Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Mol Cell ; 78(5): 960-974.e11, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32330456

RESUMEN

Dynamic cellular processes such as differentiation are driven by changes in the abundances of transcription factors (TFs). However, despite years of studies, our knowledge about the protein copy number of TFs in the nucleus is limited. Here, by determining the absolute abundances of 103 TFs and co-factors during the course of human erythropoiesis, we provide a dynamic and quantitative scale for TFs in the nucleus. Furthermore, we establish the first gene regulatory network of cell fate commitment that integrates temporal protein stoichiometry data with mRNA measurements. The model revealed quantitative imbalances in TFs' cross-antagonistic relationships that underlie lineage determination. Finally, we made the surprising discovery that, in the nucleus, co-repressors are dramatically more abundant than co-activators at the protein level, but not at the RNA level, with profound implications for understanding transcriptional regulation. These analyses provide a unique quantitative framework to understand transcriptional regulation of cell differentiation in a dynamic context.


Asunto(s)
Eritropoyesis/genética , Redes Reguladoras de Genes/genética , Factores de Transcripción/genética , Bases de Datos Factuales , Regulación de la Expresión Génica/genética , Hematopoyesis/genética , Humanos , Proteómica/métodos , Factores de Transcripción/análisis , Factores de Transcripción/metabolismo
2.
Genes Chromosomes Cancer ; 62(8): 441-448, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36695636

RESUMEN

Cytogenetic analysis provides important information on the genetic mechanisms of cancer. The Mitelman Database of Chromosome Aberrations and Gene Fusions in Cancer (Mitelman DB) is the largest catalog of acquired chromosome aberrations, presently comprising >70 000 cases across multiple cancer types. Although this resource has enabled the identification of chromosome abnormalities leading to specific cancers and cancer mechanisms, a large-scale, systematic analysis of these aberrations and their downstream implications has been difficult due to the lack of a standard, automated mapping from aberrations to genomic coordinates. We previously introduced CytoConverter as a tool that automates such conversions. CytoConverter has now been updated with improved interpretation of karyotypes and has been integrated with the Mitelman DB, providing a comprehensive mapping of the 70 000+ cases to genomic coordinates, as well as visualization of the frequencies of chromosomal gains and losses. Importantly, all CytoConverter-generated genomic coordinates are publicly available in Google BigQuery, a cloud-based data warehouse, facilitating data exploration and integration with other datasets hosted by the Institute for Systems Biology Cancer Gateway in the Cloud (ISB-CGC) Resource. We demonstrate the use of BigQuery for integrative analysis of Mitelman DB with other cancer datasets, including a comparison of the frequency of imbalances identified in Mitelman DB cases with those found in The Cancer Genome Atlas (TCGA) copy number datasets. This solution provides opportunities to leverage the power of cloud computing for low-cost, scalable, and integrated analysis of chromosome aberrations and gene fusions in cancer.


Asunto(s)
Nube Computacional , Neoplasias , Humanos , Aberraciones Cromosómicas , Cariotipificación , Neoplasias/genética , Fusión Génica
3.
Radiographics ; 43(12): e230180, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37999984

RESUMEN

The remarkable advances of artificial intelligence (AI) technology are revolutionizing established approaches to the acquisition, interpretation, and analysis of biomedical imaging data. Development, validation, and continuous refinement of AI tools requires easy access to large high-quality annotated datasets, which are both representative and diverse. The National Cancer Institute (NCI) Imaging Data Commons (IDC) hosts large and diverse publicly available cancer image data collections. By harmonizing all data based on industry standards and colocalizing it with analysis and exploration resources, the IDC aims to facilitate the development, validation, and clinical translation of AI tools and address the well-documented challenges of establishing reproducible and transparent AI processing pipelines. Balanced use of established commercial products with open-source solutions, interconnected by standard interfaces, provides value and performance, while preserving sufficient agility to address the evolving needs of the research community. Emphasis on the development of tools, use cases to demonstrate the utility of uniform data representation, and cloud-based analysis aim to ease adoption and help define best practices. Integration with other data in the broader NCI Cancer Research Data Commons infrastructure opens opportunities for multiomics studies incorporating imaging data to further empower the research community to accelerate breakthroughs in cancer detection, diagnosis, and treatment. Published under a CC BY 4.0 license.


Asunto(s)
Inteligencia Artificial , Neoplasias , Estados Unidos , Humanos , National Cancer Institute (U.S.) , Reproducibilidad de los Resultados , Diagnóstico por Imagen , Multiómica , Neoplasias/diagnóstico por imagen
4.
Proc Natl Acad Sci U S A ; 114(23): 5800-5807, 2017 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-28584128

RESUMEN

T-cell development from hematopoietic progenitors depends on multiple transcription factors, mobilized and modulated by intrathymic Notch signaling. Key aspects of T-cell specification network architecture have been illuminated through recent reports defining roles of transcription factors PU.1, GATA-3, and E2A, their interactions with Notch signaling, and roles of Runx1, TCF-1, and Hes1, providing bases for a comprehensively updated model of the T-cell specification gene regulatory network presented herein. However, the role of lineage commitment factor Bcl11b has been unclear. We use self-organizing maps on 63 RNA-seq datasets from normal and perturbed T-cell development to identify functional targets of Bcl11b during commitment and relate them to other regulomes. We show that both activation and repression target genes can be bound by Bcl11b in vivo, and that Bcl11b effects overlap with E2A-dependent effects. The newly clarified role of Bcl11b distinguishes discrete components of commitment, resolving how innate lymphoid, myeloid, and dendritic, and B-cell fate alternatives are excluded by different mechanisms.


Asunto(s)
Diferenciación Celular/genética , Redes Reguladoras de Genes , Proteínas Represoras/fisiología , Linfocitos T/citología , Proteínas Supresoras de Tumor/fisiología , Animales , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores Notch , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transducción de Señal , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
5.
Nucleic Acids Res ; 42(18): 11291-303, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25232098

RESUMEN

The resilience of Mycobacterium tuberculosis (MTB) is largely due to its ability to effectively counteract and even take advantage of the hostile environments of a host. In order to accelerate the discovery and characterization of these adaptive mechanisms, we have mined a compendium of 2325 publicly available transcriptome profiles of MTB to decipher a predictive, systems-scale gene regulatory network model. The resulting modular organization of 98% of all MTB genes within this regulatory network was rigorously tested using two independently generated datasets: a genome-wide map of 7248 DNA-binding locations for 143 transcription factors (TFs) and global transcriptional consequences of overexpressing 206 TFs. This analysis has discovered specific TFs that mediate conditional co-regulation of genes within 240 modules across 14 distinct environmental contexts. In addition to recapitulating previously characterized regulons, we discovered 454 novel mechanisms for gene regulation during stress, cholesterol utilization and dormancy. Significantly, 183 of these mechanisms act uniquely under conditions experienced during the infection cycle to regulate diverse functions including 23 genes that are essential to host-pathogen interactions. These and other insights underscore the power of a rational, model-driven approach to unearth novel MTB biology that operates under some but not all phases of infection.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Redes Reguladoras de Genes , Mycobacterium tuberculosis/genética , Colesterol/metabolismo , Perfilación de la Expresión Génica , Genoma Bacteriano , Modelos Genéticos , Factores de Transcripción/metabolismo , Transcripción Genética
6.
bioRxiv ; 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38979389

RESUMEN

The Data Coordinating Center (DCC) of the Human Tumor Atlas Network (HTAN) has played a crucial role in enabling the broad sharing and effective utilization of HTAN data within the scientific community. Data from the first phase of HTAN are now available publicly. We describe the diverse datasets and modalities shared, multiple access routes to HTAN assay data and metadata, data standards, technical infrastructure and governance approaches, as well as our approach to sustained community engagement. HTAN data can be accessed via the HTAN Portal, explored in visualization tools-including CellxGene, Minerva, and cBioPortal-and analyzed in the cloud through the NCI Cancer Research Data Commons nodes. We have developed a streamlined infrastructure to ingest and disseminate data by leveraging the Synapse platform. Taken together, the HTAN DCC's approach demonstrates a successful model for coordinating, standardizing, and disseminating complex cancer research data via multiple resources in the cancer data ecosystem, offering valuable insights for similar consortia, and researchers looking to leverage HTAN data.

7.
Nat Commun ; 14(1): 1572, 2023 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-36949078

RESUMEN

The exchange of large and complex slide microscopy imaging data in biomedical research and pathology practice is impeded by a lack of data standardization and interoperability, which is detrimental to the reproducibility of scientific findings and clinical integration of technological innovations. We introduce Slim, an open-source, web-based slide microscopy viewer that implements the internationally accepted Digital Imaging and Communications in Medicine (DICOM) standard to achieve interoperability with a multitude of existing medical imaging systems. We showcase the capabilities of Slim as the slide microscopy viewer of the NCI Imaging Data Commons and demonstrate how the viewer enables interactive visualization of traditional brightfield microscopy and highly-multiplexed immunofluorescence microscopy images from The Cancer Genome Atlas and Human Tissue Atlas Network, respectively, using standard DICOMweb services. We further show how Slim enables the collection of standardized image annotations for the development or validation of machine learning models and the visual interpretation of model inference results in the form of segmentation masks, spatial heat maps, or image-derived measurements.


Asunto(s)
Ciencia de los Datos , Microscopía , Humanos , Microscopía/métodos , Reproducibilidad de los Resultados
8.
Comput Methods Programs Biomed ; 242: 107839, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37832430

RESUMEN

BACKGROUND AND OBJECTIVES: Reproducibility is a major challenge in developing machine learning (ML)-based solutions in computational pathology (CompPath). The NCI Imaging Data Commons (IDC) provides >120 cancer image collections according to the FAIR principles and is designed to be used with cloud ML services. Here, we explore its potential to facilitate reproducibility in CompPath research. METHODS: Using the IDC, we implemented two experiments in which a representative ML-based method for classifying lung tumor tissue was trained and/or evaluated on different datasets. To assess reproducibility, the experiments were run multiple times with separate but identically configured instances of common ML services. RESULTS: The results of different runs of the same experiment were reproducible to a large extent. However, we observed occasional, small variations in AUC values, indicating a practical limit to reproducibility. CONCLUSIONS: We conclude that the IDC facilitates approaching the reproducibility limit of CompPath research (i) by enabling researchers to reuse exactly the same datasets and (ii) by integrating with cloud ML services so that experiments can be run in identically configured computing environments.


Asunto(s)
Neoplasias Pulmonares , Programas Informáticos , Humanos , Reproducibilidad de los Resultados , Nube Computacional , Diagnóstico por Imagen , Neoplasias Pulmonares/diagnóstico por imagen
9.
BMC Bioinformatics ; 13: 275, 2012 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-23102059

RESUMEN

BACKGROUND: The analysis of large, complex networks is an important aspect of ongoing biological research. Yet there is a need for entirely new, scalable approaches for network visualization that can provide more insight into the structure and function of these complex networks. RESULTS: To address this need, we have developed a software tool named BioFabric, which uses a novel network visualization technique that depicts nodes as one-dimensional horizontal lines arranged in unique rows. This is in distinct contrast to the traditional approach that represents nodes as discrete symbols that behave essentially as zero-dimensional points. BioFabric then depicts each edge in the network using a vertical line assigned to its own unique column, which spans between the source and target rows, i.e. nodes. This method of displaying the network allows a full-scale view to be organized in a rational fashion; interesting network structures, such as sets of nodes with similar connectivity, can be quickly scanned and visually identified in the full network view, even in networks with well over 100,000 edges. This approach means that the network is being represented as a fundamentally linear, sequential entity, where the horizontal scroll bar provides the basic navigation tool for browsing the entire network. CONCLUSIONS: BioFabric provides a novel and powerful way of looking at any size of network, including very large networks, using horizontal lines to represent nodes and vertical lines to represent edges. It is freely available as an open-source Java application.


Asunto(s)
Gráficos por Computador , Redes Reguladoras de Genes , Redes y Vías Metabólicas , Programas Informáticos
10.
F1000Res ; 11: 493, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36761837

RESUMEN

Synthetic lethal interactions (SLIs), genetic interactions in which the simultaneous inactivation of two genes leads to a lethal phenotype, are promising targets for therapeutic intervention in cancer, as exemplified by the recent success of PARP inhibitors in treating BRCA1/2-deficient tumors. We present SL-Cloud, a new component of the Institute for Systems Biology Cancer Gateway in the Cloud (ISB-CGC), that provides an integrated framework of cloud-hosted data resources and curated workflows to enable facile prediction of SLIs. This resource addresses two main challenges related to SLI inference: the need to wrangle and preprocess large multi-omic datasets and the availability of multiple comparable prediction approaches. SL-Cloud enables customizable computational inference of SLIs and testing of prediction approaches across multiple datasets. We anticipate that cancer researchers will find utility in this tool for discovery of SLIs to support further investigation into potential drug targets for anticancer therapies.


Asunto(s)
Nube Computacional , Neoplasias , Humanos , Neoplasias/genética , Biología de Sistemas , Multiómica
11.
Proc Natl Acad Sci U S A ; 105(51): 20100-5, 2008 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-19104054

RESUMEN

Choice of a T lymphoid fate by hematopoietic progenitor cells depends on sustained Notch-Delta signaling combined with tightly regulated activities of multiple transcription factors. To dissect the regulatory network connections that mediate this process, we have used high-resolution analysis of regulatory gene expression trajectories from the beginning to the end of specification, tests of the short-term Notch dependence of these gene expression changes, and analyses of the effects of overexpression of two essential transcription factors, namely PU.1 and GATA-3. Quantitative expression measurements of >50 transcription factor and marker genes have been used to derive the principal components of regulatory change through which T cell precursors progress from primitive multipotency to T lineage commitment. Our analyses reveal separate contributions of Notch signaling, GATA-3 activity, and down-regulation of PU.1. Using BioTapestry (www.BioTapestry.org), the results have been assembled into a draft gene regulatory network for the specification of T cell precursors and the choice of T as opposed to myeloid/dendritic or mast-cell fates. This network also accommodates effects of E proteins and mutual repression circuits of Gfi1 against Egr-2 and of TCF-1 against PU.1 as proposed elsewhere, but requires additional functions that remain unidentified. Distinctive features of this network structure include the intense dose dependence of GATA-3 effects, the gene-specific modulation of PU.1 activity based on Notch activity, the lack of direct opposition between PU.1 and GATA-3, and the need for a distinct, late-acting repressive function or functions to extinguish stem and progenitor-derived regulatory gene expression.


Asunto(s)
Factor de Transcripción GATA3/genética , Redes Reguladoras de Genes , Linfopoyesis/genética , Proteínas Proto-Oncogénicas/genética , Linfocitos T/citología , Transactivadores/genética , Animales , Regulación de la Expresión Génica , Células Madre Hematopoyéticas/citología , Ratones , Receptores Notch , Factores de Transcripción
12.
Cancer Res ; 81(16): 4188-4193, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-34185678

RESUMEN

The National Cancer Institute (NCI) Cancer Research Data Commons (CRDC) aims to establish a national cloud-based data science infrastructure. Imaging Data Commons (IDC) is a new component of CRDC supported by the Cancer Moonshot. The goal of IDC is to enable a broad spectrum of cancer researchers, with and without imaging expertise, to easily access and explore the value of deidentified imaging data and to support integrated analyses with nonimaging data. We achieve this goal by colocating versatile imaging collections with cloud-based computing resources and data exploration, visualization, and analysis tools. The IDC pilot was released in October 2020 and is being continuously populated with radiology and histopathology collections. IDC provides access to curated imaging collections, accompanied by documentation, a user forum, and a growing number of analysis use cases that aim to demonstrate the value of a data commons framework applied to cancer imaging research. SIGNIFICANCE: This study introduces NCI Imaging Data Commons, a new repository of the NCI Cancer Research Data Commons, which will support cancer imaging research on the cloud.


Asunto(s)
Diagnóstico por Imagen/métodos , National Cancer Institute (U.S.) , Neoplasias/diagnóstico por imagen , Neoplasias/genética , Investigación Biomédica/tendencias , Nube Computacional , Biología Computacional/métodos , Gráficos por Computador , Seguridad Computacional , Interpretación Estadística de Datos , Bases de Datos Factuales , Diagnóstico por Imagen/normas , Humanos , Procesamiento de Imagen Asistido por Computador , Proyectos Piloto , Lenguajes de Programación , Radiología/métodos , Radiología/normas , Reproducibilidad de los Resultados , Programas Informáticos , Estados Unidos , Interfaz Usuario-Computador
13.
Dev Biol ; 329(2): 410-21, 2009 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-19268450

RESUMEN

The current gene regulatory network (GRN) for the sea urchin embryo pertains to pregastrular specification functions in the endomesodermal territories. Here we extend gene regulatory network analysis to the adjacent oral and aboral ectoderm territories over the same period. A large fraction of the regulatory genes predicted by the sea urchin genome project and shown in ancillary studies to be expressed in either oral or aboral ectoderm by 24 h are included, though universally expressed and pan-ectodermal regulatory genes are in general not. The loci of expression of these genes have been determined by whole mount in situ hybridization. We have carried out a global perturbation analysis in which expression of each gene was interrupted by introduction of morpholino antisense oligonucleotide, and the effects on all other genes were measured quantitatively, both by QPCR and by a new instrumental technology (NanoString Technologies nCounter Analysis System). At its current stage the network model, built in BioTapestry, includes 22 genes encoding transcription factors, 4 genes encoding known signaling ligands, and 3 genes that are yet unknown but are predicted to perform specific roles. Evidence emerged from the analysis pointing to distinctive subcircuit features observed earlier in other parts of the GRN, including a double negative transcriptional regulatory gate, and dynamic state lockdowns by feedback interactions. While much of the regulatory apparatus is downstream of Nodal signaling, as expected from previous observations, there are also cohorts of independently activated oral and aboral ectoderm regulatory genes, and we predict yet unidentified signaling interactions between oral and aboral territories.


Asunto(s)
Ectodermo/metabolismo , Modelos Biológicos , Erizos de Mar/embriología , Animales , Clonación Molecular , Hibridación in Situ , Oligonucleótidos Antisentido/genética , Reacción en Cadena de la Polimerasa , Erizos de Mar/genética
14.
Biochim Biophys Acta ; 1789(4): 363-74, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18757046

RESUMEN

Genetic regulatory networks (GRNs) are complex, large-scale, and spatially and temporally distributed. These characteristics impose challenging demands on software tools for building GRN models, and so there is a need for custom tools. In this paper, we report on our ongoing development of BioTapestry, an open source, freely available computational tool designed specifically for building GRN models. We also outline our future development plans, and give some examples of current applications of BioTapestry.


Asunto(s)
Biología Computacional , Documentación , Redes Reguladoras de Genes , Simulación por Computador , Modelos Biológicos , Programas Informáticos
15.
Biochim Biophys Acta ; 1789(4): 279-98, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18992377

RESUMEN

The genomic developmental program operates mainly through the regulated expression of genes encoding transcription factors and signaling pathways. Complex networks of regulatory genetic interactions control developmental cell specification and fates. Development in the zebrafish, Danio rerio, has been studied extensively and large amounts of experimental data, including information on spatial and temporal gene expression patterns, are available. A wide variety of maternal and zygotic regulatory factors and signaling pathways have been discovered in zebrafish, and these provide a useful starting point for reconstructing the gene regulatory networks (GRNs) underlying development. In this review, we describe in detail the genetic regulatory subcircuits responsible for dorsoanterior-ventroposterior patterning and endoderm formation. We describe a number of regulatory motifs, which appear to act as the functional building blocks of the GRNs. Different positive feedback loops drive the ventral and dorsal specification processes. Mutual exclusivity in dorsal-ventral polarity in zebrafish is governed by intra-cellular cross-inhibiting GRN motifs, including vent/dharma and tll1/chordin. The dorsal-ventral axis seems to be determined by competition between two maternally driven positive-feedback loops (one operating on Dharma, the other on Bmp). This is the first systematic approach aimed at developing an integrated model of the GRNs underlying zebrafish development. Comparison of GRNs' organizational motifs between different species will provide insights into developmental specification and its evolution. The online version of the zebrafish GRNs can be found at http://www.zebrafishGRNs.org.


Asunto(s)
Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Pez Cebra/embriología , Pez Cebra/genética , Animales , Embrión no Mamífero/citología
16.
Nat Commun ; 11(1): 6235, 2020 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-33277483

RESUMEN

The extensive array of morphological diversity among animal taxa represents the product of millions of years of evolution. Morphology is the output of development, therefore phenotypic evolution arises from changes to the topology of the gene regulatory networks (GRNs) that control the highly coordinated process of embryogenesis. A particular challenge in understanding the origins of animal diversity lies in determining how GRNs incorporate novelty while preserving the overall stability of the network, and hence, embryonic viability. Here we assemble a comprehensive GRN for endomesoderm specification in the sea star from zygote through gastrulation that corresponds to the GRN for sea urchin development of equivalent territories and stages. Comparison of the GRNs identifies how novelty is incorporated in early development. We show how the GRN is resilient to the introduction of a transcription factor, pmar1, the inclusion of which leads to a switch between two stable modes of Delta-Notch signaling. Signaling pathways can function in multiple modes and we propose that GRN changes that lead to switches between modes may be a common evolutionary mechanism for changes in embryogenesis. Our data additionally proposes a model in which evolutionarily conserved network motifs, or kernels, may function throughout development to stabilize these signaling transitions.


Asunto(s)
Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Erizos de Mar/genética , Estrellas de Mar/genética , Animales , Embrión no Mamífero/embriología , Evolución Molecular , Gastrulación/genética , Mesodermo/embriología , Mesodermo/metabolismo , Modelos Genéticos , Erizos de Mar/embriología , Especificidad de la Especie , Estrellas de Mar/embriología , Factores de Transcripción/genética
17.
F1000Res ; 7: 800, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29983926

RESUMEN

Cytoscape is the premiere platform for interactive analysis, integration and visualization of network data. While Cytoscape itself delivers much basic functionality, it relies on community-written apps to deliver specialized functions and analyses. To date, Cytoscape's CyREST feature has allowed researchers to write workflows that call basic Cytoscape functions, but provides no access to its high value app-based functions. With Cytoscape Automation, workflows can now call apps that have been upgraded to expose their functionality. This article collection is a resource to assist readers in quickly and economically leveraging such apps in reproducible workflows that scale independently to large data sets and production runs.

18.
Cancer Res ; 77(21): e7-e10, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-29092928

RESUMEN

The ISB Cancer Genomics Cloud (ISB-CGC) is one of three pilot projects funded by the National Cancer Institute to explore new approaches to computing on large cancer datasets in a cloud environment. With a focus on Data as a Service, the ISB-CGC offers multiple avenues for accessing and analyzing The Cancer Genome Atlas, TARGET, and other important references such as GENCODE and COSMIC using the Google Cloud Platform. The open approach allows researchers to choose approaches best suited to the task at hand: from analyzing terabytes of data using complex workflows to developing new analysis methods in common languages such as Python, R, and SQL; to using an interactive web application to create synthetic patient cohorts and to explore the wealth of available genomic data. Links to resources and documentation can be found at www.isb-cgc.org Cancer Res; 77(21); e7-10. ©2017 AACR.


Asunto(s)
Nube Computacional , Biología Computacional , Genómica , Neoplasias/genética , Conjuntos de Datos como Asunto , Genoma Humano , Humanos , Internet , National Cancer Institute (U.S.) , Investigación/tendencias , Programas Informáticos , Estados Unidos
20.
Curr Genomics ; 7(6): 333-41, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18079985

RESUMEN

A number of mechanistic and predictive genetic regulatory networks (GRNs) comprising dozens of genes have already been characterized at the level of cis-regulatory interactions. Reconstructions of networks of 100's to 1000's of genes and their interactions are currently underway. Understanding the organizational and functional principles underlying these networks is probably the single greatest challenge facing genomics today. We review the current approaches to deciphering large-scale GRNs and discuss some of their limitations. We then propose a bottom-up approach in which large-scale GRNs are first organized in terms of functionally distinct GRN building blocks of one or a few genes. Biological processes may then be viewed as the outcome of functional interactions among these simple, well-characterized functional building blocks. We describe several putative GRN functional building blocks and show that they can be located within GRNs on the basis of their interaction topology and additional, simple and experimentally testable constraints.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA