Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Endocrinol ; 262(2)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38805506

RESUMEN

Bone marrow adipose tissue (BMAT) comprises >10% of total adipose mass in healthy humans. It increases in diverse conditions, including ageing, obesity, osteoporosis, glucocorticoid therapy, and notably, during caloric restriction (CR). BMAT potentially influences skeletal, metabolic, and immune functions, but the mechanisms of BMAT expansion remain poorly understood. Our hypothesis is that, during CR, excessive glucocorticoid activity drives BMAT expansion. The enzyme 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1) amplifies glucocorticoid activity by catalysing intracellular regeneration of active glucocorticoids from inert 11-keto forms. Mice lacking 11ß-HSD1 resist metabolic dysregulation and bone loss during exogenous glucocorticoid excess; thus, we hypothesised that 11ß-HSD1 knockout mice would also resist excessive glucocorticoid action during CR, thereby restrining BMAT expansion and bone loss. To test this, we first confirmed that 11ß-HSD1 is expressed in mouse and human bone marrow. We then investigated the effects of CR in male and female control and 11ß-HSD1 knockout mice from 9 to 15 weeks of age. CR increased Hsd11b1 mRNA in adipose tissue and bone marrow. Deletion of Hsd11b1 did not alter bone or BMAT characteristics in mice fed a control diet and had little effect on tibial bone microarchitecture during CR. Notably, Hsd11b1 deletion attenuated the CR-induced increases in BMAT and prevented increases in bone marrow corticosterone in males but not females. This was not associated with suppression of glucocorticoid target genes in bone marrow. Instead, knockout males had increased progesterone in plasma and bone marrow. Together, our findings show that knockout of 11ß-HSD1 prevents CR-induced BMAT expansion in a sex-specific manner and highlights progesterone as a potential new regulator of bone marrow adiposity.


Asunto(s)
11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1 , Adiposidad , Médula Ósea , Restricción Calórica , Ratones Noqueados , Animales , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/genética , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/metabolismo , Femenino , Masculino , Adiposidad/genética , Médula Ósea/metabolismo , Ratones , Humanos , Tejido Adiposo/metabolismo , Ratones Endogámicos C57BL , Glucocorticoides/metabolismo , Factores Sexuales
2.
Elife ; 122023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37096321

RESUMEN

Caloric restriction (CR) reduces the risk of age-related diseases in numerous species, including humans. CR's metabolic effects, including decreased adiposity and improved insulin sensitivity, are important for its broader health benefits; however, the extent and basis of sex differences in CR's health benefits are unknown. We found that 30% CR in young (3-month-old) male mice decreased fat mass and improved glucose tolerance and insulin sensitivity, whereas these effects were blunted or absent in young females. Females' resistance to fat loss was associated with decreased lipolysis, energy expenditure and fatty acid oxidation, and increased postprandial lipogenesis, compared to males. The sex differences in glucose homeostasis were not associated with differential glucose uptake but with altered hepatic ceramide content and substrate metabolism: compared to CR males, CR females had lower TCA cycle activity and higher blood ketone concentrations, a marker of hepatic acetyl-CoA content. This suggests that males use hepatic acetyl-CoA for the TCA cycle whereas in females it accumulates, stimulating gluconeogenesis and limiting hypoglycaemia during CR. In aged mice (18-months old), when females are anoestrus, CR decreased fat mass and improved glucose homeostasis similarly in both sexes. Finally, in a cohort of overweight and obese humans, CR-induced fat loss was also sex- and age-dependent: younger females (<45 years) resisted fat loss compared to younger males while in older subjects (>45 years) this sex difference was absent. Collectively, these studies identify age-dependent sex differences in the metabolic effects of CR and highlight adipose tissue, the liver and oestrogen as key determinants of CR's metabolic benefits. These findings have important implications for understanding the interplay between diet and health, and for maximising the benefits of CR in humans.


Asunto(s)
Restricción Calórica , Resistencia a la Insulina , Humanos , Masculino , Femenino , Ratones , Animales , Anciano , Persona de Mediana Edad , Lactante , Pérdida de Peso , Acetilcoenzima A , Tejido Adiposo/metabolismo , Obesidad , Glucosa/metabolismo
3.
Nat Commun ; 11(1): 3097, 2020 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-32555194

RESUMEN

Bone marrow adipose tissue (BMAT) comprises >10% of total adipose mass, yet unlike white or brown adipose tissues (WAT or BAT) its metabolic functions remain unclear. Herein, we address this critical gap in knowledge. Our transcriptomic analyses revealed that BMAT is distinct from WAT and BAT, with altered glucose metabolism and decreased insulin responsiveness. We therefore tested these functions in mice and humans using positron emission tomography-computed tomography (PET/CT) with 18F-fluorodeoxyglucose. This revealed that BMAT resists insulin- and cold-stimulated glucose uptake, while further in vivo studies showed that, compared to WAT, BMAT resists insulin-stimulated Akt phosphorylation. Thus, BMAT is functionally distinct from WAT and BAT. However, in humans basal glucose uptake in BMAT is greater than in axial bones or subcutaneous WAT and can be greater than that in skeletal muscle, underscoring the potential of BMAT to influence systemic glucose homeostasis. These PET/CT studies characterise BMAT function in vivo, establish new methods for BMAT analysis, and identify BMAT as a distinct, major adipose tissue subtype.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Médula Ósea/metabolismo , Glucosa/metabolismo , Animales , Western Blotting , Femenino , Homeostasis/fisiología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Tomografía de Emisión de Positrones , Ratas , Esqueleto/metabolismo
4.
J Endocrinol ; 234(1): R67-R79, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28455432

RESUMEN

Throughout the last decade, significant developments in cellular, molecular and mouse models have revealed major endocrine functions of the skeleton. More recent studies have evolved the interplay between bone-specific hormones, the skeleton, marrow adipose tissue, muscle and the brain. This review focuses on literature from the last decade, addressing the endocrine regulation of global energy metabolism via the skeleton. In addition, we will highlight several recent studies that further our knowledge of new endocrine functions of some organs; explore remaining unanswered questions; and, finally, we will discuss future directions for this more complex era of bone biology research.


Asunto(s)
Huesos/metabolismo , Sistema Endocrino/fisiología , Metabolismo Energético/fisiología , Homeostasis/fisiología , Tejido Adiposo/fisiología , Animales , Anorexia , Enfermedades Óseas , Médula Ósea , Diabetes Mellitus , Femenino , Humanos , Hepatopatías , Masculino , Ratones , Mieloma Múltiple , Obesidad , Osteocalcina , PPAR gamma , Enfermedades Pancreáticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA