Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Biol Blood Marrow Transplant ; 26(2): 219-229, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31491487

RESUMEN

Bone marrow (BM) is a rich source of hematopoietic stem cells (HSCs), mesenchymal stem cells (MSCs), and other important stem/progenitor cells. It is the traditional source of cells used in hematopoietic cell transplantation, which is a proven curative treatment for many blood and immune diseases. BM-derived cells have also been shown to have other diverse clinical uses and are increasingly being used in orthopedic medicine, regenerative medicine, and gene therapy applications. Traditional methods for harvesting BM are crude, tedious, time-consuming, and expensive, requiring multiple bone punctures under general anesthesia with serial small-volume aspirates often diluted with peripheral blood. The MarrowMiner (MM) is a novel device designed for rapid and minimally invasive BM harvest. Here we show the safety and efficacy of the MM in both preclinical and clinical settings. In a large-animal porcine model, the MM enabled effective BM collection with similar total nucleated cell collection and increased colony formation compared with standard methods. The MM was subsequently evaluated in a clinical study showing effective and complication-free anterior and posterior BM collection of 20 patients under only local anesthesia or light sedation. Increased total nucleated and mononucleated cell collection was achieved with the MM compared with standard methods in the same patients. Importantly, stem cell content was high with trends toward increased HSC, MSC, and endothelial progenitor cells with similar T cell content. Given the MM is a novel device approved by the US Food and Drug Administration, enabling safe, effective, and minimally invasive harvest of BM, we anticipate rapid adoption for various applications.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Células Madre Mesenquimatosas , Animales , Médula Ósea , Células de la Médula Ósea , Células Madre Hematopoyéticas , Humanos , Porcinos
2.
Cytotherapy ; 20(11): 1381-1400, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30316562

RESUMEN

The Signature Series Symposium "Cellular Therapies for Orthopaedics and Musculoskeletal Disease Proven and Unproven Therapies-Promise, Facts and Fantasy" was held as a pre-meeting of the 26th International Society for Cellular Therapy (ISCT) annual congress in Montreal, Canada, May 2, 2018. This was the first ISCT program that was entirely dedicated to the advancement of cell-based therapies for musculoskeletal diseases. Cellular therapies in musculoskeletal medicine are a source of great promise and opportunity. They are also the source of public controversy, confusion and misinformation. Patients, clinicians, scientists, industry and government share a commitment to clear communication and responsible development of the field. Therefore, this symposium convened thought leaders from around the world in a forum designed to catalyze communication and collaboration to bring the greatest possible innovation and value to patients with musculoskeletal conditions.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Enfermedades Musculoesqueléticas/terapia , Animales , Tratamiento Basado en Trasplante de Células y Tejidos/normas , Fantasía , Humanos , Enfermedades Musculoesqueléticas/veterinaria , Ortopedia , Medicina Regenerativa/métodos , Sociedades Científicas , Investigación Biomédica Traslacional/legislación & jurisprudencia , Investigación Biomédica Traslacional/normas , Medicina Veterinaria/métodos
3.
J Cardiothorac Surg ; 19(1): 315, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824517

RESUMEN

BACKGROUND: Post-operative atrial fibrillation (POAF) occurs in up to 40% of patients following coronary artery bypass grafting (CABG) and is associated with a higher risk of stroke and mortality. This study investigates how POAF may be mitigated by epicardial placement of aseptically processed human placental membrane allografts (HPMAs) before pericardial closure in CABG surgery. This study was conducted as a pilot feasibility study to collect preliminary for a forthcoming multi-center randomized controlled trial. METHODS: This retrospective observational study of patients undergoing CABG surgery excluded patients with pre-operative heart failure, chronic kidney disease, or a history of atrial fibrillation. The "treatment" group (n = 24) had three HPMAs placed epicardially following cardiopulmonary bypass decannulation but before partial pericardial approximation and chest closure. The only difference in clinical protocol for the control group (n = 54) was that they did not receive HPMA. RESULTS: HPMA-treated patients saw a significant, greater than four-fold reduction in POAF incidence compared to controls (35.2-8.3%, p = 0.0136). Univariate analysis demonstrated that HPMA treatment was associated with an 83% reduction in POAF (OR = 0.17, p = 0.0248). Multivariable analysis yielded similar results (OR = 0.07, p = 0.0156) after controlling for other covariates. Overall length of stay (LOS) between groups was similar, but ICU LOS trended lower with HPMA treatment (p = 0.0677). Post-operative inotrope and vasopressor requirements were similar among groups. There was no new-onset post-operative heart failure, stroke, or death reported up to thirty days in either group. CONCLUSIONS: Epicardial HPMA placement can be a simple intervention at the end of CABG surgery that may provide a new approach to reduce post-operative atrial fibrillation by modulating local inflammation, possibly reducing ICU and hospital stay, and ultimately improving patient outcomes.


Asunto(s)
Fibrilación Atrial , Puente de Arteria Coronaria , Placenta , Complicaciones Posoperatorias , Humanos , Fibrilación Atrial/prevención & control , Fibrilación Atrial/cirugía , Fibrilación Atrial/etiología , Puente de Arteria Coronaria/métodos , Puente de Arteria Coronaria/efectos adversos , Femenino , Proyectos Piloto , Masculino , Estudios Retrospectivos , Persona de Mediana Edad , Complicaciones Posoperatorias/prevención & control , Complicaciones Posoperatorias/epidemiología , Anciano , Embarazo , Aloinjertos , Pericardio , Estudios de Factibilidad
4.
Artículo en Inglés | MEDLINE | ID: mdl-38753722

RESUMEN

Significance: Chronic wounds can lead to poor outcomes for patients, with risks, including amputation and death. In the United States, chronic wounds affect 2.5% of the population and cost up to $28 billion per year in primary health care costs. Recent Advances: Allograft tissues (dermal, amnion, and amnion/chorion) have shown efficacy in improving healing of chronic, recalcitrant wounds in human patients, as evidenced by multiple clinical trials. Their mechanisms of actions have been relatively understudied, until recently. Research in murine models has shown that dermal allografts promote reepithelialization, amnion allografts promote granulation tissue formation and angiogenesis, and amnion/chorion allografts support all stages of wound healing. These findings confirm their effectiveness and illuminate their therapeutic mechanisms. Critical Issues: Despite the promise of allografts in chronic wound care, a gap exists in understanding which allografts are most effective during each wound healing stage. The variable efficacy among each type of allograft suggests a mechanistic approach toward a proposed clinical treatment algorithm, based on wound characteristics and patient's needs, may be beneficial. Future Directions: Recent advances in allografts provide a framework for further investigations into patient-specific allograft selection. This requires additional research to identify which allografts support the best outcomes during each stage of wound healing and in which wound types. Longitudinal human studies investigating the long-term impacts of allografts, particularly in the remodeling phase, are also essential to developing a deeper understanding of their role in sustained wound repair and recovery.

5.
Mar Environ Res ; 188: 105995, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37087845

RESUMEN

In the open ocean and particularly in iron (Fe)-limited environment, copper (Cu) deficiency might limit the growth of phytoplankton species. Cu is an essential trace metal used in electron-transfer reactions, such as respiration and photosynthesis, when bound to specific enzymes. Some phytoplankton species, such as the diatom Pseudo-nitzschia spp. can cope with Cu starvation through adaptative strategies. In this study, we investigated the physiological strategies of the marine diatom P. delicatissima against Cu starvation. Compared to the control, Cu starvation inhibited growth by 35%, but did not induce any excess mortality. Despite the bottleneck measured in the electron flow of the photosynthetic chain, cells of P. delicatissima conserved their photosynthesis ability. This photosynthesis maintenance was accompanied by structural changes of membranes, where pigments and lipid composition were strongly modified. Diatoms also strongly modified their metabolism, by redirecting their C allocation to energy storage under the form of triglycerides. By maintaining essential metabolic functions and storing energy under the form of lipids, these physiological adaptations might be a strategy enabling this diatom to later bloom under the return of favorable nutritional condition.


Asunto(s)
Diatomeas , Diatomeas/química , Cobre/toxicidad , Cobre/metabolismo , Fitoplancton , Fotosíntesis , Adaptación Fisiológica
6.
Physiol Rep ; 11(20): e15838, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37849042

RESUMEN

Cardiac ischemic reperfusion injury (IRI) is paradoxically instigated by reestablishing blood-flow to ischemic myocardium typically from a myocardial infarction (MI). Although revascularization following MI remains the standard of care, effective strategies remain limited to prevent or attenuate IRI. We hypothesized that epicardial placement of human placental amnion/chorion (HPAC) grafts will protect against IRI. Using a clinically relevant model of IRI, swine were subjected to 45 min percutaneous ischemia followed with (MI + HPAC, n = 3) or without (MI only, n = 3) HPAC. Cardiac function was assessed by echocardiography, and regional punch biopsies were collected 14 days post-operatively. A deep phenotyping approach was implemented by using histological interrogation and incorporating global proteomics and transcriptomics in nonischemic, ischemic, and border zone biopsies. Our results established HPAC limited the extent of cardiac injury by 50% (11.0 ± 2.0% vs. 22.0 ± 3.0%, p = 0.039) and preserved ejection fraction in HPAC-treated swine (46.8 ± 2.7% vs. 35.8 ± 4.5%, p = 0.014). We present comprehensive transcriptome and proteome profiles of infarct (IZ), border (BZ), and remote (RZ) zone punch biopsies from swine myocardium during the proliferative cardiac repair phase 14 days post-MI. Both HPAC-treated and untreated tissues showed regional dynamic responses, whereas only HPAC-treated IZ revealed active immune and extracellular matrix remodeling. Decreased endoplasmic reticulum (ER)-dependent protein secretion and increased antiapoptotic and anti-inflammatory responses were measured in HPAC-treated biopsies. We provide quantitative evidence HPAC reduced cardiac injury from MI in a preclinical swine model, establishing a potential new therapeutic strategy for IRI. Minimizing the impact of MI remains a central clinical challenge. We present a new strategy to attenuate post-MI cardiac injury using HPAC in a swine model of IRI. Placement of HPAC membrane on the heart following MI minimizes ischemic damage, preserves cardiac function, and promotes anti-inflammatory signaling pathways.


Asunto(s)
Lesiones Cardíacas , Infarto del Miocardio , Embarazo , Porcinos , Humanos , Femenino , Animales , Placenta/metabolismo , Infarto del Miocardio/patología , Miocardio/metabolismo , Lesiones Cardíacas/tratamiento farmacológico , Lesiones Cardíacas/metabolismo , Lesiones Cardíacas/patología , Antiinflamatorios/uso terapéutico , Modelos Animales de Enfermedad
7.
Front Cardiovasc Med ; 9: 809960, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35252389

RESUMEN

Despite the immense investment in research devoted to cardiovascular diseases, mechanisms of progression and potential treatments, it remains one of the leading causes of death in the world. Cellular based strategies have been explored for decades, having mixed results, while more recently inflammation and its role in healing, regeneration and disease progression has taken center stage. Placental membranes are immune privileged tissues whose native function is acting as a protective barrier during fetal development, a state which fosters regeneration and healing. Their unique properties stem from a complex composition of extracellular matrix, growth factors and cytokines involved in cellular growth, survival, and inflammation modulation. Placental allograft membranes have been used successfully in complex wound applications but their potential in cardiac wounds has only begun to be explored. Although limited, pre-clinical studies demonstrated benefits when using placental membranes compared to other standard of care options for pericardial repair or infarct wound covering, facilitating cardiomyogenesis of stem cell populations in vitro and supporting functional performance in vivo. Early clinical evidence also suggested use of placental allograft membranes as a cardiac wound covering with the potential to mitigate the predominantly inflammatory environment such as pericarditis and prevention of new onset post-operative atrial fibrillation. Together, these studies demonstrate the promising translational potential of placental allograft membranes as post-surgical cardiac wound coverings. However, the small number of publications on this topic highlights the need for further studies to better understand how to support the safe and efficient use of placenta allograft membranes in cardiac surgery.

8.
Toxins (Basel) ; 13(12)2021 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-34941742

RESUMEN

Various species of Alexandrium can produce a number of bioactive compounds, e.g., paralytic shellfish toxins (PSTs), spirolides, gymnodimines, goniodomins, and also uncharacterised bioactive extracellular compounds (BECs). The latter metabolites are released into the environment and affect a large range of organisms (from protists to fishes and mammalian cell lines). These compounds mediate allelochemical interactions, have anti-grazing and anti-parasitic activities, and have a potentially strong structuring role for the dynamic of Alexandrium blooms. In many studies evaluating the effects of Alexandrium on marine organisms, only the classical toxins were reported and the involvement of BECs was not considered. A lack of information on the presence/absence of BECs in experimental strains is likely the cause of contrasting results in the literature that render impossible a distinction between PSTs and BECs effects. We review the knowledge on Alexandrium BEC, (i.e., producing species, target cells, physiological effects, detection methods and molecular candidates). Overall, we highlight the need to identify the nature of Alexandrium BECs and urge further research on the chemical interactions according to their ecological importance in the planktonic chemical warfare and due to their potential collateral damage to a wide range of organisms.


Asunto(s)
Dinoflagelados/metabolismo , Toxinas Marinas/metabolismo , Toxinas Marinas/toxicidad , Animales , Toxinas Marinas/química
9.
Harmful Algae ; 103: 101997, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33980437

RESUMEN

Allelopathy is an efficient strategy by which some microalgae can outcompete other species. Allelochemicals from the toxic dinoflagellate Alexandrium minutum have deleterious effects on diatoms, inhibiting metabolism and photosynthesis and therefore give a competitive advantage to the dinoflagellate. The precise mechanisms of allelochemical interactions and the molecular target of allelochemicals remain however unknown. To understand the mechanisms, the short-term effects of A. minutum allelochemicals on the physiology of the diatom Chaetoceros muelleri were investigated. The effects of a culture filtrate were measured on the diatom cytoplasmic membrane integrity (polarity and permeability) using flow-cytometry and on the photosynthetic performance using fluorescence and absorption spectroscopy. Within 10 min, the unknown allelochemicals induced a depolarization of the cytoplasmic membranes and an impairment of photosynthesis through the inhibition of the plastoquinone-mediated electron transfer between photosystem II and cytochrome b6f. At longer time of exposure, the cytoplasmic membranes were permeable and the integrity of photosystems I, II and cytochrome b6f was compromised. Our demonstration of the essential role of membranes in this allelochemical interaction provides new insights for the elucidation of the nature of the allelochemicals. The relationship between cytoplasmic membranes and the inhibition of the photosynthetic electron transfer remains however unclear and warrants further investigation.


Asunto(s)
Diatomeas , Dinoflagelados , Diatomeas/metabolismo , Dinoflagelados/metabolismo , Cinética , Feromonas/metabolismo , Fotosíntesis
10.
ISME Commun ; 1(1): 34, 2021 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37938261

RESUMEN

Parasites in the genus Amoebophrya sp. infest dinoflagellate hosts in marine ecosystems and can be determining factors in the demise of blooms, including toxic red tides. These parasitic protists, however, rarely cause the total collapse of Dinophyceae blooms. Experimental addition of parasite-resistant Dinophyceae (Alexandrium minutum or Scrippsiella donghaienis) or exudates into a well-established host-parasite coculture (Scrippsiella acuminata-Amoebophrya sp.) mitigated parasite success and increased the survival of the sensitive host. This effect was mediated by waterborne molecules without the need for a physical contact. The strength of the parasite defenses varied between dinoflagellate species, and strains of A. minutum and was enhanced with increasing resistant host cell concentrations. The addition of resistant strains or exudates never prevented the parasite transmission entirely. Survival time of Amoebophrya sp. free-living stages (dinospores) decreased in presence of A. minutum but not of S. donghaienis. Parasite progeny drastically decreased with both species. Integrity of the dinospore membrane was altered by A. minutum, providing a first indication on the mode of action of anti-parasitic molecules. These results demonstrate that extracellular defenses can be an effective strategy against parasites that protects not only the resistant cells producing them, but also the surrounding community.

12.
Aquat Toxicol ; 210: 251-261, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30878793

RESUMEN

The dinoflagellate Alexandrium minutum produces toxic compounds, including paralytic shellfish toxins, but also some unknown extracellular toxins. Although copper (Cu) is an essential element, it can impair microalgal physiology and increase their toxic potency. This study investigated the effect of different concentrations of dissolved Cu (7 nM, 79 nM and 164 nM) on A. minutum allelochemical potency, here defined as negative effects of a protist on competing protists through the release of chemicals. This was studied in relation to its physiology. The effects of Cu were assessed on A. minutum growth, reactive oxygen species level, photosynthesis proxies, lipid metabolism, exudation of dissolved organic compounds, allelochemical potency and on the associate free bacterial community of A. minutum. Only the highest Cu exposure (164 nM) inhibited and delayed the growth of A. minutum, and only in this treatment did the allelochemical potency significantly increase, when the dissolved Cu concentration was still toxic. Within the first 7 days of the high Cu treatment, the physiology of A. minutum was severely impaired with decreased growth and photosynthesis, and increased stress responses and free bacterial density per algal cell. After 15 days, A. minutum partially recovered from Cu stress as highlighted by the growth rate, reactive oxygen species level and photosystem II yields. This recovery could be attributed to the apparent decrease in background dissolved Cu concentration to a non-toxic level, suggesting that the release of exudates may have partially decreased the bioavailable Cu fraction. Overall, A. minutum appeared quite tolerant to Cu, and this work suggests that the modifications in the physiology and in the exudates help the algae to cope with Cu exposure. Moreover, this study shows the complex interplay between abiotic and biotic factors that can influence the dynamic of A. minutum blooms. Modulation in allelochemical potency of A. minutum by Cu may have ecological implications with an increased competitiveness of this species in environments contaminated with Cu.


Asunto(s)
Cobre/toxicidad , Dinoflagelados/efectos de los fármacos , Microalgas/efectos de los fármacos , Feromonas/metabolismo , Contaminantes Químicos del Agua/toxicidad , Dinoflagelados/metabolismo , Dinoflagelados/microbiología , Toxinas Marinas/metabolismo , Microalgas/metabolismo , Microbiota/efectos de los fármacos , Fotosíntesis/efectos de los fármacos
13.
Environ Pollut ; 242(Pt B): 1598-1605, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30072219

RESUMEN

Harmful microalgal blooms are a threat to aquatic organisms, ecosystems and human health. Toxic dinoflagellates of the genus Alexandrium are known to produce paralytic shellfish toxins and to release bioactive extracellular compounds (BECs) with potent cytotoxic, hemolytic, ichtyotoxic and allelopathic activity. Negative allelochemical interactions refer to the chemicals that are released by the genus Alexandrium and that induce adverse effects on the physiology of co-occurring protists and predators. Releasing BECs gives the donor a competitive advantage that may help to form dense toxic blooms of phytoplankton. However BECs released by Alexandrium minutum are uncharacterized and it is impossible to quantify them using classical chemical methods. Allelochemical interactions are usually quantified through population growth inhibition or lytic-activity based bioassays using a secondary target organism. However these bioassays require time (for growth or microalgal counts) and/or are based on lethal effects. The use of pulse amplitude modulation (PAM) fluorometry has been widely used to assess the impact of environmental stressors on phytoplankton but rarely for allelochemical interactions. Here we evaluated the use of PAM and propose a rapid chlorophyll fluorescence based bioassay to quantify allelochemical BECs released from Alexandrium minutum. We used the ubiquitous diatom Chaetoceros muelleri as a target species. The bioassay, based on sub-lethal effects, quantifies allelochemical activity from different samples (filtrates, extracts in seawater) within a short period of time (2 h). This rapid bioassay will help investigate the role of allelochemical interactions in Alexandrium bloom establishment. It will also further our understanding of the potential relationship between allelochemical activities and other cytotoxic activities from BECs. While this bioassay was developed for the species A. minutum, it may be applicable to other species producing allelochemicals and may provide further insights into the role and impact of allelochemical interactions in forming dense algal blooms and structuring marine ecosystems.


Asunto(s)
Diatomeas/efectos de los fármacos , Dinoflagelados/química , Toxinas Marinas/química , Feromonas/química , Bioensayo/métodos , Clorofila/metabolismo , Diatomeas/metabolismo , Fluorometría , Toxinas Marinas/toxicidad , Feromonas/análisis
14.
Environ Pollut ; 228: 454-463, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28558286

RESUMEN

To understand the fate and impacts of microplastics (MP) in the marine ecosystems, it is essential to investigate their interactions with phytoplankton as these may affect MP bioavailability to marine organisms as well as their fate in the water column. However, the behaviour of MP with marine phytoplanktonic cells remains little studied and thus unpredictable. The present study assessed the potential for phytoplankton cells to form hetero-aggregates with small micro-polystyrene (micro-PS) particles depending on microalgal species and physiological status. A prymnesiophycea, Tisochrysis lutea, a dinoflagellate, Heterocapsa triquetra, and a diatom, Chaetoceros neogracile, were exposed to micro-PS (2 µm diameter; 3.96 µg L-1) during their growth culture cycles. Micro-PS were quantified using an innovative flow-cytometry approach, which allowed the monitoring of the micro-PS repartition in microalgal cultures and the distinction between free suspended micro-PS and hetero-aggregates of micro-PS and microalgae. Hetero-aggregation was observed for C. neogracile during the stationary growth phase. The highest levels of micro-PS were "lost" from solution, sticking to flasks, with T. lutea and H. triquetra cultures. This loss of micro-PS sticking to the flask walls increased with the age of the culture for both species. No effects of micro-PS were observed on microalgal physiology in terms of growth and chlorophyll fluorescence. Overall, these results highlight the potential for single phytoplankton cells and residual organic matter to interact with microplastics, and thus potentially influence their distribution and bioavailability in experimental systems and the water column.


Asunto(s)
Fitoplancton/fisiología , Plásticos/análisis , Poliestirenos/análisis , Contaminantes Químicos del Agua/análisis , Diatomeas/fisiología , Dinoflagelados/fisiología , Monitoreo del Ambiente , Microalgas/fisiología , Fitoplancton/crecimiento & desarrollo , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA