Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 139(3): 623-33, 2009 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-19879847

RESUMEN

The C. elegans cell lineage provides a unique opportunity to look at how cell lineage affects patterns of gene expression. We developed an automatic cell lineage analyzer that converts high-resolution images of worms into a data table showing fluorescence expression with single-cell resolution. We generated expression profiles of 93 genes in 363 specific cells from L1 stage larvae and found that cells with identical fates can be formed by different gene regulatory pathways. Molecular signatures identified repeating cell fate modules within the cell lineage and enabled the generation of a molecular differentiation map that reveals points in the cell lineage when developmental fates of daughter cells begin to diverge. These results demonstrate insights that become possible using computational approaches to analyze quantitative expression from many genes in parallel using a digital gene expression atlas.


Asunto(s)
Caenorhabditis elegans/citología , Caenorhabditis elegans/genética , Linaje de la Célula , Perfilación de la Expresión Génica , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans , Diferenciación Celular , Perfilación de la Expresión Génica/métodos
2.
Development ; 141(12): 2524-32, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24917506

RESUMEN

A major limitation in understanding embryonic development is the lack of cell type-specific markers. Existing gene expression and marker atlases provide valuable tools, but they typically have one or more limitations: a lack of single-cell resolution; an inability to register multiple expression patterns to determine their precise relationship; an inability to be upgraded by users; an inability to compare novel patterns with the database patterns; and a lack of three-dimensional images. Here, we develop new 'atlas-builder' software that overcomes each of these limitations. A newly generated atlas is three-dimensional, allows the precise registration of an infinite number of cell type-specific markers, is searchable and is open-ended. Our software can be used to create an atlas of any tissue in any organism that contains stereotyped cell positions. We used the software to generate an 'eNeuro' atlas of the Drosophila embryonic CNS containing eight transcription factors that mark the major CNS cell types (motor neurons, glia, neurosecretory cells and interneurons). We found neuronal, but not glial, nuclei occupied stereotyped locations. We added 75 new Gal4 markers to the atlas to identify over 50% of all interneurons in the ventral CNS, and these lines allowed functional access to those interneurons for the first time. We expect the atlas-builder software to benefit a large proportion of the developmental biology community, and the eNeuro atlas to serve as a publicly accessible hub for integrating neuronal attributes - cell lineage, gene expression patterns, axon/dendrite projections, neurotransmitters--and linking them to individual neurons.


Asunto(s)
Sistema Nervioso Central/citología , Bases de Datos Genéticas , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Animales , Axones/metabolismo , Linaje de la Célula , Biología Computacional , Dendritas/metabolismo , Proteínas de Drosophila/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Marcadores Genéticos , Interneuronas/metabolismo , Ratones , Neuronas/metabolismo , Neurotransmisores , Ratas , Programas Informáticos
3.
Nat Methods ; 8(6): 493-500, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21532582

RESUMEN

Analyzing Drosophila melanogaster neural expression patterns in thousands of three-dimensional image stacks of individual brains requires registering them into a canonical framework based on a fiducial reference of neuropil morphology. Given a target brain labeled with predefined landmarks, the BrainAligner program automatically finds the corresponding landmarks in a subject brain and maps it to the coordinate system of the target brain via a deformable warp. Using a neuropil marker (the antibody nc82) as a reference of the brain morphology and a target brain that is itself a statistical average of data for 295 brains, we achieved a registration accuracy of 2 µm on average, permitting assessment of stereotypy, potential connectivity and functional mapping of the adult fruit fly brain. We used BrainAligner to generate an image pattern atlas of 2954 registered brains containing 470 different expression patterns that cover all the major compartments of the fly brain.


Asunto(s)
Algoritmos , Encéfalo/anatomía & histología , Drosophila melanogaster/anatomía & histología , Procesamiento de Imagen Asistido por Computador/estadística & datos numéricos , Animales , Animales Modificados Genéticamente , Encéfalo/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Expresión Génica , Proteínas Fluorescentes Verdes/genética , Neurópilo/citología , Proteínas Recombinantes/genética , Programas Informáticos , Factores de Transcripción/genética
4.
Bioinformatics ; 29(13): i18-26, 2013 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-23812982

RESUMEN

MOTIVATION: Advances in high-resolution microscopy have recently made possible the analysis of gene expression at the level of individual cells. The fixed lineage of cells in the adult worm Caenorhabditis elegans makes this organism an ideal model for studying complex biological processes like development and aging. However, annotating individual cells in images of adult C.elegans typically requires expertise and significant manual effort. Automation of this task is therefore critical to enabling high-resolution studies of a large number of genes. RESULTS: In this article, we describe an automated method for annotating a subset of 154 cells (including various muscle, intestinal and hypodermal cells) in high-resolution images of adult C.elegans. We formulate the task of labeling cells within an image as a combinatorial optimization problem, where the goal is to minimize a scoring function that compares cells in a test input image with cells from a training atlas of manually annotated worms according to various spatial and morphological characteristics. We propose an approach for solving this problem based on reduction to minimum-cost maximum-flow and apply a cross-entropy-based learning algorithm to tune the weights of our scoring function. We achieve 84% median accuracy across a set of 154 cell labels in this highly variable system. These results demonstrate the feasibility of the automatic annotation of microscopy-based images in adult C.elegans.


Asunto(s)
Caenorhabditis elegans/citología , Perfilación de la Expresión Génica , Imagenología Tridimensional/métodos , Algoritmos , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , División Celular , Linaje de la Célula , Microscopía Confocal
5.
PLoS Comput Biol ; 8(6): e1002519, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22719236

RESUMEN

In a wide range of biological studies, it is highly desirable to visualize and analyze three-dimensional (3D) microscopic images. In this primer, we first introduce several major methods for visualizing typical 3D images and related multi-scale, multi-time-point, multi-color data sets. Then, we discuss three key categories of image analysis tasks, namely segmentation, registration, and annotation. We demonstrate how to pipeline these visualization and analysis modules using examples of profiling the single-cell gene-expression of C. elegans and constructing a map of stereotyped neurite tracts in a fruit fly brain.


Asunto(s)
Imagenología Tridimensional/métodos , Microscopía/métodos , Animales , Encéfalo/anatomía & histología , Caenorhabditis elegans/citología , Caenorhabditis elegans/genética , Biología Computacional , Simulación por Computador , Drosophila melanogaster/anatomía & histología , Perfilación de la Expresión Génica/estadística & datos numéricos , Imagenología Tridimensional/estadística & datos numéricos , Microscopía/estadística & datos numéricos
6.
Nat Methods ; 6(9): 667-72, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19684595

RESUMEN

We built a digital nuclear atlas of the newly hatched, first larval stage (L1) of the wild-type hermaphrodite of Caenorhabditis elegans at single-cell resolution from confocal image stacks of 15 individual worms. The atlas quantifies the stereotypy of nuclear locations and provides other statistics on the spatial patterns of the 357 nuclei that could be faithfully segmented and annotated out of the 558 present at this developmental stage. We then developed an automated approach to assign cell names to each nucleus in a three-dimensional image of an L1 worm. We achieved 86% accuracy in identifying the 357 nuclei automatically. This computational method will allow high-throughput single-cell analyses of the post-embryonic worm, such as gene expression analysis, or ablation or stimulation of cells under computer control in a high-throughput functional screen.


Asunto(s)
Caenorhabditis elegans/citología , Procesamiento Automatizado de Datos/métodos , Animales , Linaje de la Célula , Núcleo Celular , Modelos Biológicos
7.
Bioinformatics ; 27(13): i239-47, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21685076

RESUMEN

MOTIVATION: Digital reconstruction, or tracing, of 3D neuron structures is critical toward reverse engineering the wiring and functions of a brain. However, despite a number of existing studies, this task is still challenging, especially when a 3D microscopic image has low signal-to-noise ratio (SNR) and fragmented neuron segments. Published work can handle these hard situations only by introducing global prior information, such as where a neurite segment starts and terminates. However, manual incorporation of such global information can be very time consuming. Thus, a completely automatic approach for these hard situations is highly desirable. RESULTS: We have developed an automatic graph algorithm, called the all-path pruning (APP), to trace the 3D structure of a neuron. To avoid potential mis-tracing of some parts of a neuron, an APP first produces an initial over-reconstruction, by tracing the optimal geodesic shortest path from the seed location to every possible destination voxel/pixel location in the image. Since the initial reconstruction contains all the possible paths and thus could contain redundant structural components (SC), we simplify the entire reconstruction without compromising its connectedness by pruning the redundant structural elements, using a new maximal-covering minimal-redundant (MCMR) subgraph algorithm. We show that MCMR has a linear computational complexity and will converge. We examined the performance of our method using challenging 3D neuronal image datasets of model organisms (e.g. fruit fly). AVAILABILITY: The software is available upon request. We plan to eventually release the software as a plugin of the V3D-Neuron package at http://penglab.janelia.org/proj/v3d. CONTACT: pengh@janelia.hhmi.org.


Asunto(s)
Algoritmos , Neuronas/citología , Programas Informáticos , Animales , Encéfalo/citología , Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional/métodos
8.
Bioinformatics ; 27(20): 2895-902, 2011 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-21849395

RESUMEN

MOTIVATION: Automatic recognition of cell identities is critical for quantitative measurement, targeting and manipulation of cells of model animals at single-cell resolution. It has been shown to be a powerful tool for studying gene expression and regulation, cell lineages and cell fates. Existing methods first segment cells, before applying a recognition algorithm in the second step. As a result, the segmentation errors in the first step directly affect and complicate the subsequent cell recognition step. Moreover, in new experimental settings, some of the image features that have been previously relied upon to recognize cells may not be easy to reproduce, due to limitations on the number of color channels available for fluorescent imaging or to the cost of building transgenic animals. An approach that is more accurate and relies on only a single signal channel is clearly desirable. RESULTS: We have developed a new method, called simultaneous recognition and segmentation (SRS) of cells, and applied it to 3D image stacks of the model organism Caenorhabditis elegans. Given a 3D image stack of the animal and a 3D atlas of target cells, SRS is effectively an atlas-guided voxel classification process: cell recognition is realized by smoothly deforming the atlas to best fit the image, where the segmentation is obtained naturally via classification of all image voxels. The method achieved a 97.7% overall recognition accuracy in recognizing a key class of marker cells, the body wall muscle (BWM) cells, on a dataset of 175 C.elegans image stacks containing 14 118 manually curated BWM cells providing the 'ground-truth' for accuracy. This result was achieved without any additional fiducial image features. SRS also automatically identified 14 of the image stacks as involving ±90° rotations. With these stacks excluded from the dataset, the recognition accuracy rose to 99.1%. We also show SRS is generally applicable to other cell types, e.g. intestinal cells. AVAILABILITY: The supplementary movies can be downloaded from our web site http://penglab.janelia.org/proj/celegans_seganno. The method has been implemented as a plug-in program within the V3D system (http://penglab.janelia.org/proj/v3d), and will be released in the V3D plugin source code repository. CONTACT: pengh@janelia.hhmi.org.


Asunto(s)
Algoritmos , Caenorhabditis elegans/citología , Imagenología Tridimensional/métodos , Animales , Análisis de la Célula Individual
9.
Methods ; 50(2): 63-9, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19698789

RESUMEN

Automatic alignment (registration) of 3D images of adult fruit fly brains is often influenced by the significant displacement of the relative locations of the two optic lobes (OLs) and the center brain (CB). In one of our ongoing efforts to produce a better image alignment pipeline of adult fruit fly brains, we consider separating CB and OLs and align them independently. This paper reports our automatic method to segregate CB and OLs, in particular under conditions where the signal to noise ratio (SNR) is low, the variation of the image intensity is big, and the relative displacement of OLs and CB is substantial. We design an algorithm to find a minimum-cost 3D surface in a 3D image stack to best separate an OL (of one side, either left or right) from CB. This surface is defined as an aggregation of the respective minimum-cost curves detected in each individual 2D image slice. Each curve is defined by a list of control points that best segregate OL and CB. To obtain the locations of these control points, we derive an energy function that includes an image energy term defined by local pixel intensities and two internal energy terms that constrain the curve's smoothness and length. Gradient descent method is used to optimize this energy function. To improve both the speed and robustness of the method, for each stack, the locations of optimized control points in a slice are taken as the initialization prior for the next slice. We have tested this approach on simulated and real 3D fly brain image stacks and demonstrated that this method can reasonably segregate OLs from CBs despite the aforementioned difficulties.


Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/patología , Microscopía Confocal/métodos , Lóbulo Óptico de Animales no Mamíferos/anatomía & histología , Algoritmos , Animales , Automatización , Gráficos por Computador , Simulación por Computador , Drosophila melanogaster , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Imagenología Tridimensional/métodos , Modelos Estadísticos , Lóbulo Óptico de Animales no Mamíferos/fisiología , Reproducibilidad de los Resultados
10.
Bioinformatics ; 25(5): 695-7, 2009 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-19189978

RESUMEN

UNLABELLED: Volume-object annotation system (VANO) is a cross-platform image annotation system that enables one to conveniently visualize and annotate 3D volume objects including nuclei and cells. An application of VANO typically starts with an initial collection of objects produced by a segmentation computation. The objects can then be labeled, categorized, deleted, added, split, merged and redefined. VANO has been used to build high-resolution digital atlases of the nuclei of Caenorhabditis elegans at the L1 stage and the nuclei of Drosophila melanogaster's ventral nerve cord at the late embryonic stage. AVAILABILITY: Platform independent executables of VANO, a sample dataset, and a detailed description of both its design and usage are available at research.janelia.org/peng/proj/vano. VANO is open-source for co-development.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Programas Informáticos , Animales , Caenorhabditis elegans/metabolismo , Bases de Datos Factuales , Drosophila/metabolismo , Interfaz Usuario-Computador
11.
Nat Neurosci ; 23(1): 138-151, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31844315

RESUMEN

To understand how the brain processes sensory information to guide behavior, we must know how stimulus representations are transformed throughout the visual cortex. Here we report an open, large-scale physiological survey of activity in the awake mouse visual cortex: the Allen Brain Observatory Visual Coding dataset. This publicly available dataset includes the cortical activity of nearly 60,000 neurons from six visual areas, four layers, and 12 transgenic mouse lines in a total of 243 adult mice, in response to a systematic set of visual stimuli. We classify neurons on the basis of joint reliabilities to multiple stimuli and validate this functional classification with models of visual responses. While most classes are characterized by responses to specific subsets of the stimuli, the largest class is not reliably responsive to any of the stimuli and becomes progressively larger in higher visual areas. These classes reveal a functional organization wherein putative dorsal areas show specialization for visual motion signals.


Asunto(s)
Corteza Visual/anatomía & histología , Corteza Visual/fisiología , Animales , Conjuntos de Datos como Asunto , Ratones
12.
Bioinformatics ; 24(2): 234-42, 2008 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-18025002

RESUMEN

MOTIVATION: Caenorhabditis elegans, a roundworm found in soil, is a widely studied model organism with about 1000 cells in the adult. Producing high-resolution fluorescence images of C.elegans to reveal biological insights is becoming routine, motivating the development of advanced computational tools for analyzing the resulting image stacks. For example, worm bodies usually curve significantly in images. Thus one must 'straighten' the worms if they are to be compared under a canonical coordinate system. RESULTS: We develop a worm straightening algorithm (WSA) that restacks cutting planes orthogonal to a 'backbone' that models the anterior-posterior axis of the worm. We formulate the backbone as a parametric cubic spline defined by a series of control points. We develop two methods for automatically determining the locations of the control points. Our experimental methods show that our approaches effectively straighten both 2D and 3D worm images.


Asunto(s)
Algoritmos , Caenorhabditis elegans/citología , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Imagenología Tridimensional/métodos , Microscopía Fluorescente/métodos , Animales
13.
PLoS One ; 14(5): e0213924, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31042712

RESUMEN

Visual cortex is organized into discrete sub-regions or areas that are arranged into a hierarchy and serves different functions in the processing of visual information. In retinotopic maps of mouse cortex, there appear to be substantial mouse-to-mouse differences in visual area location, size and shape. Here we quantify the biological variation in the size, shape and locations of 11 visual areas in the mouse, after separating biological variation and measurement noise. We find that there is biological variation in the locations and sizes of visual areas.


Asunto(s)
Corteza Visual/anatomía & histología , Animales , Mapeo Encefálico , Masculino , Ratones , Corteza Visual/fisiología , Vías Visuales/fisiología
14.
Brain Inform ; 5(2): 3, 2018 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-29876679

RESUMEN

Reconstructing three-dimensional (3D) morphology of neurons is essential for understanding brain structures and functions. Over the past decades, a number of neuron tracing tools including manual, semiautomatic, and fully automatic approaches have been developed to extract and analyze 3D neuronal structures. Nevertheless, most of them were developed based on coding certain rules to extract and connect structural components of a neuron, showing limited performance on complicated neuron morphology. Recently, deep learning outperforms many other machine learning methods in a wide range of image analysis and computer vision tasks. Here we developed a new Open Source toolbox, DeepNeuron, which uses deep learning networks to learn features and rules from data and trace neuron morphology in light microscopy images. DeepNeuron provides a family of modules to solve basic yet challenging problems in neuron tracing. These problems include but not limited to: (1) detecting neuron signal under different image conditions, (2) connecting neuronal signals into tree(s), (3) pruning and refining tree morphology, (4) quantifying the quality of morphology, and (5) classifying dendrites and axons in real time. We have tested DeepNeuron using light microscopy images including bright-field and confocal images of human and mouse brain, on which DeepNeuron demonstrates robustness and accuracy in neuron tracing.

15.
Science ; 360(6389): 660-663, 2018 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-29748285

RESUMEN

Glioblastoma is an aggressive brain tumor that carries a poor prognosis. The tumor's molecular and cellular landscapes are complex, and their relationships to histologic features routinely used for diagnosis are unclear. We present the Ivy Glioblastoma Atlas, an anatomically based transcriptional atlas of human glioblastoma that aligns individual histologic features with genomic alterations and gene expression patterns, thus assigning molecular information to the most important morphologic hallmarks of the tumor. The atlas and its clinical and genomic database are freely accessible online data resources that will serve as a valuable platform for future investigations of glioblastoma pathogenesis, diagnosis, and treatment.


Asunto(s)
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Glioblastoma/genética , Glioblastoma/patología , Atlas como Asunto , Bases de Datos Genéticas , Perfilación de la Expresión Génica , Humanos , Pronóstico
16.
BMC Cell Biol ; 8 Suppl 1: S3, 2007 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-17634093

RESUMEN

BACKGROUND: The distribution of chromatin-associated proteins plays a key role in directing nuclear function. Previously, we developed an image-based method to quantify the nuclear distributions of proteins and showed that these distributions depended on the phenotype of human mammary epithelial cells. Here we describe a method that creates a hierarchical tree of the given cell phenotypes and calculates the statistical significance between them, based on the clustering analysis of nuclear protein distributions. RESULTS: Nuclear distributions of nuclear mitotic apparatus protein were previously obtained for non-neoplastic S1 and malignant T4-2 human mammary epithelial cells cultured for up to 12 days. Cell phenotype was defined as S1 or T4-2 and the number of days in cultured. A probabilistic ensemble approach was used to define a set of consensus clusters from the results of multiple traditional cluster analysis techniques applied to the nuclear distribution data. Cluster histograms were constructed to show how cells in any one phenotype were distributed across the consensus clusters. Grouping various phenotypes allowed us to build phenotype trees and calculate the statistical difference between each group. The results showed that non-neoplastic S1 cells could be distinguished from malignant T4-2 cells with 94.19% accuracy; that proliferating S1 cells could be distinguished from differentiated S1 cells with 92.86% accuracy; and showed no significant difference between the various phenotypes of T4-2 cells corresponding to increasing tumor sizes. CONCLUSION: This work presents a cluster analysis method that can identify significant cell phenotypes, based on the nuclear distribution of specific proteins, with high accuracy.


Asunto(s)
Neoplasias de la Mama/patología , Mama/citología , Células Epiteliales/citología , Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional/métodos , Microscopía Confocal/métodos , Proteínas Nucleares/análisis , Mama/química , Mama/patología , Línea Celular , Análisis por Conglomerados , Células Epiteliales/química , Femenino , Humanos , Modelos Estadísticos , Fenotipo
17.
BMC Cell Biol ; 8 Suppl 1: S7, 2007 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-17634097

RESUMEN

BACKGROUND: Staining the mRNA of a gene via in situ hybridization (ISH) during the development of a D. melanogaster embryo delivers the detailed spatio-temporal pattern of expression of the gene. Many biological problems such as the detection of co-expressed genes, co-regulated genes, and transcription factor binding motifs rely heavily on the analyses of these image patterns. The increasing availability of ISH image data motivates the development of automated computational approaches to the analysis of gene expression patterns. RESULTS: We have developed algorithms and associated software that extracts a feature representation of a gene expression pattern from an ISH image, that clusters genes sharing the same spatio-temporal pattern of expression, that suggests transcription factor binding (TFB) site motifs for genes that appear to be co-regulated (based on the clustering), and that automatically identifies the anatomical regions that express a gene given a training set of annotations. In fact, we developed three different feature representations, based on Gaussian Mixture Models (GMM), Principal Component Analysis (PCA), and wavelet functions, each having different merits with respect to the tasks above. For clustering image patterns, we developed a minimum spanning tree method (MSTCUT), and for proposing TFB sites we used standard motif finders on clustered/co-expressed genes with the added twist of requiring conservation across the genomes of 8 related fly species. Lastly, we trained a suite of binary-classifiers, one for each anatomical annotation term in a controlled vocabulary or ontology that operate on the wavelet feature representation. We report the results of applying these methods to the Berkeley Drosophila Genome Project (BDGP) gene expression database. CONCLUSION: Our automatic image analysis methods recapitulate known co-regulated genes and give correct developmental-stage classifications with 99+% accuracy, despite variations in morphology, orientation, and focal plane suggesting that these techniques form a set of useful tools for the large-scale computational analysis of fly embryonic gene expression patterns.


Asunto(s)
Biología Computacional/métodos , Drosophila/genética , Perfilación de la Expresión Génica/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Algoritmos , Animales , Drosophila/embriología , Embrión no Mamífero/metabolismo , Genes de Insecto , Hibridación in Situ , Reproducibilidad de los Resultados , Diseño de Software
18.
IEEE Trans Pattern Anal Mach Intell ; 27(8): 1226-38, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16119262

RESUMEN

Feature selection is an important problem for pattern classification systems. We study how to select good features according to the maximal statistical dependency criterion based on mutual information. Because of the difficulty in directly implementing the maximal dependency condition, we first derive an equivalent form, called minimal-redundancy-maximal-relevance criterion (mRMR), for first-order incremental feature selection. Then, we present a two-stage feature selection algorithm by combining mRMR and other more sophisticated feature selectors (e.g., wrappers). This allows us to select a compact set of superior features at very low cost. We perform extensive experimental comparison of our algorithm and other methods using three different classifiers (naive Bayes, support vector machine, and linear discriminate analysis) and four different data sets (handwritten digits, arrhythmia, NCI cancer cell lines, and lymphoma tissues). The results confirm that mRMR leads to promising improvement on feature selection and classification accuracy.


Asunto(s)
Algoritmos , Inteligencia Artificial , Diagnóstico por Computador/métodos , Almacenamiento y Recuperación de la Información/métodos , Modelos Estadísticos , Neoplasias/diagnóstico , Reconocimiento de Normas Patrones Automatizadas/métodos , Análisis por Conglomerados , Simulación por Computador , Humanos , Neoplasias/clasificación , Análisis Numérico Asistido por Computador
19.
Neuroinformatics ; 13(4): 487-99, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26036213

RESUMEN

Characterizing the identity and types of neurons in the brain, as well as their associated function, requires a means of quantifying and comparing 3D neuron morphology. Presently, neuron comparison methods are based on statistics from neuronal morphology such as size and number of branches, which are not fully suitable for detecting local similarities and differences in the detailed structure. We developed BlastNeuron to compare neurons in terms of their global appearance, detailed arborization patterns, and topological similarity. BlastNeuron first compares and clusters 3D neuron reconstructions based on global morphology features and moment invariants, independent of their orientations, sizes, level of reconstruction and other variations. Subsequently, BlastNeuron performs local alignment between any pair of retrieved neurons via a tree-topology driven dynamic programming method. A 3D correspondence map can thus be generated at the resolution of single reconstruction nodes. We applied BlastNeuron to three datasets: (1) 10,000+ neuron reconstructions from a public morphology database, (2) 681 newly and manually reconstructed neurons, and (3) neurons reconstructions produced using several independent reconstruction methods. Our approach was able to accurately and efficiently retrieve morphologically and functionally similar neuron structures from large morphology database, identify the local common structures, and find clusters of neurons that share similarities in both morphology and molecular profiles.


Asunto(s)
Sistemas de Administración de Bases de Datos , Imagenología Tridimensional , Modelos Neurológicos , Neuronas/fisiología , Algoritmos , Animales , Encéfalo/citología , Análisis por Conglomerados , Humanos , Dinámicas no Lineales
20.
Nat Protoc ; 9(1): 193-208, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24385149

RESUMEN

Open-Source 3D Visualization-Assisted Analysis (Vaa3D) is a software platform for the visualization and analysis of large-scale multidimensional images. In this protocol we describe how to use several popular features of Vaa3D, including (i) multidimensional image visualization, (ii) 3D image object generation and quantitative measurement, (iii) 3D image comparison, fusion and management, (iv) visualization of heterogeneous images and respective surface objects and (v) extension of Vaa3D functions using its plug-in interface. We also briefly demonstrate how to integrate these functions for complicated applications of microscopic image visualization and quantitative analysis using three exemplar pipelines, including an automated pipeline for image filtering, segmentation and surface generation; an automated pipeline for 3D image stitching; and an automated pipeline for neuron morphology reconstruction, quantification and comparison. Once a user is familiar with Vaa3D, visualization usually runs in real time and analysis takes less than a few minutes for a simple data set.


Asunto(s)
Imagenología Tridimensional/métodos , Programas Informáticos , Animales , Encéfalo/anatomía & histología , Simulación por Computador , Drosophila/anatomía & histología , Neuronas/ultraestructura , Interfaz Usuario-Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA