Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 604(7907): 723-731, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35418686

RESUMEN

Studying tissue composition and function in non-human primates (NHPs) is crucial to understand the nature of our own species. Here we present a large-scale cell transcriptomic atlas that encompasses over 1 million cells from 45 tissues of the adult NHP Macaca fascicularis. This dataset provides a vast annotated resource to study a species phylogenetically close to humans. To demonstrate the utility of the atlas, we have reconstructed the cell-cell interaction networks that drive Wnt signalling across the body, mapped the distribution of receptors and co-receptors for viruses causing human infectious diseases, and intersected our data with human genetic disease orthologues to establish potential clinical associations. Our M. fascicularis cell atlas constitutes an essential reference for future studies in humans and NHPs.


Asunto(s)
Macaca fascicularis , Transcriptoma , Animales , Comunicación Celular , Macaca fascicularis/genética , Receptores Virales/genética , Transcriptoma/genética , Vía de Señalización Wnt
2.
Genome Res ; 32(2): 228-241, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35064006

RESUMEN

The pathogenesis of COVID-19 is still elusive, which impedes disease progression prediction, differential diagnosis, and targeted therapy. Plasma cell-free RNAs (cfRNAs) carry unique information from human tissue and thus could point to resourceful solutions for pathogenesis and host-pathogen interactions. Here, we performed a comparative analysis of cfRNA profiles between COVID-19 patients and healthy donors using serial plasma. Analyses of the cfRNA landscape, potential gene regulatory mechanisms, dynamic changes in tRNA pools upon infection, and microbial communities were performed. A total of 380 cfRNA molecules were up-regulated in all COVID-19 patients, of which seven could serve as potential biomarkers (AUC > 0.85) with great sensitivity and specificity. Antiviral (NFKB1A, IFITM3, and IFI27) and neutrophil activation (S100A8, CD68, and CD63)-related genes exhibited decreased expression levels during treatment in COVID-19 patients, which is in accordance with the dynamically enhanced inflammatory response in COVID-19 patients. Noncoding RNAs, including some microRNAs (let 7 family) and long noncoding RNAs (GJA9-MYCBP) targeting interleukin (IL6/IL6R), were differentially expressed between COVID-19 patients and healthy donors, which accounts for the potential core mechanism of cytokine storm syndromes; the tRNA pools change significantly between the COVID-19 and healthy group, leading to the accumulation of SARS-CoV-2 biased codons, which facilitate SARS-CoV-2 replication. Finally, several pneumonia-related microorganisms were detected in the plasma of COVID-19 patients, raising the possibility of simultaneously monitoring immune response regulation and microbial communities using cfRNA analysis. This study fills the knowledge gap in the plasma cfRNA landscape of COVID-19 patients and offers insight into the potential mechanisms of cfRNAs to explain COVID-19 pathogenesis.


Asunto(s)
COVID-19 , Ácidos Nucleicos Libres de Células , ARN/sangre , COVID-19/sangre , COVID-19/genética , Ácidos Nucleicos Libres de Células/sangre , Síndrome de Liberación de Citoquinas , Humanos , SARS-CoV-2
3.
BMC Biol ; 21(1): 222, 2023 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-37858133

RESUMEN

BACKGROUND: Energy homeostasis is essential for the adaptation of animals to their environment and some wild animals keep low metabolism adaptive to their low-nutrient dietary supply. Giant panda is such a typical low-metabolic mammal exhibiting species specialization of extremely low daily energy expenditure. It has low levels of basal metabolic rate, thyroid hormone, and physical activities, whereas the cellular bases of its low metabolic adaptation remain rarely explored. RESULTS: In this study, we generate a single-nucleus transcriptome atlas of 21 organs/tissues from a female giant panda. We focused on the central metabolic organ (liver) and dissected cellular metabolic status by cross-species comparison. Adaptive expression mode (i.e., AMPK related) was prominently displayed in the hepatocyte of giant panda. In the highest energy-consuming organ, the heart, we found a possibly optimized utilization of fatty acid. Detailed cell subtype annotation of endothelial cells showed the uterine-specific deficiency of blood vascular subclasses, indicating a potential adaptation for a low reproductive energy expenditure. CONCLUSIONS: Our findings shed light on the possible cellular basis and transcriptomic regulatory clues for the low metabolism in giant pandas and helped to understand physiological adaptation response to nutrient stress.


Asunto(s)
Ursidae , Animales , Femenino , Ursidae/genética , Ursidae/metabolismo , Transcriptoma , Células Endoteliales , Animales Salvajes , Ejercicio Físico
4.
BMC Genomics ; 23(1): 489, 2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-35787772

RESUMEN

BACKGROUND: The evolution of parasites is often directly affected by the host's environment. Studies on the evolution of the same parasites in different hosts are of great interest and are highly relevant to our understanding of divergence. METHODS: Here we performed whole-genome sequencing of Parascaris univalens from different Equus hosts (horses, zebras and donkeys). Phylogenetic and selection analyses were performed to study the divergence and adaptability of P. univalens. RESULTS: At the genetic level, multiple lines of evidence indicate that P. univalens is mainly separated into two clades (horse-derived and zebra & donkey-derived). This divergence began 300-1000 years ago, and we found that most of the key enzymes related to glycolysis were under strong positive selection in zebra & donkey-derived roundworms, whereas the lipid-related metabolic system was under positive selection in horse-derived roundworms, indicating that the adaptive evolution of metabolism has occurred over the past few centuries. In addition, we found that some drug-related genes showed a significantly higher degree of selection in diverse populations. CONCLUSIONS: This work reports the adaptive evolution and divergence trend of P. univalens in different hosts for the first time. Its results indicate that the divergence of P. univalens is a continuous, dynamic process. Furthermore, the continuous monitoring of the effects of differences in nutritional and drug histories on the rapid evolution of roundworms is conducive to further understanding host-parasite interactions.


Asunto(s)
Ascaridoidea , Parásitos , Animales , Ascaridoidea/genética , Equidae/genética , Caballos , Filogenia
5.
Genomics ; 113(6): 3895-3906, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34555497

RESUMEN

Persistent infections of high-risk human papillomaviruses (HPVs) are the leading cause of cervical cancers. We collected cervical exfoliated cell samples from females in Changsha city, Hunan Province and obtained 338 viral genomes of four major HPV types, including HPV 16 (n = 82), 18 (n = 35), 52 (n = 121) and 58 (n = 100). The lineage/sublineage distribution of the four HPVs confirmed previous epidemiological reports, with the predominant prevailing sublineage as A4 (50%), A1 (37%) and A3 (13%) for HPV16, A1 (83%) for HPV18, B2 (86%) for HPV52 and A1 (65%), A3 (19%) and A2 (12%) for HPV58. We also identified two potentially novel HPV18 sublineages, i.e. A6 and A7. Virus mutation analysis further revealed the presence of HPV16 and HPV58 sublineages associated with potentially high oncogenicity. These findings expanded our knowledge of the HPV genetic diversity in China, providing valuable evidence to facilitate HPV DNA screening, vaccine effectiveness evaluation and control strategy development.


Asunto(s)
Alphapapillomavirus , Infecciones por Papillomavirus , Alphapapillomavirus/genética , China/epidemiología , Femenino , Variación Genética , Genotipo , Papillomavirus Humano 16/genética , Humanos , Infecciones por Papillomavirus/complicaciones , Infecciones por Papillomavirus/epidemiología , Filogenia
6.
Planta ; 250(3): 989-1003, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31073657

RESUMEN

MAIN CONCLUSION: The African Orphan Crops Consortium (AOCC) successfully initiated the ambitious genome sequencing project of 101 African orphan crops/trees with 6 genomes sequenced, 6 near completion, and 20 currently in progress. Addressing stunting, malnutrition, and hidden hunger through nutritious, economic, and resilient agri-food system is one of the major agricultural challenges of this century. As sub-Saharan Africa harbors a large portion of the severely malnourished population, the African Orphan Crops Consortium (AOCC) was established in 2011 with an aim to reduce stunting and malnutrition by providing nutritional security through improving locally adapted nutritious, but neglected, under-researched or orphan African food crops. Foods from these indigenous or naturalized crops and trees are rich in minerals, vitamins, and antioxidant, and are an integral part of the dietary portfolio and cultural, social, and economic milieu of African farmers. Through stakeholder consultations supported by the African Union, 101 African orphan and under-researched crop species were prioritized to mainstream into African agri-food systems. The AOCC, through a network of international-regional-public-private partnerships and collaborations, is generating genomic resources of three types, i.e., reference genome sequence, transcriptome sequence, and re-sequencing 100 accessions/species, using next-generation sequencing (NGS) technology. Furthermore, the University of California Davis African Plant Breeding Academy under the AOCC banner is training 150 lead African scientists to breed high yielding, nutritious, and climate-resilient (biotic and abiotic stress tolerant) crop varieties that meet African farmer and consumer needs. To date, one or more forms of sequence data have been produced for 60 crops. Reference genome sequences for six species have already been published, 6 are almost near completion, and 19 are in progress.


Asunto(s)
Producción de Cultivos , Productos Agrícolas/genética , Genoma de Planta/genética , África del Sur del Sahara , Producción de Cultivos/organización & administración , Productos Agrícolas/crecimiento & desarrollo , Agricultura Forestal , Genómica/métodos , Genómica/organización & administración , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Árboles/genética , Árboles/crecimiento & desarrollo
7.
Virus Genes ; 52(5): 620-4, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27314269

RESUMEN

Adenovirus is a leading cause of respiratory infection in children. Salivirus/klassevirus was first identified as an etiologic agent of gastroenteritis and was never reported in respiratory infection cases. The case being discussed here caught our attention because, although it is a common respiratory infection, it was fatal, while similar cases were mild. In order to find potential causes in the fatal case, we describe the clinical diagnosis and treatment, the sequencing analysis of the salivirus/klassevirus, and the co-infectious adenovirus. Metagenomics sequencing was conducted on the samples from a nasopharyngeal swab of the children with adenovirus infection. Sequences were assembled using IDBA-ud (1.1.1); phylogenetic analysis was performed using MEGA 5.2. RT-PCR and quantitative PCR were performed to verify the existence of the virus in the samples. A nearly full genome of this new virus strain was obtained with 7633 nt encoding a polyprotein of 2331 aa. Meanwhile, it was detected specifically in the nasopharyngeal swab by RT-PCR. Further, homology analysis indicated that the virus has a closer relationship with Salivirus A strain in Shanghai (GU245894). Our study reports the first case of Human salivirus/klassevirus in respiratory specimens of a child with fatal adenovirus infection in Shenzhen, China. The finding and investigation of the virus will provide more useful information for the clinical diagnosis of unexplained lethal infection and expand our knowledge of the new family, salivirus/klassevirus in picornavirus.


Asunto(s)
Infecciones por Adenoviridae/virología , Adenoviridae/clasificación , Adenoviridae/genética , Heces/virología , Infecciones del Sistema Respiratorio/virología , China , Coinfección/virología , Gastroenteritis/virología , Genoma Viral/genética , Humanos , Lactante , Masculino , Filogenia , Análisis de Secuencia de ADN/métodos
8.
BMC Evol Biol ; 15: 116, 2015 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-26084484

RESUMEN

BACKGROUND: The genus Flaveria has been extensively used as a model to study the evolution of C4 photosynthesis as it contains C3 and C4 species as well as a number of species that exhibit intermediate types of photosynthesis. The current phylogenetic tree of the genus Flaveria contains 21 of the 23 known Flaveria species and has been previously constructed using a combination of morphological data and three non-coding DNA sequences (nuclear encoded ETS, ITS and chloroplast encoded trnL-F). RESULTS: Here we developed a new strategy to update the phylogenetic tree of 16 Flaveria species based on RNA-Seq data. The updated phylogeny is largely congruent with the previously published tree but with some modifications. We propose that the data collection method provided in this study can be used as a generic method for phylogenetic tree reconstruction if the target species has no genomic information. We also showed that a "F. pringlei" genotype recently used in a number of labs may be a hybrid between F. pringlei (C3) and F. angustifolia (C3-C4). CONCLUSIONS: We propose that the new strategy of obtaining phylogenetic sequences outlined in this study can be used to construct robust trees in a larger number of taxa. The updated Flaveria phylogenetic tree also supports a hypothesis of stepwise and parallel evolution of C4 photosynthesis in the Flavaria clade.


Asunto(s)
Flaveria/clasificación , Flaveria/genética , Filogenia , Secuencia de Aminoácidos , Evolución Biológica , Cloroplastos/genética , Flaveria/fisiología , Fotosíntesis , ARN de Planta/análisis , Análisis de Secuencia de ARN/métodos
9.
GigaByte ; 2024: gigabyte106, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38313188

RESUMEN

Trimeresurus albolabris, also known as the white-lipped pit viper or white-lipped tree viper, is a highly venomous snake distributed across Southeast Asia and the cause of many snakebite cases. In this study, we report the first whole genome assembly of T. albolabris obtained with next-generation sequencing from a specimen collected in Mengzi, Yunnan, China. After genome sequencing and assembly, the genome of this male T. albolabris individual was 1.51 Gb in length and included 38.42% repeat-element content. Using this genome, 21,695 genes were identified, and 99.17% of genes could be annotated using gene functional databases. Our genome assembly and annotation process was validated using a phylogenetic tree, which included six species and focused on single-copy genes of nuclear genomes. This research will contribute to future studies on Trimeresurus biology and the genetic basis of snake venom.

10.
Commun Biol ; 7(1): 139, 2024 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-38291185

RESUMEN

The nasal cavity harbors diverse microbiota that contributes to human health and respiratory diseases. However, whether and to what extent the host genome shapes the nasal microbiome remains largely unknown. Here, by dissecting the human genome and nasal metagenome data from 1401 healthy individuals, we demonstrated that the top three host genetic principal components strongly correlated with the nasal microbiota diversity and composition. The genetic association analyses identified 63 genome-wide significant loci affecting the nasal microbial taxa and functions, of which 2 loci reached study-wide significance (p < 1.7 × 10-10): rs73268759 within CAMK2A associated with genus Actinomyces and family Actinomycetaceae; and rs35211877 near POM121L12 with Gemella asaccharolytica. In addition to respiratory-related diseases, the associated loci are mainly implicated in cardiometabolic or neuropsychiatric diseases. Functional analysis showed the associated genes were most significantly expressed in the nasal airway epithelium tissue and enriched in the calcium signaling and hippo signaling pathway. Further observational correlation and Mendelian randomization analyses consistently suggested the causal effects of Serratia grimesii and Yokenella regensburgei on cardiometabolic biomarkers (cystine, glutamic acid, and creatine). This study suggested that the host genome plays an important role in shaping the nasal microbiome.


Asunto(s)
Enfermedades Cardiovasculares , Microbiota , Humanos , Estudio de Asociación del Genoma Completo , Nariz , Microbiota/genética , Variación Genética
11.
GigaByte ; 2023: gigabyte97, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38023064

RESUMEN

The Brown-Spotted Pit viper (Protobothrops mucrosquamatus), also known as the Chinese habu, is a widespread and highly venomous snake distributed from Northeastern India to Eastern China. Genomics research can contribute to our understanding of venom components and natural selection in vipers. Here, we collected, sequenced and assembled the genome of a male P. mucrosquamatus individual from China. We generated a highly continuous reference genome, with a length of 1.53 Gb and 41.18% of repeat elements content. Using this genome, we identified 24,799 genes, 97.97% of which could be annotated. We verified the validity of our genome assembly and annotation process by generating a phylogenetic tree based on the nuclear genome single-copy genes of six other reptile species. The results of our research will contribute to future studies on Protobothrops biology and the genetic basis of snake venom.

12.
GigaByte ; 2023: gigabyte88, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37711277

RESUMEN

The study of the currently known >3,000 species of snakes can provide valuable insights into the evolution of their genomes. Deinagkistrodon acutus, also known as Sharp-nosed Pit Viper, one hundred-pacer viper or five-pacer viper, is a venomous snake with significant economic, medicinal and scientific importance. Widely distributed in southeastern China and South-East Asia, D. acutus has been primarily studied for its venom. Here, we employed next-generation sequencing to assemble and annotate a highly continuous genome of D. acutus. The genome size is 1.46 Gb; its scaffold N50 length is 6.21 Mb, the repeat content is 42.81%, and 24,402 functional genes were annotated. This study helps to further understand and utilize D. acutus and its venom at the genetic level.

13.
Adv Sci (Weinh) ; 10(28): e2300050, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37548643

RESUMEN

The skin is the largest organ in the human body. Various skin environments on its surface constitutes a complex ecosystem. One of the characteristics of the skin micro-ecosystem is low biomass, which greatly limits a comprehensive identification of the microbial species through sequencing. In this study, deep-shotgun sequencing (average 21.5 Gigabyte (Gb)) from 450 facial samples and publicly available skin metagenomic datasets of 2069 samples to assemble a Unified Human Skin Genome (UHSG) catalog is integrated. The UHSG encompasses 813 prokaryotic species derived from 5779 metagenome-assembled genomes, among which 470 are novel species covering 20 phyla with 1385 novel assembled genomes. Based on the UHSG, the core functions of the skin microbiome are described and the differences in amino acid metabolism, carbohydrate metabolism, and drug resistance functions among different phyla are identified. Furthermore, analysis of secondary metabolites of the near-complete genomes further find 1220 putative novel secondary metabolites, several of which are found in previously unknown genomes. Single nucleotide variant (SNV) reveals a possible skin protection mechanism: the negative selection process of the skin environment to conditional pathogens. UHSG offers a convenient reference database that will facilitate a more in-depth understanding of the role of skin microorganisms in the skin.

14.
Mol Ecol Resour ; 23(2): 330-347, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35723950

RESUMEN

The South China tiger (Panthera tigris amoyensis, SCT) is the most critically endangered subspecies of tiger due to functional extinction in the wild. Inbreeding depression is observed among the captive population descended from six wild ancestors, resulting in high juvenile mortality and low reproduction. We assembled and characterized the first SCT genome and an improved Amur tiger (P. t. altaica, AT) genome named AmyTig1.0 and PanTig2.0. The two genomes are the most continuous and comprehensive among any tiger genomes yet reported at the chromosomal level. By using the two genomes and resequencing data of 15 SCT and 13 AT individuals, we investigated the genomic signature of inbreeding depression of the SCT. The results indicated that the effective population size of SCT experienced three phases of decline, ~5.0-1.0 thousand years ago, 100 years ago, and since captive breeding in 1963. We found 43 long runs of homozygosity fragments that were shared by all individuals in the SCT population and covered a total length of 20.63% in the SCT genome. We also detected a large proportion of identical-by-descent segments across the genome in the SCT population, especially on ChrB4. Deleterious nonsynonymous single nucleotide polymorphic sites and loss-of-function mutations were found across genomes with extensive potential influences, despite a proportion of these loads having been purged by inbreeding depression. Our research provides an invaluable resource for the formulation of genetic management policies for the South China tiger such as developing genome-based breeding and genetic rescue strategy.


Asunto(s)
Tigres , Animales , China , Cromosomas , Genómica , Endogamia , Tigres/genética
15.
iScience ; 26(1): 105839, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36660475

RESUMEN

The oral microbiome has been implicated in a growing number of diseases; however, determinants of the oral microbiome and their roles remain elusive. Here, we investigated the oral (saliva and tongue dorsum) metagenome, the whole genome, and other omics data in a total of 4,478 individuals and demonstrated that the oral microbiome composition and its major contributing host factors significantly differed between sexes. We thus conducted a sex-stratified metagenome-genome-wide-association study (M-GWAS) and identified 11 differential genetic associations with the oral microbiome (p sex-difference  < 5 × 10-8). Furthermore, we performed sex-stratified Mendelian randomization (MR) analyses and identified abundant causalities between the oral microbiome and serum metabolites. Notably, sex-specific microbes-hormonal interactions explained the mostly observed sex hormones differences such as the significant causalities enrichments for aldosterone in females and androstenedione in males. These findings illustrate the necessity of sex stratification and deepen our understanding of the interplay between the oral microbiome and serum metabolites.

16.
Innovation (Camb) ; 4(1): 100359, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36506806

RESUMEN

The BBIBP-CorV severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) inactivated vaccine has been authorized for emergency use and widely distributed. We used single-cell transcriptome sequencing to characterize the dynamics of immune responses to the BBIBP-CorV inactivated vaccine. In addition to the expected induction of humoral immunity, we found that the inactivated vaccine induced multiple, comprehensive immune responses, including significantly increased proportions of CD16+ monocytes and activation of monocyte antigen presentation pathways; T cell activation pathway upregulation in CD8+ T cells, along with increased activation of CD4+ T cells; significant enhancement of cell-cell communications between innate and adaptive immunity; and the induction of regulatory CD4+ T cells and co-inhibitory interactions to maintain immune homeostasis after vaccination. Additionally, comparative analysis revealed higher neutralizing antibody levels, distinct expansion of naive T cells, a shared increased proportion of regulatory CD4+ T cells, and upregulated expression of functional genes in booster dose recipients with a longer interval after the second vaccination. Our research will support a comprehensive understanding of the systemic immune responses elicited by the BBIBP-CorV inactivated vaccine, which will facilitate the formulation of better vaccination strategies and the design of new vaccines.

17.
Aging Cell ; 22(12): e14028, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38015106

RESUMEN

Human aging is invariably accompanied by a decline in renal function, a process potentially exacerbated by uremic toxins originating from gut microbes. Based on a registered household Chinese Guangxi longevity cohort (n = 151), we conducted comprehensive profiling of the gut microbiota and serum metabolome of individuals from 22 to 111 years of age and validated the findings in two independent East Asian aging cohorts (Japan aging cohort n = 330, Yunnan aging cohort n = 80), identifying unique age-dependent differences in the microbiota and serum metabolome. We discovered that the influence of the gut microbiota on serum metabolites intensifies with advancing age. Furthermore, mediation analyses unveiled putative causal relationships between the gut microbiota (Escherichia coli, Odoribacter splanchnicus, and Desulfovibrio piger) and serum metabolite markers related to impaired renal function (p-cresol, N-phenylacetylglutamine, 2-oxindole, and 4-aminohippuric acid) and aging. The fecal microbiota transplantation experiment demonstrated that the feces of elderly individuals could influence markers related to impaired renal function in the serum. Our findings reveal novel links between age-dependent alterations in the gut microbiota and serum metabolite markers of impaired renal function, providing novel insights into the effects of microbiota-metabolite interplay on renal function and healthy aging.


Asunto(s)
Microbioma Gastrointestinal , Humanos , Anciano , China , Metaboloma , Envejecimiento , Biomarcadores , Riñón
18.
Cancer Discov ; 12(10): 2350-2371, 2022 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-35853232

RESUMEN

Intrahepatic cholangiocarcinoma (iCCA) exhibits extensive intratumoral heterogeneity and an extremely high mortality rate. Here, we performed whole-exome sequencing, RNA sequencing, T-cell receptor (TCR) sequencing, and multiplexed immunofluorescence on 207 tumor regions from 45 patients with iCCA. Over half of iCCA displayed intratumoral heterogeneity of immune infiltration, and iCCA were classified into sparsely, heterogeneously, and highly infiltrated subgroups with distinct immunogenomic characteristics. Sparsely infiltrated tumors displayed active copy-number loss of clonal neoantigens, and heterogeneous immune infiltration played an important role in the subclonal evolution across tumor subregions. Highly infiltrated tumors were characterized by extensive immune activation and a similar TCR repertoire across tumor subregions, but counteracted with T-cell exhaustion and pervasive antigen presentation defects. Notably, FGFR2 mutations and fusions correlated with low mutation burden and reduced immune infiltration. Our work delineated the dynamic tumor-immune interactions and developed a robust classification system to divide patients with iCCA into high and low immune evasion groups with different prognoses. SIGNIFICANCE: This study elucidates the impact of spatial immune heterogeneity upon tumor evolution of iCCA and reveals distinct immune evasion mechanisms developed in different immune microenvironments, which can be exploited for the development of personalized immunotherapy strategies. This article is highlighted in the In This Issue feature, p. 2221.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/patología , Conductos Biliares Intrahepáticos/patología , Colangiocarcinoma/genética , Colangiocarcinoma/patología , Humanos , Mutación , Receptores de Antígenos de Linfocitos T/genética , Microambiente Tumoral/genética
19.
Genome Biol Evol ; 14(2)2022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-35106558

RESUMEN

The green peafowl (Pavo muticus) is facing a high risk of extinction due to the long-term and widespread threats of poaching and habitat conversion. Here, we present a high-quality chromosome-level genome assembly of the green peafowl with high contiguity and accuracy assembled by PacBio sequencing, DNBSEQ short-read sequencing, and Hi-C sequencing technologies. The final genome size was estimated to be 1.049 Gb, whereas 1.042 Gb of the genome was assigned to 27 pseudochromosomes. The scaffold N50 length was 75.5 Mb with a complete BUSCO score of 97.6%. We identified W and Z chromosomes and validated them by resequencing 14 additional individuals. Totally, 167.04 Mb repetitive elements were identified in the genome, accounting for 15.92% of the total genome size. We predicted 14,935 protein-coding genes, among which 14,931 genes were functionally annotated. This is the most comprehensive and complete de novo assembly of the Pavo genus, and it will serve as a valuable resource for future green peafowl ecology, evolution, and conservation studies.


Asunto(s)
Cromosomas , Genoma , Humanos , Anotación de Secuencia Molecular , Filogenia , Secuencias Repetitivas de Ácidos Nucleicos
20.
Nat Genet ; 54(1): 52-61, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34980918

RESUMEN

The gut microbiome has been implicated in a variety of physiological states, but controversy over causality remains unresolved. Here, we performed bidirectional Mendelian randomization analyses on 3,432 Chinese individuals with whole-genome, whole-metagenome, anthropometric and blood metabolic trait data. We identified 58 causal relationships between the gut microbiome and blood metabolites, and replicated 43 of them. Increased relative abundances of fecal Oscillibacter and Alistipes were causally linked to decreased triglyceride concentration. Conversely, blood metabolites such as glutamic acid appeared to decrease fecal Oxalobacter, and members of Proteobacteria were influenced by metabolites such as 5-methyltetrahydrofolic acid, alanine, glutamate and selenium. Two-sample Mendelian randomization with data from Biobank Japan partly corroborated results with triglyceride and with uric acid, and also provided causal support for published fecal bacterial markers for cancer and cardiovascular diseases. This study illustrates the value of human genetic information to help prioritize gut microbial features for mechanistic and clinical studies.


Asunto(s)
Sangre/metabolismo , Microbioma Gastrointestinal/genética , Estudios de Cohortes , Heces/microbiología , Variación Genética , Estudio de Asociación del Genoma Completo , Ácido Glutámico/sangre , Humanos , Análisis de la Aleatorización Mendeliana , Metagenoma , Triglicéridos/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA