Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Tree Physiol ; 40(2): 129-141, 2020 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-31860724

RESUMEN

Cork cambium (or phellogen) is a secondary meristem responsible for the formation of phelloderm and phellem/cork, which together compose the periderm. In Quercus suber L., the phellogen is active throughout the entire life of the tree, producing a continuous and renewable outer bark of cork. To identify specific candidate genes associated with cork cambium activity and phellem differentiation, we performed a comparative transcriptomic study of Q. suber secondary growth tissues (xylem and phellogen/phellem) using RNA-seq. The present work provides a high-resolution map of all the transcripts identified in the phellogen/phellem tissues. A total of 6013 differentially expressed genes were identified, with 2875 of the transcripts being specifically enriched during the cork formation process versus secondary xylem formation. Furthermore, cork samples originating from the original phellogen (`virgin' cork) and from a traumatic phellogen (`amadia' cork) were also compared. Our results point to a shortlist of potentially relevant candidate genes regulating phellogen activity and phellem differentiation, including novel genes involved in the suberization process, as well as genes associated to ethylene and jasmonate signaling and to meristem function. The future functional characterization of some of the identified candidate genes will help to elucidate the molecular mechanisms underlying cork cambium activity and phellem differentiation.


Asunto(s)
Quercus/genética , Cámbium/genética , Perfilación de la Expresión Génica , Transcriptoma , Xilema/genética
2.
Genetics ; 201(1): 75-89, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26178967

RESUMEN

In most fungi, sexual reproduction is bipolar; that is, two alternate sets of genes at a single mating-type (MAT) locus determine two mating types. However, in the Basidiomycota, a unique (tetrapolar) reproductive system emerged in which sexual identity is governed by two unlinked MAT loci, each of which controls independent mechanisms of self/nonself recognition. Tetrapolar-to-bipolar transitions have occurred on multiple occasions in the Basidiomycota, resulting, for example, from linkage of the two MAT loci into a single inheritable unit. Nevertheless, owing to the scarcity of molecular data regarding tetrapolar systems in the earliest-branching lineage of the Basidiomycota (subphylum Pucciniomycotina), it is presently unclear if the last common ancestor was tetrapolar or bipolar. Here, we address this question, by investigating the mating system of the Pucciniomycotina yeast Leucosporidium scottii. Using whole-genome sequencing and chromoblot analysis, we discovered that sexual reproduction is governed by two physically unlinked gene clusters: a multiallelic homeodomain (HD) locus and a pheromone/receptor (P/R) locus that is biallelic, thereby dismissing the existence of a third P/R allele as proposed earlier. Allele distribution of both MAT genes in natural populations showed that the two loci were in strong linkage disequilibrium, but independent assortment of MAT alleles was observed in the meiotic progeny of a test cross. The sexual cycle produces fertile progeny with similar proportions of the four mating types, but approximately 2/3 of the progeny was found to be nonhaploid. Our study adds to others in reinforcing tetrapolarity as the ancestral state of all basidiomycetes.


Asunto(s)
Basidiomycota/fisiología , Genes del Tipo Sexual de los Hongos , Basidiomycota/genética , Evolución Molecular , Genoma Fúngico , Haploidia , Desequilibrio de Ligamiento , Filogenia , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA