Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Mol Cell ; 70(3): 531-544.e9, 2018 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-29727621

RESUMEN

While the majority of phosphatidylinositol-4, 5-bisphosphate (PI-4, 5-P2) in mammalian cells is generated by the conversion of phosphatidylinositol-4-phosphate (PI-4-P) to PI-4, 5-P2, a small fraction can be made by phosphorylating phosphatidylinositol-5-phosphate (PI-5-P). The physiological relevance of this second pathway is not clear. Here, we show that deletion of the genes encoding the two most active enzymes in this pathway, Pip4k2a and Pip4k2b, in the liver of mice causes a large enrichment in lipid droplets and in autophagic vesicles during fasting. These changes are due to a defect in the clearance of autophagosomes that halts autophagy and reduces the supply of nutrients salvaged through this pathway. Similar defects in autophagy are seen in nutrient-starved Pip4k2a-/-Pip4k2b-/- mouse embryonic fibroblasts and in C. elegans lacking the PI5P4K ortholog. These results suggest that this alternative pathway for PI-4, 5-P2 synthesis evolved, in part, to enhance the ability of multicellular organisms to survive starvation.


Asunto(s)
Autofagia/fisiología , Ayuno/metabolismo , Metabolismo de los Lípidos/fisiología , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Animales , Autofagosomas/metabolismo , Caenorhabditis elegans/metabolismo , Línea Celular , Fibroblastos/metabolismo , Células HEK293 , Humanos , Hígado/metabolismo , Ratones , Fosfatos de Fosfatidilinositol/metabolismo , Transducción de Señal/fisiología
2.
Proc Natl Acad Sci U S A ; 115(4): E743-E752, 2018 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-29311302

RESUMEN

The cancer anorexia cachexia syndrome is a systemic metabolic disorder characterized by the catabolism of stored nutrients in skeletal muscle and adipose tissue that is particularly prevalent in nonsmall cell lung cancer (NSCLC). Loss of skeletal muscle results in functional impairments and increased mortality. The aim of the present study was to characterize the changes in systemic metabolism in a genetically engineered mouse model of NSCLC. We show that a portion of these animals develop loss of skeletal muscle, loss of adipose tissue, and increased inflammatory markers mirroring the human cachexia syndrome. Using noncachexic and fasted animals as controls, we report a unique cachexia metabolite phenotype that includes the loss of peroxisome proliferator-activated receptor-α (PPARα) -dependent ketone production by the liver. In this setting, glucocorticoid levels rise and correlate with skeletal muscle degradation and hepatic markers of gluconeogenesis. Restoring ketone production using the PPARα agonist, fenofibrate, prevents the loss of skeletal muscle mass and body weight. These results demonstrate how targeting hepatic metabolism can prevent muscle wasting in lung cancer, and provide evidence for a therapeutic strategy.


Asunto(s)
Caquexia/prevención & control , Carcinoma de Pulmón de Células no Pequeñas/complicaciones , Fenofibrato/uso terapéutico , Neoplasias Pulmonares/complicaciones , PPAR gamma/agonistas , Aminoácidos/metabolismo , Animales , Caquexia/sangre , Caquexia/etiología , Evaluación Preclínica de Medicamentos , Fenofibrato/farmacología , Gluconeogénesis , Cuerpos Cetónicos/deficiencia , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , PPAR gamma/metabolismo
3.
Sci Signal ; 17(838): eado6266, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38805583

RESUMEN

Phosphoinositides are essential signaling molecules. The PI5P4K family of phosphoinositide kinases and their substrates and products, PI5P and PI4,5P2, respectively, are emerging as intracellular metabolic and stress sensors. We performed an unbiased screen to investigate the signals that these kinases relay and the specific upstream regulators controlling this signaling node. We found that the core Hippo pathway kinases MST1/2 phosphorylated PI5P4Ks and inhibited their signaling in vitro and in cells. We further showed that PI5P4K activity regulated several Hippo- and YAP-related phenotypes, specifically decreasing the interaction between the key Hippo proteins MOB1 and LATS and stimulating the YAP-mediated genetic program governing epithelial-to-mesenchymal transition. Mechanistically, we showed that PI5P interacted with MOB1 and enhanced its interaction with LATS, thereby providing a signaling connection between the Hippo pathway and PI5P4Ks. These findings reveal how these two important evolutionarily conserved signaling pathways are integrated to regulate metazoan development and human disease.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Vía de Señalización Hippo , Proteínas Serina-Treonina Quinasas , Transducción de Señal , Factores de Transcripción , Proteínas Señalizadoras YAP , Humanos , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Vía de Señalización Hippo/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas Señalizadoras YAP/metabolismo , Proteínas Señalizadoras YAP/genética , Activación Transcripcional , Fosforilación , Células HEK293 , Transición Epitelial-Mesenquimal , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Animales , Serina-Treonina Quinasa 3 , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética
4.
Front Cell Dev Biol ; 11: 1297355, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37954209

RESUMEN

Phosphoinositides serve as essential players in numerous biological activities and are critical for overall cellular function. Due to their complex chemical structures, localization, and low abundance, current challenges in the phosphoinositide field include the accurate measurement and identification of specific variants, particularly those with acyl chains. Researchers are intensively developing innovative techniques and approaches to address these challenges and advance our understanding of the impact of phosphoinositide signaling on cellular biology. This article provides an overview of recent advances in the study of phosphoinositides, including mass spectrometry, lipid biosensors, and real-time activity assays using fluorometric sensors. These methodologies have proven instrumental for a comprehensive exploration of the cellular distribution and dynamics of phosphoinositides and have shed light on the growing significance of these lipids in human health and various pathological processes, including cancer. To illustrate the importance of phosphoinositide signaling in disease, this perspective also highlights the role of a family of lipid kinases named phosphatidylinositol 5-phosphate 4-kinases (PI5P4Ks), which have recently emerged as exciting therapeutic targets for cancer treatment. The ongoing exploration of phosphoinositide signaling not only deepens our understanding of cellular biology but also holds promise for novel interventions in cancer therapy.

5.
Adv Biol Regul ; 83: 100839, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34840111

RESUMEN

Metabolic reprogramming of cancer cells by various acquired mutations provides support for rapid proliferation and growth in the tumor microenvironment. Mutations in the TP53 gene are the most common mutation found across all human cancers. Commonly referred to as "the guardian of the genome", p53 has a well-established role as a tumor suppressor by mediating checkpoint integrity and protecting cells from DNA damage. To date, the many functional roles of p53 extending beyond its classical function and exerting control over metabolic processes continues to confound the field. Recently, emerging roles for p53 in mediating lipid metabolism have come to light with intriguing metabolic roles in regulating cholesterol homeostasis and lipid droplet formation. Herein, we will seek to unify the mechanisms by which absence of functional p53, as well as stable mutant forms of p53, exert control over these lipid metabolism programs. Of equal importance, synthetic lethal phenotypes in the context of mutant p53 and aberrant lipid homeostasis offer new possible targets in the therapeutic landscape. This review aims to characterize the mechanisms by which p53 exerts control over these pathways and examine how precision medicine may benefit from tumor subtyping of p53 mutations.


Asunto(s)
Neoplasias , Proteína p53 Supresora de Tumor , Animales , Genes p53 , Humanos , Metabolismo de los Lípidos/genética , Mutación , Neoplasias/patología , Microambiente Tumoral , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
6.
Cell Rep Methods ; 2(7): 100239, 2022 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-35880017

RESUMEN

We present Multi-miR, a microRNA-embedded shRNA system modeled after endogenous microRNA clusters that enables simultaneous expression of up to three or four short hairpin RNAs (shRNAs) from a single promoter without loss of activity, enabling robust combinatorial RNA interference (RNAi). We further developed complementary all-in-one vectors that are over one log-scale more sensitive to doxycycline-mediated activation in vitro than previous methods and resistant to shRNA inactivation in vivo. We demonstrate the utility of this system for intracranial expression of shRNAs in a glioblastoma model. Additionally, we leverage this platform to target the redundant RAF signaling node in a mouse model of KRAS-mutant cancer and show that robust combinatorial synthetic lethality efficiently abolishes tumor growth.


Asunto(s)
MicroARNs , Ratones , Animales , MicroARNs/genética , Interferencia de ARN , Vectores Genéticos , ARN Interferente Pequeño/genética , Regiones Promotoras Genéticas
7.
Dev Cell ; 56(11): 1661-1676.e10, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-33984270

RESUMEN

PI5P4Ks are a class of phosphoinositide kinases that phosphorylate PI-5-P to PI-4,5-P2. Distinct localization of phosphoinositides is fundamental for a multitude of cellular functions. Here, we identify a role for peroxisomal PI-4,5-P2 generated by the PI5P4Ks in maintaining energy balance. We demonstrate that PI-4,5-P2 regulates peroxisomal fatty acid oxidation by mediating trafficking of lipid droplets to peroxisomes, which is essential for sustaining mitochondrial metabolism. Using fluorescent-tagged lipids and metabolite tracing, we show that loss of the PI5P4Ks significantly impairs lipid uptake and ß-oxidation in the mitochondria. Further, loss of PI5P4Ks results in dramatic alterations in mitochondrial structural and functional integrity, which under nutrient deprivation is further exacerbated, causing cell death. Notably, inhibition of the PI5P4Ks in cancer cells and mouse tumor models leads to decreased cell viability and tumor growth, respectively. Together, these studies reveal an unexplored role for PI5P4Ks in preserving metabolic homeostasis, which is necessary for tumorigenesis.


Asunto(s)
Carcinogénesis/genética , Mitocondrias/genética , Neoplasias/metabolismo , Peroxisomas/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Animales , Línea Celular Tumoral , Metabolismo Energético/genética , Femenino , Homeostasis/genética , Humanos , Gotas Lipídicas/metabolismo , Metabolismo de los Lípidos/genética , Masculino , Ratones , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Neoplasias/genética , Neoplasias/patología , Peroxisomas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA