C; the same methodology was also applied to reveal the effects of the bovine lactoferrin hydrolysate (HLF) used as antibiofilm agent. At 15 °C biofilm biomass and motility increased, putatively sustained by the induction of regulators (PleD, AlgB, CsrA/RsmA) involved in these phenotypic traits. In addition, for the first time, TycC and GbrS, correlated to indigoidine synthesis (blue pigment), were detected and identified. An increase of virulence factors amounts (leukotoxin and PROKKA_04561) were instead found at 30 °C. HLF caused a significant reduction in biofilm biomass; indeed, at 15 °C HLF repressed PleD, TycC and GbrS and induced the negative regulators of alginate biosynthesis; at both temperatures induced the cyclic-di-GMP-binding biofilm dispersal mediator (PROKKA_02061). In conclusion, in this work protein determinats of biofilm formation were revelead in ITEM 17298 under the low temperature; the synthesis of these latter were inhibited by HLF confirming its possible exploitation as antibiofilm agent for biotechnological applications in cold stored foods.


Asunto(s)
Antiinfecciosos/farmacología , Biopelículas/efectos de los fármacos , Queso/microbiología , Microbiología de Alimentos , Lactoferrina/química , Pepsina A/química , Pseudomonas fluorescens/efectos de los fármacos , Animales , Antiinfecciosos/química , Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Bovinos , Frío , Redes y Vías Metabólicas/efectos de los fármacos , Pigmentos Biológicos/metabolismo , Proteómica , Pseudomonas fluorescens/crecimiento & desarrollo , Pseudomonas fluorescens/metabolismo , Factores de Virulencia/metabolismo
16.
Foodborne Pathog Dis ; 16(9): 638-647, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31099588

RESUMEN

Yeast cell wall (YCW) products are used worldwide as alternatives to antibiotics growth promoters for health and performances improvement in livestock. The success of yeast and YCW products as feed additives in farm animals' nutrition relies on their capacity to bind enteropathogenic bacteria and on their immunomodulatory activity. In vivo studies report their anti-infectious activity on Gram-positive pathogens like clostridia. However, the in vitro antimicrobial activity of YCW products seems to be limited to some Gram-negative enteropathogens, and literature lacks in vitro evidences for antimicrobial effect of YCW products against Clostridium perfringens. This study aims to measure the antimicrobial activity of YCW products on C. perfringens. Five different YCW products were assayed for their capacity to inhibit the growth of C. perfringens, by analyzing the growth kinetics of the pathogen. All YCW products inhibited the growth of the pathogen, by reducing the growth rate and the maximum growth value and extending the lag phase duration. The effect on the growth parameters was product and dosage dependent. The most effective YCW (namely YCW2), at the minimum effective concentration of 1.25 mg/mL, increased the lag phase duration by 3.6 h, reduced the maximum growth rate by >50%, and reduced the final cell count by 102 colony-forming unit per milliliter in 24 h, with respect to the control. YCW products did not show a strain-dependent impact on C. perfringens growth when tested on different strains of the bacterium.


Asunto(s)
Alimentación Animal , Antibacterianos/farmacología , Extractos Celulares/farmacología , Clostridium perfringens/efectos de los fármacos , Microbiología de Alimentos , Levaduras/fisiología , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Pared Celular/química , Suplementos Dietéticos , Pruebas de Sensibilidad Microbiana , Aves de Corral , Levaduras/química
17.
Foodborne Pathog Dis ; 16(9): 630-637, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31099591

RESUMEN

Yeast cell wall (YCW) products are currently used as substitutes to antibiotic growth promoters, to improve animal performances, and to reduce the incidence of infectious diseases in livestock. They are claimed to bind enteropathogens, thus interfering with their colonization in the intestinal mucosa. Although the anti-infectious activity of YCW products on Gram-positive pathogens like Clostridium perfringens has been reported in vivo, in vitro evidences on the adsorption of C. perfringens by YCW fractions are not yet available. Preliminary results showed that purified YCW products exert antimicrobial activity toward C. perfringens. Using the adsorption isotherm approach, we measured the ability of YCW products in adsorbing C. perfringens, thus reducing its viability. Dosages of YCW products >1 mg/mL adsorbed 4 Log colony-forming unit (CFU)/mL of C. perfringens in buffered solution. The maximum adsorption of the bacterium was reached in 3 h, whereas only one product of four YCW products retained the adsorption up to 6 h. The analysis of equilibrium isotherms and adsorption kinetics revealed that all products adsorb C. perfringens in a dose- and time-dependent manner, with high affinity and capacity, sequestering up to 4 Log CFU/mg of product. The determination of adsorption parameters allows to differentiate among adsorbents and select the most efficient product. This approach discriminated among YCW products more efficiently than the antimicrobial assay. In conclusion, this study suggests that the ability of YCW products in reducing C. perfringens viability can be the result of an adsorption mechanism.


Asunto(s)
Alimentación Animal , Extractos Celulares/farmacología , Clostridium perfringens/fisiología , Microbiología de Alimentos , Levaduras/fisiología , Adsorción , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Pared Celular/fisiología , Suplementos Dietéticos , Aves de Corral
18.
J Sci Food Agric ; 99(4): 1623-1634, 2019 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-30187492

RESUMEN

BACKGROUND: Biosorption using agricultural by-products has been proven as a low-cost and safe way to sequester mycotoxins. Few agricultural by-products have been studied for their efficacy in adsorbing simultaneously a large range of mycotoxins. The present work compared the ability of 51 agricultural by-products to adsorb mycotoxins from liquid mediums simulating physiological pH values, and it studied the mechanism for mycotoxin adsorption by isotherm adsorption experiments. RESULTS: Grape pomaces, artichoke wastes, and almond hulls were selected as promising biosorbents for mycotoxins, being quite effective towards aflatoxin B1 (AFB1 ), zearalenone (ZEA), and ochratoxin A (OTA). Their adsorption was not affected by medium pH, and the adsorbed fraction was not released when pH rose from acid to neutral values. Fumonisin B1 (FB1 ) was adsorbed to a lesser extent, and deoxynivalenol adsorption was not recorded. For the selected biosorbents, maximum adsorption capacity calculated by the best fitting model (Freundlich, Langmuir, or Sips equation) ranged from 1.2 to 2.9 µg mg-1 for AFB1 , 1.3 to 2.7 µg mg-1 for ZEA, 0.03 from 2.9 µg mg-1 for OTA, and 0.01-1.1 µg mg-1 for FB1 . CONCLUSION: This study confirms that some agricultural by-products can find technological applications as feed/food additives for mycotoxin reduction. © 2018 Society of Chemical Industry.


Asunto(s)
Micotoxinas/química , Extractos Vegetales/química , Residuos/análisis , Adsorción , Productos Agrícolas/química , Cynara scolymus/química , Vitis/química
19.
J Sci Food Agric ; 99(5): 2504-2512, 2019 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-30379330

RESUMEN

BACKGROUND: Table olive fermentation is an unpredictable process and frequently performed using traditional practices often inadequate to obtain products with acceptable quality and safety standards. In the present study, the efficacy of selected yeast strains as starters to drive fermentations of green and black table olives by the Greek method was investigated. Pilot-scale production by spontaneous fermentation as a control, olives started with previously selected Saccharomyces cerevisiae strains and fermentation driven by commercial S. cerevisiae baker's yeast strain were carried out for each of Manzanilla, Picual and Kalamàta table olive cultivars. RESULTS: Time of fermentation was significantly shortened to 40 days to complete the transformation process for all three tested cultivars. Inoculated table olives were enhanced in their organoleptic and nutritional properties in comparison with corresponding samples obtained by spontaneous fermentation. The use of starters was also able to improve safety traits of table olives in terms of biogenic amine reduction as well as absence of undesired microorganisms at the end of the process. CONCLUSIONS: Autochthonous, but also non-autochthonous, yeasts can be used to start and control table olive fermentations and can significantly improve quality and safety aspects of table olives produced by many smallholder farmers. © 2018 Society of Chemical Industry.


Asunto(s)
Olea/microbiología , Saccharomyces cerevisiae/metabolismo , Fermentación , Microbiología de Alimentos , Frutas/química , Frutas/microbiología , Grecia , Olea/química
20.
BMC Genomics ; 19(1): 662, 2018 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-30200883

RESUMEN

BACKGROUND: So far, biocontrol agent selection has been performed mainly by time consuming in vitro confrontation tests followed by extensive trials in greenhouse and field. An alternative approach is offered by application of high-throughput techniques, which allow extensive screening and comparison among strains for desired genetic traits. In the genus Trichoderma, the past assignments of particular features or strains to one species need to be reconsidered according to the recent taxonomic revisions. Here we present the genome of a biocontrol strain formerly known as Trichoderma harzianum ITEM 908, which exhibits both growth promoting capabilities and antagonism against different fungal pathogens, including Fusarium graminearum, Rhizoctonia solani, and the root-knot nematode Meloidogyne incognita. By genomic analysis of ITEM 908 we investigated the occurrence and the relevance of genes associated to biocontrol and stress tolerance, providing a basis for future investigation aiming to unravel the complex relationships between genomic endowment and exhibited activities of this strain. RESULTS: The MLST analysis of ITS-TEF1 concatenated datasets reclassified ITEM 908 as T. atrobrunneum, a species recently described within the T. harzianum species complex and phylogenetically close to T. afroharzianum and T. guizhouense. Genomic analysis revealed the presence of a broad range of genes encoding for carbohydrate active enzymes (CAZYmes), proteins involved in secondary metabolites production, peptaboils, epidithiodioxopiperazines and siderophores potentially involved in parasitism, saprophytic degradation as well as in biocontrol and antagonistic activities. This abundance is comparable to other Trichoderma spp. in the T. harzianum species complex, but broader than in other biocontrol species and in the species T. reesei, known for its industrial application in cellulase production. Comparative analysis also demonstrated similar genomic organization of major secondary metabolites clusters, as in other Trichoderma species. CONCLUSIONS: Reported data provide a contribution to a deeper understanding of the mode of action and identification of activity-specific genetic markers useful for selection and improvement of biocontrol strains. This work will also enlarge the availability of genomic data to perform comparative studies with the aim to correlate phenotypic differences with genetic diversity of Trichoderma species.


Asunto(s)
Genómica , Trichoderma/genética , Familia de Multigenes/genética , Tipificación de Secuencias Multilocus , Trichoderma/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA