RESUMEN
Although infections among vaccinated individuals lead to milder COVID-19 symptoms relative to those in unvaccinated subjects, the specificity and durability of antibody responses elicited by breakthrough cases remain unknown. Here, we demonstrate that breakthrough infections induce serum-binding and -neutralizing antibody responses that are markedly more potent, durable, and resilient to spike mutations observed in variants than those in subjects who received only 2 doses of vaccine. However, we show that breakthrough cases, subjects who were vaccinated after infection, and individuals vaccinated three times have serum-neutralizing activity of comparable magnitude and breadth, indicating that an increased number of exposures to SARS-CoV-2 antigen(s) enhance the quality of antibody responses. Neutralization of SARS-CoV was moderate, however, underscoring the importance of developing vaccines eliciting broad sarbecovirus immunity for pandemic preparedness.
RESUMEN
Immune imprinting describes how the first exposure to a virus shapes immunological outcomes of subsequent exposures to antigenically related strains. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) Omicron breakthrough infections and bivalent COVID-19 vaccination primarily recall cross-reactive memory B cells induced by prior Wuhan-Hu-1 spike mRNA vaccination rather than priming Omicron-specific naive B cells. These findings indicate that immune imprinting occurs after repeated Wuhan-Hu-1 spike exposures, but whether it can be overcome remains unclear. To understand the persistence of immune imprinting, we investigated memory and plasma antibody responses after administration of the updated XBB.1.5 COVID-19 mRNA vaccine booster. We showed that the XBB.1.5 booster elicited neutralizing antibody responses against current variants that were dominated by recall of pre-existing memory B cells previously induced by the Wuhan-Hu-1 spike. Therefore, immune imprinting persists after multiple exposures to Omicron spikes through vaccination and infection, including post XBB.1.5 booster vaccination, which will need to be considered to guide future vaccination.
Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , COVID-19/prevención & control , SARS-CoV-2 , Anticuerpos Neutralizantes , ARN Mensajero/genética , Vacunación , Anticuerpos AntiviralesRESUMEN
SARS-CoV-2 variants acquire mutations in the spike protein that promote immune evasion1 and affect other properties that contribute to viral fitness, such as ACE2 receptor binding and cell entry2,3. Knowledge of how mutations affect these spike phenotypes can provide insight into the current and potential future evolution of the virus. Here we use pseudovirus deep mutational scanning4 to measure how more than 9,000 mutations across the full XBB.1.5 and BA.2 spikes affect ACE2 binding, cell entry or escape from human sera. We find that mutations outside the receptor-binding domain (RBD) have meaningfully affected ACE2 binding during SARS-CoV-2 evolution. We also measure how mutations to the XBB.1.5 spike affect neutralization by serum from individuals who recently had SARS-CoV-2 infections. The strongest serum escape mutations are in the RBD at sites 357, 420, 440, 456 and 473; however, the antigenic effects of these mutations vary across individuals. We also identify strong escape mutations outside the RBD; however, many of them decrease ACE2 binding, suggesting they act by modulating RBD conformation. Notably, the growth rates of human SARS-CoV-2 clades can be explained in substantial part by the measured effects of mutations on spike phenotypes, suggesting our data could enable better prediction of viral evolution.
Asunto(s)
Análisis Mutacional de ADN , Evolución Molecular , Aptitud Genética , Evasión Inmune , Mutación , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Humanos , Enzima Convertidora de Angiotensina 2/metabolismo , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Sitios de Unión , COVID-19/inmunología , COVID-19/virología , Aptitud Genética/genética , Evasión Inmune/genética , Pruebas de Neutralización , Unión Proteica , Dominios Proteicos/genética , SARS-CoV-2/genética , SARS-CoV-2/inmunología , SARS-CoV-2/clasificación , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/metabolismo , Glicoproteína de la Espiga del Coronavirus/inmunología , Internalización del Virus , Células HEK293RESUMEN
The recently emerged SARS-CoV-2 Omicron variant encodes 37 amino acid substitutions in the spike protein, 15 of which are in the receptor-binding domain (RBD), thereby raising concerns about the effectiveness of available vaccines and antibody-based therapeutics. Here we show that the Omicron RBD binds to human ACE2 with enhanced affinity, relative to the Wuhan-Hu-1 RBD, and binds to mouse ACE2. Marked reductions in neutralizing activity were observed against Omicron compared to the ancestral pseudovirus in plasma from convalescent individuals and from individuals who had been vaccinated against SARS-CoV-2, but this loss was less pronounced after a third dose of vaccine. Most monoclonal antibodies that are directed against the receptor-binding motif lost in vitro neutralizing activity against Omicron, with only 3 out of 29 monoclonal antibodies retaining unaltered potency, including the ACE2-mimicking S2K146 antibody1. Furthermore, a fraction of broadly neutralizing sarbecovirus monoclonal antibodies neutralized Omicron through recognition of antigenic sites outside the receptor-binding motif, including sotrovimab2, S2X2593 and S2H974. The magnitude of Omicron-mediated immune evasion marks a major antigenic shift in SARS-CoV-2. Broadly neutralizing monoclonal antibodies that recognize RBD epitopes that are conserved among SARS-CoV-2 variants and other sarbecoviruses may prove key to controlling the ongoing pandemic and future zoonotic spillovers.
Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Antivirales/inmunología , Deriva y Cambio Antigénico/inmunología , Anticuerpos ampliamente neutralizantes/inmunología , Pruebas de Neutralización , SARS-CoV-2/inmunología , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Monoclonales Humanizados/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Deriva y Cambio Antigénico/genética , Vacunas contra la COVID-19/inmunología , Línea Celular , Convalecencia , Epítopos de Linfocito B/inmunología , Humanos , Evasión Inmune , Ratones , SARS-CoV-2/química , SARS-CoV-2/clasificación , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Vesiculovirus/genéticaRESUMEN
Immune imprinting - also known as 'original antigenic sin' - describes how the first exposure to a virus shapes the immunological outcome of subsequent exposures to antigenically related strains. SARS-CoV-2 Omicron breakthrough infections and bivalent COVID-19 vaccination were shown to primarily recall cross-reactive memory B cells and antibodies induced by prior mRNA vaccination with the Wuhan-Hu-1 spike rather than priming naive B cells that recognize Omicron-specific epitopes. These findings underscored a strong immune imprinting resulting from repeated Wuhan-Hu-1 spike exposures. To understand if immune imprinting can be overcome, we investigated memory and plasma antibody responses after administration of the updated XBB.1.5 COVID mRNA vaccine booster. Our data show that the XBB.1.5 booster elicits neutralizing antibody responses against current variants that are dominated by recall of pre-existing memory B cells previously induced by the Wuhan-Hu-1 spike. These results indicate that immune imprinting persists even after multiple exposures to Omicron spikes through vaccination and infection, including post XBB.1.5 spike booster mRNA vaccination, which will need to be considered to guide the design of future vaccine boosters.
RESUMEN
SARS-CoV-2 variants acquire mutations in spike that promote immune evasion and impact other properties that contribute to viral fitness such as ACE2 receptor binding and cell entry. Knowledge of how mutations affect these spike phenotypes can provide insight into the current and potential future evolution of the virus. Here we use pseudovirus deep mutational scanning to measure how >9,000 mutations across the full XBB.1.5 and BA.2 spikes affect ACE2 binding, cell entry, or escape from human sera. We find that mutations outside the receptor-binding domain (RBD) have meaningfully impacted ACE2 binding during SARS-CoV-2 evolution. We also measure how mutations to the XBB.1.5 spike affect neutralization by serum from individuals who recently had SARS-CoV-2 infections. The strongest serum escape mutations are in the RBD at sites 357, 420, 440, 456, and 473-however, the antigenic impacts of these mutations vary across individuals. We also identify strong escape mutations outside the RBD; however many of them decrease ACE2 binding, suggesting they act by modulating RBD conformation. Notably, the growth rates of human SARS-CoV-2 clades can be explained in substantial part by the measured effects of mutations on spike phenotypes, suggesting our data could enable better prediction of viral evolution.
RESUMEN
The SARS-CoV-2 Delta variant is currently responsible for most infections worldwide, including among fully vaccinated individuals. Although these latter infections are associated with milder COVID-19 disease relative to unvaccinated subjects, the specificity and durability of antibody responses elicited by Delta breakthrough cases remain unknown. Here, we demonstrate that breakthrough infections induce serum binding and neutralizing antibody responses that are markedly more potent, durable and resilient to spike mutations observed in variants of concern than those observed in subjects who were infected only or received only two doses of COVID-19 vaccine. However, wee show that Delta breakthrough cases, subjects who were vaccinated after SARS-CoV-2 infection and individuals vaccinated three times (without infection) have serum neutralizing activity of comparable magnitude and breadth indicate that multiple types of exposure or increased number of exposures to SARS-CoV-2 antigen(s) enhance spike-specific antibody responses. Neutralization of the genetically divergent SARS-CoV, however, was moderate with all four cohorts examined, except after four exposures to the SARS-CoV-2 spike, underscoring the importance of developing vaccines eliciting broad sarbecovirus immunity for pandemic preparedness.
RESUMEN
The recently emerged SARS-CoV-2 Omicron variant harbors 37 amino acid substitutions in the spike (S) protein, 15 of which are in the receptor-binding domain (RBD), thereby raising concerns about the effectiveness of available vaccines and antibody therapeutics. Here, we show that the Omicron RBD binds to human ACE2 with enhanced affinity relative to the Wuhan-Hu-1 RBD and acquires binding to mouse ACE2. Severe reductions of plasma neutralizing activity were observed against Omicron compared to the ancestral pseudovirus for vaccinated and convalescent individuals. Most (26 out of 29) receptor-binding motif (RBM)-directed monoclonal antibodies (mAbs) lost in vitro neutralizing activity against Omicron, with only three mAbs, including the ACE2-mimicking S2K146 mAb 1 , retaining unaltered potency. Furthermore, a fraction of broadly neutralizing sarbecovirus mAbs recognizing antigenic sites outside the RBM, including sotrovimab 2 , S2X259 3 and S2H97 4 , neutralized Omicron. The magnitude of Omicron-mediated immune evasion and the acquisition of binding to mouse ACE2 mark a major SARS-CoV-2 mutational shift. Broadly neutralizing sarbecovirus mAbs recognizing epitopes conserved among SARS-CoV-2 variants and other sarbecoviruses may prove key to controlling the ongoing pandemic and future zoonotic spillovers.