Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Genet ; 18(5): e1009782, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35604932

RESUMEN

The hallmarks of the alveolar subclass of rhabdomyosarcoma are chromosomal translocations that generate chimeric PAX3-FOXO1 or PAX7-FOXO1 transcription factors. Overexpression of either PAX-FOXO1s results in related cell transformation in animal models. Yet, in patients the two structural genetic aberrations they derived from are associated with distinct pathological manifestations. To assess the mechanisms underlying these differences, we generated isogenic fibroblast lines expressing either PAX-FOXO1 paralog. Mapping of their genomic recruitment using CUT&Tag revealed that the two chimeric proteins have distinct DNA binding preferences. In addition, PAX7-FOXO1 binding results in greater recruitment of the H3K27ac activation mark than PAX3-FOXO1 binding and is accompanied by greater transcriptional activation of neighbouring genes. These effects are associated with a PAX-FOXO1-specific alteration in the expression of genes regulating cell shape and the cell cycle. Consistently, PAX3-FOXO1 accentuates fibroblast cellular traits associated with contractility and surface adhesion and limits entry into S phase. In contrast, PAX7-FOXO1 drives cells to adopt an amoeboid shape, reduces entry into M phase, and causes increased DNA damage. Altogether, our results argue that the diversity of rhabdomyosarcoma manifestation arises, in part, from the divergence between the genomic occupancy and transcriptional activity of PAX3-FOXO1 and PAX7-FOXO1.


Asunto(s)
Proteínas de Fusión Oncogénica , Factores de Transcripción Paired Box , Rabdomiosarcoma Alveolar , Animales , Línea Celular , Transformación Celular Neoplásica/genética , Fibroblastos , Proteína Forkhead Box O1/genética , Factores de Transcripción Forkhead/genética , Humanos , Proteínas de Fusión Oncogénica/genética , Factor de Transcripción PAX3/genética , Factor de Transcripción PAX7/genética , Factores de Transcripción Paired Box/genética , Rabdomiosarcoma/genética , Rabdomiosarcoma Alveolar/genética
2.
Int J Mol Sci ; 24(16)2023 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-37629147

RESUMEN

Cancer vaccines are increasingly being studied as a possible strategy to prevent and treat cancers. While several prophylactic vaccines for virus-caused cancers are approved and efficiently used worldwide, the development of therapeutic cancer vaccines needs to be further implemented. Virus-like particles (VLPs) are self-assembled protein structures that mimic native viruses or bacteriophages but lack the replicative material. VLP platforms are designed to display single or multiple antigens with a high-density pattern, which can trigger both cellular and humoral responses. The aim of this review is to provide a comprehensive overview of preventive VLP-based vaccines currently approved worldwide against HBV and HPV infections or under evaluation to prevent virus-caused cancers. Furthermore, preclinical and early clinical data on prophylactic and therapeutic VLP-based cancer vaccines were summarized with a focus on HER-2-positive breast cancer.


Asunto(s)
Bacteriófagos , Vacunas contra el Cáncer , Neoplasias , Viroides , Vacunas contra el Cáncer/uso terapéutico , Núcleo Celular , Inmunoterapia , Neoplasias/terapia
3.
PLoS Pathog ; 14(8): e1007209, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30080893

RESUMEN

Oncolytic herpes simplex viruses (oHSVs) showed efficacy in clinical trials and practice. Most of them gain cancer-specificity from deletions/mutations in genes that counteract the host response, and grow selectively in cancer cells defective in anti-viral response. Because of the deletions/mutations, they are frequently attenuated or over-attenuated. We developed next-generation oHSVs, which carry no deletion/mutation, gain cancer-specificity from specific retargeting to tumor cell receptors-e.g. HER2 (human epidermal growth factor receptor 2)-hence are fully-virulent in the targeted cancer cells. The type of immunotherapy they elicit was not predictable, since non-attenuated HSVs induce and then dampen the innate response, whereas deleted/attenuated viruses fail to contrast it, and since the retargeted oHSVs replicate efficiently in tumor cells, but spare other cells in the tumor. We report on the first efficacy study of HER2-retargeted, fully-virulent oHSVs in immunocompetent mice. Their safety profile was very high. Both the unarmed R-LM113 and the IL-12-armed R-115 inhibited the growth of the primary HER2-Lewis lung carcinoma-1 (HER2-LLC1) tumor, R-115 being constantly more efficacious. All the mice that did not die because of the primary treated tumors, were protected from the growth of contralateral untreated tumors. The long-term survivors were protected from a second contralateral tumor, providing additional evidence for an abscopal immunotherapeutic effect. Analysis of the local response highlighted that particularly R-115 unleashed the immunosuppressive tumor microenvironment, i.e. induced immunomodulatory cytokines, including IFNγ, T-bet which promoted Th1 polarization. Some of the tumor infiltrating cells, e.g. CD4+, CD335+ cells were increased in the tumors of all responders mice, irrespective of which virus was employed, whereas CD8+, Foxp3+, CD141+ were increased and CD11b+ cells were decreased preferentially in R-115-treated mice. The durable response included a breakage of tolerance towards both HER2 and the wt tumor cells, and underscored a systemic immunotherapeutic vaccine response.


Asunto(s)
Antineoplásicos/farmacología , Vacunas contra el Cáncer/farmacología , Inmunoterapia Activa/métodos , Interleucina-12 , Viroterapia Oncolítica/métodos , Simplexvirus , Animales , Carcinoma Pulmonar de Lewis/tratamiento farmacológico , Ratones , Virus Oncolíticos
4.
Int J Mol Sci ; 21(15)2020 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-32752096

RESUMEN

Gastric cancer (GC) is one of the deadliest malignancies worldwide. Complex disease heterogeneity, late diagnosis, and suboptimal therapies result in the poor prognosis of patients. Besides genetic alterations and environmental factors, it has been demonstrated that alterations of the epigenetic machinery guide cancer onset and progression, representing a hallmark of gastric malignancies. Moreover, epigenetic mechanisms undergo an intricate crosstalk, and distinct epigenomic profiles can be shaped under different microenvironmental contexts. In this scenario, targeting epigenetic mechanisms could be an interesting therapeutic strategy to overcome gastric cancer heterogeneity, and the efforts conducted to date are delivering promising results. In this review, we summarize the key epigenetic events involved in gastric cancer development. We conclude with a discussion of new promising epigenetic strategies for gastric cancer treatment.


Asunto(s)
Metilación de ADN/genética , Epigénesis Genética/genética , Neoplasias Gástricas/genética , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Estómago/patología , Neoplasias Gástricas/patología
5.
BMC Cancer ; 19(1): 126, 2019 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-30732578

RESUMEN

BACKGROUND: Insulin-like Growth Factor Receptor-1 (IGF1R) system sustains the genesis of rhabdomyosarcoma through IGF2 autocrine overexpression. While several IGF1R-targeted strategies have been investigated to interphere with rhabdomyosarcoma growth, no attempt to neutralize IGF2 has been reported. We therefore studied the possibility to hamper rhabdomyosarcoma growth with passive and active immune approaches targeting IGF2. METHODS: A murine model developing IGF2-overexpressing pelvic rhabdomyosarcoma, along with IGF2-independent salivary carcinoma, was used to investigate the efficacy and specificity of passive anti-IGFs antibody treatment. Active vaccinations with electroporated DNA plasmids encoding murine or human IGF2 were performed to elicit autochthonous anti-IGF2 antibodies. Vaccinated mice received the intravenous injection of rhabdomyosarcoma cells to study the effects of anti-IGF2 antibodies against developing metastases. RESULTS: Passive administration of antibodies neutralizing IGFs delayed the onset of IGF2-overexpressing rhabdomyosarcoma but not of IGF2-independent salivary carcinoma. A DNA vaccine against murine IGF2 did not elicit antibodies, even when combined with Treg-depletion, while a DNA vaccine encoding the human IGF2 gene elicited antibodies crossreacting with murine IGF2. Mice with anti-IGF2 antibodies were partially protected against the metastatic growth of IGF2-addicted rhabdomyosarcoma cells. CONCLUSIONS: Immune targeting of autocrine IGF2 inhibited rhabdomyosarcoma genesis and metastatic growth.


Asunto(s)
Comunicación Autocrina , Inmunomodulación , Factor II del Crecimiento Similar a la Insulina/metabolismo , Rabdomiosarcoma/inmunología , Rabdomiosarcoma/metabolismo , Animales , Animales Modificados Genéticamente , Anticuerpos Monoclonales/farmacología , Antineoplásicos Inmunológicos/farmacología , Línea Celular Tumoral , Proliferación Celular , Modelos Animales de Enfermedad , Femenino , Humanos , Factor II del Crecimiento Similar a la Insulina/antagonistas & inhibidores , Factor II del Crecimiento Similar a la Insulina/genética , Masculino , Ratones , Ratas , Rabdomiosarcoma/tratamiento farmacológico , Rabdomiosarcoma/patología , Resultado del Tratamiento
6.
Br J Cancer ; 119(12): 1487-1494, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30478407

RESUMEN

BACKGROUND: Optimising the selection of HER2-targeted regimens by identifying subsets of HER2-positive breast cancer (BC) patients who need more or less therapy remains challenging. We analysed BC samples before and after treatment with 1 cycle of trastuzumab according to the response to trastuzumab. METHODS: Gene expression profiles of pre- and post-treatment tumour samples from 17 HER2-positive BC patients were analysed on the Illumina platform. Tumour-associated immune pathways and blood counts were analysed with regard to the response to trastuzumab. HER2-positive murine models with differential responses to trastuzumab were used to reproduce and better characterise these data. RESULTS: Patients who responded to single-agent trastuzumab had basal tumour biopsies that were enriched in immune pathways, particularly the MHC-II metagene. One cycle of trastuzumab modulated the expression levels of MHC-II genes, which increased in patients who had a complete response on treatment with trastuzumab and chemotherapy. Trastuzumab increased the MHC-II-positive cell population, primarily macrophages, only in the tumour microenvironment of responsive mice. In patients who benefited from complete trastuzumab therapy and in mice that harboured responsive tumours circulating neutrophil levels declined, but this cell subset rose in nonresponsive tumours. CONCLUSIONS: Short treatment with trastuzumab induces local and systemic immunomodulation that is associated with clinical outcomes.


Asunto(s)
Antineoplásicos Inmunológicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Factores Inmunológicos/farmacología , Receptor ErbB-2/antagonistas & inhibidores , Trastuzumab/farmacología , Animales , Neoplasias de la Mama/inmunología , Femenino , Genes MHC Clase II , Humanos , Antígeno Ki-67/análisis , Ratones , Receptor ErbB-2/análisis , Transcriptoma , Trastuzumab/uso terapéutico , Microambiente Tumoral
7.
BMC Immunol ; 19(1): 16, 2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29902992

RESUMEN

Cancer immunoprevention is based on the fact that a functioning immune system controls tumor onset and development in humans and animals, thus leading to the idea that the enhancement of immune responses in healthy individuals could effectively reduce cancer risk later in life. Successful primary immunoprevention of tumors caused by hepatitis B and papilloma viruses is already implemented at the population level with specific vaccines. The immunoprevention of human tumors unrelated to infectious agents is an outstanding challenge. Proof-of-principle preclinical studies in genetically-modified or in carcinogen-exposed mice clearly demonstrated that vaccines and other immunological treatments induce host immune responses that effectively control tumor onset and progression, eventually resulting in cancer prevention. While a straightforward translation to healthy humans is currently unfeasible, a number of pioneering clinical trials showed that cancer immunoprevention can be effectively implemented in human cohorts affected by specific cancer risks, such as preneoplastic/early neoplastic lesions. Future developments will see the implementation of cancer immunoprevention in a wider range of conditions at risk of tumor development, such as the exposure to known carcinogens and genetic predispositions.


Asunto(s)
Antineoplásicos/uso terapéutico , Vacunas contra el Cáncer/uso terapéutico , Neoplasias/prevención & control , Lesiones Precancerosas/prevención & control , Animales , Antineoplásicos/inmunología , Vacunas contra el Cáncer/inmunología , Progresión de la Enfermedad , Humanos , Inmunidad/efectos de los fármacos , Inmunidad/inmunología , Ratones , Neoplasias/inmunología , Neoplasias/patología , Lesiones Precancerosas/inmunología
8.
Hum Mol Genet ; 23(6): 1453-66, 2014 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-24163135

RESUMEN

Mitochondrial DNA mutations are currently investigated as modifying factors impinging on tumor growth and aggressiveness, having been found in virtually all cancer types and most commonly affecting genes encoding mitochondrial complex I (CI) subunits. However, it is still unclear whether they exert a pro- or anti-tumorigenic effect. We here analyzed the impact of three homoplasmic mtDNA mutations (m.3460G>A/MT-ND1, m.3571insC/MT-ND1 and m.3243A>G/MT-TL1) on osteosarcoma progression, chosen since they induce different degrees of oxidative phosphorylation impairment. In fact, the m.3460G>A/MT-ND1 mutation caused only a reduction in CI activity, whereas the m.3571insC/MT-ND1 and the m.3243A>G/MT-TL1 mutations induced a severe structural and functional CI alteration. As a consequence, this severe CI dysfunction determined an energetic defect associated with a compensatory increase in glycolytic metabolism and AMP-activated protein kinase activation. Osteosarcoma cells carrying such marked CI impairment displayed a reduced tumorigenic potential both in vitro and in vivo, when compared with cells with mild CI dysfunction, suggesting that mtDNA mutations may display diverse impact on tumorigenic potential depending on the type and severity of the resulting oxidative phosphorylation dysfunction. The modulation of tumor growth was independent from reactive oxygen species production but correlated with hypoxia-inducible factor 1α stabilization, indicating that structural and functional integrity of CI and oxidative phosphorylation are required for hypoxic adaptation and tumor progression.


Asunto(s)
ADN Mitocondrial/genética , Complejo I de Transporte de Electrón/genética , Metabolismo Energético , NADH Deshidrogenasa/metabolismo , Osteosarcoma/genética , ARN de Transferencia/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Línea Celular Tumoral , Progresión de la Enfermedad , Complejo I de Transporte de Electrón/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Mutagénesis Insercional , NADH Deshidrogenasa/genética , Osteosarcoma/patología , Fosforilación Oxidativa , Mutación Puntual , Especies Reactivas de Oxígeno/metabolismo
9.
J Immunol ; 192(11): 5434-41, 2014 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-24790144

RESUMEN

Perforin (pfp)-mediated cytotoxicity is one of the principal immunosurveillance mechanisms involved in the fight against cancer. However, its importance in spontaneous epithelial cancer is still poorly defined. In this study, we use a realistic mouse model that displays many features that are equivalent to human pathology to evaluate the role of pfp-dependent immunosurveillance by comparing tumor progression in rat ERBB-2 (neu) transgenic, pfp-proficient (neu(+)/pfp(+)) or pfp-deficient (neu(+)/pfp(-)) BALB/c male mice. Adult neu(+)/pfp(+) males developed poorly differentiated salivary carcinomas, whereas neu(+)/pfp(-) males displayed their salivary carcinomas noticeably earlier and showed zones of more highly differentiated tumor, indicating that pfp-mediated immunosurveillance is able not only to delay the growth kinetic of an aggressive epithelial tumor, but also to shape its histology. The role of pfp-mediated immunosurveillance appeared to be of even more dramatic importance against the less aggressive male mammary carcinomas. In neu(+)/pfp(+) males, the incidence of mammary carcinomas was a sporadic and late event. In contrast, in neu(+)/pfp(-) males their incidence was four-fold higher. This higher cancer incidence was associated with a 2-fold higher occurrence of persisting mammary remnants, a major risk factor for mammary cancer in male mice, and one that would appear to be due to pfp's previously unidentified involvement in male mammary gland rejection during embryogenesis. This work thus provides further proof of the complex role that the immune system plays in the body and gives new insight into the pathogenesis of epithelial tumors, demonstrating that the penetrance and malignancy of a tumor may be dramatically affected by pfp-dependent mechanisms.


Asunto(s)
Transformación Celular Neoplásica/inmunología , Neoplasias Experimentales/inmunología , Proteínas Citotóxicas Formadoras de Poros/inmunología , Receptor ErbB-2/inmunología , Animales , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Transgénicos , Neoplasias Experimentales/genética , Neoplasias Experimentales/patología , Proteínas Citotóxicas Formadoras de Poros/genética , Ratas , Receptor ErbB-2/genética
10.
Breast Cancer Res ; 17: 70, 2015 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-25997501

RESUMEN

INTRODUCTION: We previously demonstrated that HER2/neu-driven mammary carcinogenesis can be prevented by an interleukin-12 (IL-12)-adjuvanted allogeneic HER2/neu-expressing cell vaccine. Since IL-12 can induce the release of interleukin-15 (IL-15), in the present study we investigated the role played by IL-15 in HER2/neu driven mammary carcinogenesis and in its immunoprevention. METHODS: HER2/neu transgenic mice with homozygous knockout of IL-15 (here referred to as IL15KO/NeuT mice) were compared to IL-15 wild-type HER2/neu transgenic mice (NeuT) regarding mammary carcinogenesis, profile of peripheral blood lymphocytes and splenocytes and humoral and cellular responses induced by the vaccine. RESULTS: IL15KO/NeuT mice showed a significantly earlier mammary cancer onset than NeuT mice, with median latency times of 16 and 20 weeks respectively, suggesting a role for IL-15 in cancer immunosurveillance. Natural killer (NK) and CD8+ lymphocytes were significantly lower in IL15KO/NeuT mice compared to mice with wild-type IL-15. The IL-12-adjuvanted allogeneic HER2/neu-expressing cell vaccine was still able to delay mammary cancer onset but efficacy in IL-15-lacking mice vanished earlier: all vaccinated IL15KO/NeuT mice developed tumors within 80 weeks of age (median latency of 53 weeks), whereas more than 70 % of vaccinated NeuT mice remained tumor-free up to 80 weeks of age. Vaccinated IL15KO/NeuT mice showed less necrotic tumors with fewer CD3+ lymphocyes and lacked perforin-positive infiltrating cells compared to NeuT mice. Concerning the anti-vaccine antibody response, antibody titer was unaffected by the lack of IL-15, but less antibodies of IgM and IgG1 isotypes were found in IL15KO/NeuT mice. A lower induction by vaccine of systemic interferon-gamma (IFN-γ) and interleukin-5 (IL-5) was also observed in IL15KO/NeuT mice when compared to NeuT mice. Finally, we found a lower level of CD8+ memory cells in the peripheral blood of vaccinated IL15KO/NeuT mice compared to NeuT mice. CONCLUSIONS: We demonstrated that IL-15 has a role in mammary cancer immunosurveillance and that IL-15-regulated NK and CD8+ memory cells play a role in long-lasting immunoprevention, further supporting the potential use of IL-15 as adjuvant in immunological strategies against tumors.


Asunto(s)
Neoplasias de la Mama/inmunología , Neoplasias de la Mama/metabolismo , Transformación Celular Neoplásica/inmunología , Transformación Celular Neoplásica/metabolismo , Interleucina-15/metabolismo , Monitorización Inmunológica , Receptor ErbB-2/metabolismo , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Vacunas contra el Cáncer/inmunología , Quimiotaxis/genética , Quimiotaxis/inmunología , Modelos Animales de Enfermedad , Femenino , Expresión Génica , Humanos , Interleucina-15/genética , Ratones Noqueados , Ratones Transgénicos , Receptor ErbB-2/genética , Transducción de Señal
11.
PLoS Pathog ; 9(1): e1003155, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23382683

RESUMEN

Oncolytic viruses aim to specifically kill tumor cells. A major challenge is the effective targeting of disseminated tumors in vivo. We retargeted herpes simplex virus (HSV) tropism to HER-2 oncoprotein p185, overexpressed in ovary and breast cancers. The HER-2-retargeted R-LM249 exclusively infects and kills tumor cells expressing high levels of human HER-2. Here, we assessed the efficacy of systemically i.p. delivered R-LM249 against disseminated tumors in mouse models that recapitulate tumor spread to the peritoneum in women. The human ovarian carcinoma SK-OV-3 cells implanted intraperitoneally (i.p.) in immunodeficient Rag2⁻/⁻;Il2rg⁻/⁻ mice gave rise to a progressive peritoneal carcinomatosis which mimics the fatal condition in advanced human patients. I.p. administration of R-LM249 strongly inhibited carcinomatosis, resulting in 60% of mice free from peritoneal diffusion, and 95% reduction in the total weight of neoplastic nodules. Intraperitoneal metastases are a common outcome in breast cancer: i.p. administration of R-LM249 strongly inhibited the growth of ovarian metastases of HER-2+ MDA-MB-453 breast cells. Brain metastases were also reduced. Cumulatively, upon i.p. administration the HER-2-redirected oncolytic HSV effectively reduced the growth of ovarian and breast carcinoma disseminated to the peritoneal cavity.


Asunto(s)
Neoplasias de la Mama/terapia , Herpesvirus Humano 1/genética , Viroterapia Oncolítica/métodos , Virus Oncolíticos/genética , Neoplasias Ováricas/terapia , Neoplasias Peritoneales/terapia , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/metabolismo , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/mortalidad , Línea Celular Tumoral , Supervivencia Celular , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Femenino , Terapia Genética/métodos , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Herpesvirus Humano 1/fisiología , Humanos , Ratones , Ratones Desnudos , Terapia Molecular Dirigida , Virus Oncolíticos/metabolismo , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/mortalidad , Neoplasias Peritoneales/mortalidad , Neoplasias Peritoneales/secundario , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Tasa de Supervivencia , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Nat Rev Cancer ; 6(3): 204-16, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16498443

RESUMEN

Despite tremendous progress in basic and epidemiological research, effective prevention of most types of cancer is still lacking. Vaccine use in cancer therapy remains a promising but difficult prospect. However, new mouse models that recapitulate significant features of human cancer progression show that vaccines can keep precancerous lesions under control and might eventually be the spearhead of effective and reliable ways to prevent cancer.


Asunto(s)
Vacunas contra el Cáncer , Neoplasias/prevención & control , Vacunas contra el Cáncer/inmunología , Vacunas contra el Cáncer/uso terapéutico , Humanos , Neoplasias/epidemiología
13.
Breast Cancer Res ; 16(1): R10, 2014 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-24451168

RESUMEN

INTRODUCTION: The availability of mice transgenic for the human HER2 gene (huHER2) and prone to the development of HER2-driven mammary carcinogenesis (referred to as FVB-huHER2 mice) prompted us to study active immunopreventive strategies targeting the human HER2 molecule in a tolerant host. METHODS: FVB-huHER2 mice were vaccinated with either IL-12-adjuvanted human HER2-positive cancer cells or DNA vaccine carrying chimeric human-rat HER2 sequences. Onset and number of mammary tumors were recorded to evaluate vaccine potency. Mice sera were collected and passively transferred to xenograft-bearing mice to assess their antitumor efficacy. RESULTS: Both cell and DNA vaccines significantly delayed tumor onset, leading to about 65% tumor-free mice at 70 weeks, whereas mock-vaccinated FVB-huHER2 controls developed mammary tumors at a median age of 45 weeks. In the DNA vaccinated group, 65% of mice were still tumor-free at about 90 weeks of age. The number of mammary tumors per mouse was also significantly reduced in vaccinated mice. Vaccines broke the immunological tolerance to the huHER2 transgene, inducing both humoral and cytokine responses. The DNA vaccine mainly induced a high and sustained level of anti-huHER2 antibodies, the cell vaccine also elicited interferon (IFN)-γ production. Sera of DNA-vaccinated mice transferred to xenograft-carrying mice significantly inhibited the growth of human HER2-positive cancer cells. CONCLUSIONS: Anti-huHER2 antibodies elicited in the tolerant host exert antitumor activity.


Asunto(s)
Vacunas contra el Cáncer/inmunología , Neoplasias Mamarias Animales/inmunología , Receptor ErbB-2/inmunología , Vacunas de ADN/inmunología , Traslado Adoptivo , Animales , Anticuerpos/sangre , Formación de Anticuerpos/inmunología , Línea Celular Tumoral , Femenino , Humanos , Interferón gamma/biosíntesis , Interleucina-12/inmunología , Células MCF-7 , Neoplasias Mamarias Animales/patología , Neoplasias Mamarias Animales/prevención & control , Ratones , Ratones Transgénicos , Receptor ErbB-2/genética , Bazo/citología , Bazo/trasplante
14.
Growth Factors ; 32(1): 41-52, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24438070

RESUMEN

The insulin-like growth factor-1 system, including its critical mediator insulin receptor substrate-1 (IRS-1), is involved in regulating osteosarcoma (OS) cell proliferation or differentiation. The aim of this study is to define the role of IRS-1 in OS cells by assessing the contribution of IRS-1 in the differentiation of human and murine OS cell lines and mouse mesenchymal stem cells (MSCs) and found that the basal level of IRS-1 is important for the initiation of differentiation. Both down-regulation and over-expression of IRS-1 inhibited osteoblastic differentiation. In vivo studies showed that OS cells over-expressing IRS-1 have increased metastatic potential and tumor growth. The proteasome inhibitor MG-132 led to an increase in IRS-1 protein level that inhibited osteoblastic differentiation, suggesting a role for proteasomal regulation in maintaining the appropriate expression level of IRS-1. Thus, precise regulation of IRS-1 expression level is critical for determining the differentiating capacity of MSCs and OS cells, and that derangement of IRS-1 levels can be a critical step in OS transformation.


Asunto(s)
Proteínas Sustrato del Receptor de Insulina/biosíntesis , Factor I del Crecimiento Similar a la Insulina/metabolismo , Células Madre Mesenquimatosas/metabolismo , Osteoblastos/metabolismo , Osteosarcoma/patología , Animales , Diferenciación Celular/genética , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Transformación Celular Neoplásica/genética , Inhibidores de Cisteína Proteinasa/farmacología , Regulación del Desarrollo de la Expresión Génica/genética , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Proteínas Sustrato del Receptor de Insulina/genética , Proteínas Sustrato del Receptor de Insulina/metabolismo , Leupeptinas/farmacología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Ratones Desnudos , Osteocalcina/biosíntesis , Fosforilación , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma/farmacología , Interferencia de ARN , ARN Interferente Pequeño , Transducción de Señal/genética , Factor de Transcripción Sp7 , Factores de Transcripción/biosíntesis
15.
BMC Cancer ; 14: 137, 2014 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-24575739

RESUMEN

BACKGROUND: Identification of new drugs against paediatric sarcomas represents an urgent clinical need that mainly relies on public investments due to the rarity of these diseases. In this paper we evaluated the in vitro and in vivo efficacy of a new maltol derived molecule (maltonis), belonging to the family of molecules named hydroxypyrones. METHODS: Maltonis was screened for its ability to induce structural alteration of DNA molecules in comparison to another maltolic molecule (malten). In vitro antitumour efficacy was tested using a panel of sarcoma cell lines, representative of Ewing sarcoma, osteosarcoma and rhabdomyosarcoma, the three most common paediatric sarcomas, and in normal human mesenchymal primary cell cultures. In vivo efficacy was tested against TC-71 Ewing sarcoma xenografts. RESULTS: Maltonis, a soluble maltol-derived synthetic molecule, was able to alter the DNA structure, inhibit proliferation and induce apoptotic cell death in paediatric sarcoma cells, either sensitive or resistant to some conventional chemotherapeutic drugs, such as doxorubicin and cisplatin. In addition, maltonis was able to induce: i) p21, p15 and Gadd45a mRNA upregulation; ii) Bcl-2, survivin, CDK6 and CDK8 down-regulation; iii) formation of γ-H2AX nuclear foci; iv) cleavage of PARP and Caspase 3. Two independent in vivo experiments demonstrated the tolerability and efficacy of maltonis in the inhibition of tumour growth. Finally maltonis was not extruded by ABCB1, one of the major determinants of chemotherapy failure, nor appeared to be a substrate of the glutathione-related detoxification system. CONCLUSIONS: Considering that treatment of poorly responsive patients still suffers for the paucity of agents able to revert chemoresistance, maltonis may be considered for the future development of new therapeutic approaches for refractory metastatic patients.


Asunto(s)
Antineoplásicos/farmacología , Sarcoma/genética , Sarcoma/metabolismo , Animales , Antineoplásicos/administración & dosificación , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Niño , Daño del ADN/efectos de los fármacos , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Compuestos Heterocíclicos/administración & dosificación , Compuestos Heterocíclicos/farmacología , Xenoinjertos , Humanos , Concentración 50 Inhibidora , Células Madre Mesenquimatosas/efectos de los fármacos , Ratones , Sarcoma/tratamiento farmacológico , Sarcoma/patología
16.
Cells ; 13(3)2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38334625

RESUMEN

IL-1 family members have multiple pleiotropic functions affecting various tissues and cells, including the regulation of the immune response, hematopoietic homeostasis, bone remodeling, neuronal physiology, and synaptic plasticity. Many of these activities are involved in various pathological processes and immunological disorders, including tumor initiation and progression. Indeed, IL-1 family members have been described to contribute to shaping the tumor microenvironment (TME), determining immune evasion and drug resistance, and to sustain tumor aggressiveness and metastasis. This review addresses the role of IL-1 family members in bone sarcomas, particularly the highly metastatic osteosarcoma (OS) and Ewing sarcoma (EWS), and discusses the IL-1-family-related mechanisms that play a role in bone metastasis development. We also consider the therapeutic implications of targeting IL-1 family members, which have been proposed as (i) relevant targets for anti-tumor and anti-metastatic drugs; (ii) immune checkpoints for immune suppression; and (iii) potential antigens for immunotherapy.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Sarcoma de Ewing , Humanos , Sarcoma de Ewing/patología , Neoplasias Óseas/patología , Familia , Interleucina-1 , Microambiente Tumoral
17.
Cancer Immunol Res ; 12(2): 247-260, 2024 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-38051221

RESUMEN

Ewing sarcoma (EWS) is the second most common pediatric bone tumor. The EWS tumor microenvironment is largely recognized as immune-cold, with macrophages being the most abundant immune cells and their presence associated with worse patient prognosis. Expression of CD99 is a hallmark of EWS cells, and its targeting induces inhibition of EWS tumor growth through a poorly understood mechanism. In this study, we analyzed CD99 expression and functions on macrophages and investigated whether the concomitant targeting of CD99 on both tumor and macrophages could explain the inhibitory effect of this approach against EWS. Targeting CD99 on EWS cells downregulated expression of the "don't eat-me" CD47 molecule but increased levels of the "eat-me" phosphatidyl serine and calreticulin molecules on the outer leaflet of the tumor cell membrane, triggering phagocytosis and digestion of EWS cells by macrophages. In addition, CD99 ligation induced reprogramming of undifferentiated M0 macrophages and M2-like macrophages toward the inflammatory M1-like phenotype. These events resulted in the inhibition of EWS tumor growth. Thus, this study reveals what we believe to be a previously unrecognized function of CD99, which engenders a virtuous circle that delivers intrinsic cell death signals to EWS cells, favors tumor cell phagocytosis by macrophages, and promotes the expression of various molecules and cytokines, which are pro-inflammatory and usually associated with tumor regression. This raises the possibility that CD99 may be involved in boosting the antitumor activity of macrophages.


Asunto(s)
Neoplasias Óseas , Sarcoma de Ewing , Humanos , Niño , Sarcoma de Ewing/genética , Muerte Celular , Línea Celular Tumoral , Macrófagos/metabolismo , Microambiente Tumoral , Antígeno 12E7
18.
Cancers (Basel) ; 15(3)2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36765545

RESUMEN

Synovial sarcomas (SyS) are rare malignant tumors predominantly affecting children, adolescents, and young adults. The genetic hallmark of SyS is the t(X;18) translocation encoding the SS18-SSX fusion gene. The fusion protein interacts with both the BAF enhancer and polycomb repressor complexes, and either activates or represses target gene transcription, resulting in genome-wide epigenetic perturbations and altered gene expression. Several experimental in in vivo models, including conditional transgenic mouse models expressing the SS18-SSX fusion protein and spontaneously developing SyS, are available. In addition, patient-derived xenografts have been estab-lished in immunodeficient mice, faithfully reproducing the complex clinical heterogeneity. This review focuses on the main molecular features of SyS and the related preclinical in vivo and in vitro models. We will analyze the different conditional SyS mouse models that, after combination with some of the few other recurrent alterations, such as gains in BCL2, Wnt-ß-catenin signaling, FGFR family, or loss of PTEN and SMARCB1, have provided additional insight into the mechanisms of synovial sarcomagenesis. The recent advancements in the understanding of SyS biology and improvements in preclinical modeling pave the way to the development of new epigenetic drugs and immunotherapeutic approaches conducive to new treatment options.

19.
Cancers (Basel) ; 15(15)2023 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-37568703

RESUMEN

Synovial sarcoma (SyS) is a rare aggressive soft tissue sarcoma carrying the chromosomal translocation t(X;18), encoding the fusion transcript SS18::SSX. The fusion oncoprotein interacts with both BAF enhancer complexes and polycomb repressor complexes, resulting in genome-wide epigenetic perturbations and a unique altered genetic signature. Over 80% of the patients are initially diagnosed with localized disease and have a 5-year survival rate of 70-80%, but metastatic relapse occurs in 50% of the cases. Advanced, unresectable, or metastatic disease has a 5-year survival rate below 10%, representing a critical issue. This review summarizes the molecular mechanisms behind SyS and illustrates current treatments in front line, second line, and beyond settings. We analyze the use of immune check point inhibitors (ICI) in SyS that do not behave as an ICI-sensitive tumor, claiming the need for predictive genetic signatures and tumor immune microenvironment biomarkers. We highlight the clinical translation of innovative technologies, such as proteolysis targeting chimera (PROTAC) protein degraders or adoptive transfer of engineered immune cells. Adoptive cell transfer of engineered T-cell receptor cells targeting selected cancer/testis antigens has shown promising results against metastatic SyS in early clinical trials and further improvements are awaited from refinements involving immune cell engineering and tumor immune microenvironment enhancement.

20.
Rev Med Virol ; 21(4): 213-26, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21626603

RESUMEN

Oncolytic viruses infect, replicate in and kill cancer cells. HSV has emerged as a most promising candidate because it exerts a generally moderate pathogenicity in humans; it is amenable to attenuation and tropism retargeting; the ample genome provides space for heterologous genes; specific antiviral therapy is available in a worst case scenario. The first strategy to convert HSV into an oncolytic agent consisted in deletion of the γ(1) 34.5 gene which counteracts the protein kinase R (PKR) response, and of the UL39 gene which encodes the large ribonucleotide reductase subunit. Tumor specificity resided in low PKR activity, and high deoxyribonucleotides content of cancer cells. These highly attenuated viruses have been and presently are in clinical trials with encouraging results. The preferred route of administration has been intratumor or in tissues adjacent to resected tumors. Although the general population has a high seroprevalence of antibodies to HSV, studies in animals and humans demonstrate that prior immunity is not an obstacle to systemic routes of administration, and that oncolytic HSV (o-HSVs) do populate tumors. As the attenuated viruses undergo clinical experimentation, the research pipeline is developing novel, more potent and highly tumor-specific o-HSVs. These include viruses which overcome tumor heterogeneity in PKR level by insertion of anti-PKR genes, viruses which reinforce the host tumor clearance capacity by encoding immune cytokines (IL-12 or granulocyte-macrophage colony-stimulating factor), and non-attenuated viruses fully retargeted to tumor specific receptors. A strategy to generate o-HSVs fully retargeted to human epidermal growth factor receptor-2 (HER-2) or other cancer-specific surface receptors is detailed.


Asunto(s)
Herpesvirus Humano 1/genética , Virus Oncolíticos/genética , Animales , Ensayos Clínicos como Asunto , Eliminación de Gen , Ingeniería Genética , Humanos , Neoplasias/metabolismo , Neoplasias/terapia , Viroterapia Oncolítica , Receptor ErbB-2/metabolismo , Proteínas Virales/genética , Tropismo Viral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA