Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Plant Cell ; 33(3): 766-780, 2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33955494

RESUMEN

Phosphate is a vital macronutrient for plant growth, and its availability in soil is critical for agricultural sustainability and productivity. A substantial amount of cellular phosphate is used to synthesize phospholipids for cell membranes. Here, we identify a key enzyme, nonspecific phospholipase C4 (NPC4) that is involved in phosphosphingolipid hydrolysis and remodeling in Arabidopsis during phosphate starvation. The level of glycosylinositolphosphorylceramide (GIPC), the most abundant sphingolipid in Arabidopsis thaliana, decreased upon phosphate starvation. NPC4 was highly induced by phosphate deficiency, and NPC4 knockouts in Arabidopsis decreased the loss of GIPC and impeded root growth during phosphate starvation. Enzymatic analysis showed that NPC4 hydrolyzed GIPC and displayed a higher activity toward GIPC as a substrate than toward the common glycerophospholipid phosphatidylcholine. NPC4 was associated with the plasma membrane lipid rafts in which GIPC is highly enriched. These results indicate that NPC4 uses GIPC as a substrate in planta and the NPC4-mediated sphingolipid remodeling plays a positive role in root growth in Arabidopsis response to phosphate deficiency.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fosfolipasas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Fosfatos/deficiencia , Fosfolipasas/genética
2.
Mol Breed ; 44(2): 9, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38298744

RESUMEN

With the increasing public attention to the health benefit of polyunsaturated fatty acids (PUFAs) and demand for linolenic acid (C18:3), it is of great significance to increase the C18:3 content in our meal. As an oil crop with high content of C18:3, Camelina sativa has three homologous copies of FAD2 and three homologous copies FAD3. In this study, we seed-specifically overexpressed two Camelina sativa fatty acid desaturase genes, CsFAD2 and CsFAD3, in rapeseed cultivar Zhongshuang 9. The results show that C18:3 content in CsFAD2 and CsFAD3 overexpressed seeds is increased from 8.62% in wild-type (WT) to 10.62-12.95% and 14.54-26.16%, respectively. We crossed CsFAD2 and CsFAD3 overexpression lines, and stable homozygous digenic crossed lines were obtained. The C18:3 content was increased from 8.62% in WT to 28.46-53.57% in crossed overexpression lines. In addition, we found that the overexpression of CsFAD2 and CsFAD3 had no effect on rapeseed growth, development, and other agronomic traits. In conclusion, we successfully generated rapeseed germplasms with high C18:3 content by simultaneously overexpressing CsFAD2 and CsFAD3, which provides a feasible way for breeding high C18:3 rapeseed cultivars. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01445-0.

3.
BMC Biol ; 21(1): 202, 2023 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-37775748

RESUMEN

BACKGROUND: Brassica napus is an important oilseed crop providing high-quality vegetable oils for human consumption and non-food applications. However, the regulation between embryo and seed coat for the synthesis of oil and phenylpropanoid compounds remains largely unclear. RESULTS: Here, we analyzed the transcriptomes in developing seeds at 2-day intervals from 14 days after flowering (DAF) to 64 DAF. The 26 high-resolution time-course transcriptomes are clearly clustered into five distinct groups from stage I to stage V. A total of 2217 genes including 136 transcription factors, are specifically expressed in the seed and show high temporal specificity by being expressed only at certain stages of seed development. Furthermore, we analyzed the co-expression networks during seed development, which mainly included master regulatory transcription factors, lipid, and phenylpropane metabolism genes. The results show that the phenylpropane pathway is prominent during seed development, and the key enzymes in the phenylpropane metabolic pathway, including TT5, BAN, and the transporter TT19, were directly or indirectly related to many key enzymes and transcription factors involved in oil accumulation. We identified candidate genes that may regulate seed oil content based on the co-expression network analysis combined with correlation analysis of the gene expression with seed oil content and seed coat content. CONCLUSIONS: Overall, these results reveal the transcriptional regulation between lipid and phenylpropane accumulation during B. napus seed development. The established co-expression networks and predicted key factors provide important resources for future studies to reveal the genetic control of oil accumulation in B. napus seeds.


Asunto(s)
Brassica napus , Transcriptoma , Humanos , Brassica napus/genética , Perfilación de la Expresión Génica , Aceites de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Semillas/genética , Regulación de la Expresión Génica de las Plantas
4.
J Integr Plant Biol ; 66(3): 484-509, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38456625

RESUMEN

Brassica napus, commonly known as rapeseed or canola, is a major oil crop contributing over 13% to the stable supply of edible vegetable oil worldwide. Identification and understanding the gene functions in the B. napus genome is crucial for genomic breeding. A group of genes controlling agronomic traits have been successfully cloned through functional genomics studies in B. napus. In this review, we present an overview of the progress made in the functional genomics of B. napus, including the availability of germplasm resources, omics databases and cloned functional genes. Based on the current progress, we also highlight the main challenges and perspectives in this field. The advances in the functional genomics of B. napus contribute to a better understanding of the genetic basis underlying the complex agronomic traits in B. napus and will expedite the breeding of high quality, high resistance and high yield in B. napus varieties.


Asunto(s)
Brassica napus , Brassica napus/genética , Sitios de Carácter Cuantitativo/genética , Fitomejoramiento , Genómica , Fenotipo
5.
Plant Cell Physiol ; 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37847101

RESUMEN

Nitrogen is one of the most essential macronutrients for plant growth and its availability in soil is vital for agricultural sustainability and productivity. However, excessive nitrogen application could reduce the nitrogen use efficiency and produce environmental pollution. Here, we systematically determined the response in lipidome and metabolome in rapeseed during nitrogen starvation. Plant growth was severely retarded during nitrogen deficiency, while the levels of most amino acids was significantly decreased. The levels of monogalactosyl diacyglycerol (MGDG) in leaves and roots was significantly decreased, while the level of digalactosyl diacylglycerol (DGDG) was significantly decreased in roots, resulting in significant reduction of MGDG/DGDG ratio during nitrogen starvation. Meanwhile, the levels of sulfoquinovosyl diacylglycerol, phosphatidylglycerol and glucuronosyl diacylglycerol was reduced to varying extents. Moreover, the levels of metabolites in the tricarboxylic acid cycle, Calvin cycle, and energy metabolism was changed during nitrogen deficiency. These findings show that nitrogen deprivation alters the membrane lipid metabolism and carbon metabolism, and our study provides valuable information to further understand the response of rapeseed to nitrogen deficiency at metabolism level.

6.
Plant Biotechnol J ; 21(8): 1611-1627, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37154465

RESUMEN

Plant hormones are the intrinsic factors that control plant development. The integration of different phytohormone pathways in a complex network of synergistic, antagonistic and additive interactions has been elucidated in model plants. However, the systemic level of transcriptional responses to hormone crosstalk in Brassica napus is largely unknown. Here, we present an in-depth temporal-resolution study of the transcriptomes of the seven hormones in B. napus seedlings. Differentially expressed gene analysis revealed few common target genes that co-regulated (up- and down-regulated) by seven hormones; instead, different hormones appear to regulate distinct members of protein families. We then constructed the regulatory networks between the seven hormones side by side, which allowed us to identify key genes and transcription factors that regulate the hormone crosstalk in B. napus. Using this dataset, we uncovered a novel crosstalk between gibberellin and cytokinin in which cytokinin homeostasis was mediated by RGA-related CKXs expression. Moreover, the modulation of gibberellin metabolism by the identified key transcription factors was confirmed in B. napus. Furthermore, all data were available online from http://yanglab.hzau.edu.cn/BnTIR/hormone. Our study reveals an integrated hormone crosstalk network in Brassica napus, which also provides a versatile resource for future hormone studies in plant species.


Asunto(s)
Brassica napus , Reguladores del Crecimiento de las Plantas , Reguladores del Crecimiento de las Plantas/metabolismo , Brassica napus/metabolismo , Giberelinas/metabolismo , Perfilación de la Expresión Génica , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Hormonas/metabolismo , Citocininas/metabolismo
7.
J Integr Plant Biol ; 65(11): 2421-2436, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37642157

RESUMEN

Phosphorus is a major nutrient vital for plant growth and development, with a substantial amount of cellular phosphorus being used for the biosynthesis of membrane phospholipids. Here, we report that NON-SPECIFIC PHOSPHOLIPASE C4 (NPC4) in rapeseed (Brassica napus) releases phosphate from phospholipids to promote growth and seed yield, as plants with altered NPC4 levels showed significant changes in seed production under different phosphate conditions. Clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated nuclease 9 (Cas9)-mediated knockout of BnaNPC4 led to elevated accumulation of phospholipids and decreased growth, whereas overexpression (OE) of BnaNPC4 resulted in lower phospholipid contents and increased plant growth and seed production. We demonstrate that BnaNPC4 hydrolyzes phosphosphingolipids and phosphoglycerolipids in vitro, and plants with altered BnaNPC4 function displayed changes in their sphingolipid and glycerolipid contents in roots, with a greater change in glycerolipids than sphingolipids in leaves, particularly under phosphate deficiency conditions. In addition, BnaNPC4-OE plants led to the upregulation of genes involved in lipid metabolism, phosphate release, and phosphate transport and an increase in free inorganic phosphate in leaves. These results indicate that BnaNPC4 hydrolyzes phosphosphingolipids and phosphoglycerolipids in rapeseed to enhance phosphate release from membrane phospholipids and promote growth and seed production.


Asunto(s)
Brassica napus , Fosfolípidos , Esfingolípidos , Fosfolipasas de Tipo C , Brassica napus/crecimiento & desarrollo , Fosfolipasas de Tipo C/metabolismo , Esfingolípidos/metabolismo , Fosfolípidos/metabolismo , Sistemas CRISPR-Cas , Proteínas de Plantas/metabolismo , Semillas/crecimiento & desarrollo , Técnicas de Inactivación de Genes
8.
Plant J ; 106(6): 1647-1659, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33792991

RESUMEN

Non-specific phospholipase C (NPC) is involved in plant growth, development and stress responses. To elucidate the mechanism by which NPCs mediate cellular functions, here we show that NPC4 is S-acylated at the C terminus and that acylation determines its plasma membrane (PM) association and function. The acylation of NPC4 was detected using NPC4 isolated from Arabidopsis and reconstituted in vitro. The C-terminal Cys-533 was identified as the S-acylation residue, and the mutation of Cys-533 to Ala-533 in NPC4 (NPC4C533A ) led to the loss of S-acylation and membrane association of NPC4. The knockout of NPC4 impeded the phosphate deficiency-induced decrease of the phosphosphingolipid glycosyl inositol phosphoryl ceramide (GIPC), but introducing NPC4C533A to npc4-1 failed to complement this defect, thereby supporting the hypothesis that the non-acylated NPC4C533A fails to hydrolyze GIPC during phosphate deprivation. Moreover, NPC4C533A failed to complement the primary root growth in npc4-1 under stress. In addition, NPC4 in Brassica napus was S-acylated and mutation of the S-acylating cysteine residue of BnaC01.NPC4 led to the loss of S-acylation and its membrane association. Together, our results reveal that S-acylation of NPC4 in the C terminus is conserved and required for its membrane association, phosphosphingolipid hydrolysis and function in plant stress responses.


Asunto(s)
Brassica napus/enzimología , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Fosfatos/farmacología , Proteínas de Plantas/metabolismo , Fosfolipasas de Tipo C/metabolismo , Acilación , Membrana Celular/enzimología , Regulación Enzimológica de la Expresión Génica/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Mutación , Fosfatos/administración & dosificación , Proteínas de Plantas/genética , Fosfolipasas de Tipo C/genética
9.
Plant Biotechnol J ; 20(12): 2406-2417, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36056567

RESUMEN

Bile acid: sodium symporter family protein 2 (BASS2) is a sodium-dependent pyruvate transporter, which transports pyruvate from cytosol into plastid in plants. In this study, we investigated the function of chloroplast envelope membrane-localized BnaBASS2 in seed metabolism and seed oil accumulation of Brassica napus (B. napus). Four BASS2 genes were identified in the genome of B. napus. BnaA05.BASS2 was overexpressed while BnaA05.BASS2 and BnaC04.BASS2-1 were mutated by CRISPR in B. napus. Metabolite analysis revealed that the manipulation of BnaBASS2 caused significant changes in glycolysis-, fatty acid synthesis-, and energy-related metabolites in the chloroplasts of 31 day-after-flowering (DAF) seeds. The analysis of fatty acids and lipids in developing seeds showed that BnaBASS2 could affect lipid metabolism and oil accumulation in developing seeds. Moreover, the overexpression (OE) of BnaA05.BASS2 could promote the expression level of multiple genes involved in the synthesis of oil and the formation of oil body during seed development. Disruption of BnaA05.BASS2 and BnaC04.BASS2-1 resulted in decreasing the seed oil content (SOC) by 2.8%-5.0%, while OE of BnaA05.BASS2 significantly promoted the SOC by 1.4%-3.4%. Together, our results suggest that BnaBASS2 is a potential target gene for breeding B. napus with high SOC.


Asunto(s)
Brassica napus , Brassica napus/genética , Transportadores de Ácidos Monocarboxílicos , Fitomejoramiento , Semillas/genética , Ácido Pirúvico , Aceites de Plantas
10.
J Exp Bot ; 73(9): 2859-2874, 2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35560205

RESUMEN

Vegetable oils are an indispensable nutritional component of the human diet as well as important raw materials for a variety of industrial applications such as pharmaceuticals, cosmetics, oleochemicals, and biofuels. Oil plant genomes are highly diverse, and their genetic variation leads to a diversity in oil biosynthesis and accumulation along with agronomic traits. This review discusses plant oil biosynthetic pathways, current state of genome assembly, polyploidy and asymmetric evolution of genomes of oil plants and their wild relatives, and research progress of pan-genomics in oil plants. The availability of complete high-resolution genomes and pan-genomes has enabled the identification of structural variations in the genomes that are associated with the diversity of agronomic and environment fitness traits. These and future genomes also provide powerful tools to understand crop evolution and to harvest the rich natural variations to improve oil crops for enhanced productivity, oil quality, and adaptability to changing environments.


Asunto(s)
Genoma de Planta , Poliploidía , Productos Agrícolas/genética , Genómica
11.
Catheter Cardiovasc Interv ; 99 Suppl 1: 1473-1481, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35199934

RESUMEN

A previous calcium scoring system using circumferential angle, thickness, and length of coronary calcium by OCT could assist in predicting stent under-expansion. However, this scoring system only reflects the calcification distribution within a single cross-section and fails to consider the lumen's original size. The current study aims to investigate whether novel parameters to quantify calcium lesions, including calcium burden, area, and volume assessed by optical coherence tomography (OCT), could predict stent under-expansion related to calcium lesions. Consecutive patients admitted between March 10th to October 19th 2021 with calcified coronary lesions undergoing percutaneous coronary intervention (PCI) with OCT guidance were screened for inclusion. The calcium burden, area, and volume of the target lesions were measured using OCT at pre-PCI. After successful stent implantation, stent expansion at the corresponding lesions was also measured by OCT. A total of 125 patients who underwent OCT-guided PCI were included in this study. While the calcium grades by angiography failed to show a significant correlation with stent expansion, maximum and average calcium burden, maximum calcium area, and calcium volume exhibited a moderate correlation with stent expansion. According to the receiver operating characteristic curves, the optimal cutoffs of calcium volume and area for predicting stent under-expansion were 4.37 mm3 and 2.48 mm2 , respectively. Calcium burden, area, and volume by OCT are more favorable predictors of stent under-expansion given its better performance than calcium grades by angiography. Using cutoffs of calcium area and volume could identify high-risk patients of under-expansion and might guide future clinical practice.


Asunto(s)
Enfermedad de la Arteria Coronaria , Intervención Coronaria Percutánea , Calcio , Angiografía Coronaria/métodos , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Enfermedad de la Arteria Coronaria/etiología , Enfermedad de la Arteria Coronaria/terapia , Vasos Coronarios/diagnóstico por imagen , Vasos Coronarios/patología , Humanos , Intervención Coronaria Percutánea/efectos adversos , Valor Predictivo de las Pruebas , Stents , Tomografía de Coherencia Óptica , Resultado del Tratamiento
12.
Mol Breed ; 42(12): 75, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37313324

RESUMEN

Fatty acid exporter 1 (FAX1) is an initial transporter for fatty acid (FA), in charge of transporting FA from the inside of the plastid to the outside. Brassica napus (B. napus) has nineteen members in the FAX family, of which there are six FAX1 homologous genes. Here, we generated the BnaFAX1 CRISPR mutants (BnaA09.FAX1 and BnaC08.FAX1 were both edited) and overexpression (OE) plants of BnaA09.FAX1 in B. napus. The results showed that the FA content was increased by 0.6-0.9% in OE plant leaves, and the seed oil content was increased by 1.4-1.7% in OE lines, compared to WT. Meanwhile, the content of triacylglycerol, diacylglycerol, and phosphatidylcholine was significantly increased in OE seeds. Moreover, seedling biomass and plant height of OE plants were increased compared to WT plants. However, the traits above had no significant difference between the mutants and WT. These results suggest that BnaA09.FAX1 plays a role in improving seed oil accumulation and plant growth, while the function of BnaFAX1 may be compensated by other homologous genes of BnaFAX1 and other BnaFAX genes in the mutants. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-022-01346-0.

13.
Mol Breed ; 42(9): 54, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37313423

RESUMEN

The plastid inner envelope membrane-bond nucleotide triphosphate transporter (NTT) transports cytosolic adenosine triphosphate (ATP) into plastid, which is necessary for the biochemical activities in plastid. We identified a chloroplast-localized BnaC08.NTT2 and obtained the overexpressed lines of BnaC08.NTT2 and CRISPR/Cas9 edited double mutant lines of BnaC08.NTT2 and BnaA08.NTT2 in B. napus. Further studies certified that overexpression (OE) of BnaC08.NTT2 could help transport ATP into chloroplast and exchange adenosine diphosphate (ADP) and this process was inhibited in BnaNTT2 mutants. Additional results showed that the thylakoid was abnormal in a8 c8 double mutants, which also had lower photosynthetic efficiency, leading to retarded plant growth. The BnaC08.NTT2 OE plants had higher photosynthetic efficiency and better growth compared to WT. OE of BnaC08.NTT2 could improve carbon flowing into protein and oil synthesis from glycolysis both in leaves and seeds. Lipid profile analysis showed that the contents of main chloroplast membrane lipids, including monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), and phosphatidylglycerol (PG), were significantly reduced in mutants, while there were no differences in OE lines compared to WT. These results suggest that BnaNTT2 is involved in the regulation of ATP/ADP homeostasis in plastid to impact plant growth and seed oil accumulation in B. napus. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-022-01322-8.

14.
Plant J ; 104(5): 1410-1422, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33048384

RESUMEN

Brassica napus is an important oilseed crop in the world, and the mechanism of seed oil biosynthesis in B. napus remains unclear. In order to study the mechanism of oil biosynthesis and generate germplasms for breeding, an ethyl methanesulfonate (EMS) mutant population with ~100 000 M2 lines was generated using Zhongshuang 11 as the parent line. The EMS-induced genome-wide mutations in M2-M4 plants were assessed. The average number of mutations including single nucleotide polymorphisms and insertion/deletion in M2-M4 was 21 177, 28 675 and 17 915, respectively. The effects of the mutations on gene function were predicted in M2-M4 mutants, respectively. We screened the seeds from 98 113 M2 lines, and 9415 seed oil content and fatty acid mutants were identified. We further confirmed 686 mutants with altered seed oil content and fatty acid in advanced generation (M4 seeds). Five representative M4 mutants with increased oleic acid were re-sequenced, and the potential causal variations in FAD2 and ROD1 genes were identified. This study generated and screened a large scale of B. napus EMS mutant population, and the identified mutants could provide useful genetic resources for the study of oil biosynthesis and genetic improvement of seed oil content and fatty acid composition of B. napus in the future.


Asunto(s)
Brassica napus/genética , Metanosulfonato de Etilo/farmacología , Mutación , Aceites de Plantas/química , Semillas/química , Brassica napus/efectos de los fármacos , Brassica napus/fisiología , Ácidos Grasos/análisis , Ácidos Grasos/química , Ácidos Grasos/genética , Flores/efectos de los fármacos , Flores/genética , Proteínas de Plantas/genética , Plantones/efectos de los fármacos , Plantones/genética , Semillas/genética , Secuenciación Completa del Genoma
15.
Plant Cell Environ ; 44(11): 3571-3582, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34347306

RESUMEN

Deregulation of reduction-oxidation (redox) metabolism under environmental stresses results in enhanced production of intracellular reactive oxygen species (ROS), which ultimately leads to post-translational modifications (PTMs) of responsive proteins. Redox PTMs play an important role in regulation of protein function and cellular signalling. By means of large-scale redox proteomics, we studied reversible cysteine modification during the response to short-term salt stress in Brassica napus (B. napus). We applied an iodoacetyl tandem mass tags (iodoTMT)-based proteomic approach to analyse the redox proteome of B. napus seedlings under control and salt-stressed conditions. We identified 1,821 sulphenylated sites in 912 proteins from all samples. A great number of sulphenylated proteins were predicted to localize to chloroplasts and cytoplasm and GO enrichment analysis of differentially sulphenylated proteins revealed that metabolic processes such as photosynthesis and glycolysis are enriched and enzymes are overrepresented. Redox-sensitive sites in two enzymes were validated in vitro on recombinant proteins and they might affect the enzyme activity. This targeted approach contributes to the identification of the sulphenylated sites and proteins in B. napus subjected to salt stress and our study will improve our understanding of the molecular mechanisms underlying the redox regulation in response to salt stress.


Asunto(s)
Brassica napus/química , Cisteína/química , Proteínas de Plantas/metabolismo , Proteoma/química , Estrés Salino , Cloroplastos/metabolismo , Citoplasma/metabolismo , Glucólisis , Oxidación-Reducción , Fotosíntesis , Plantones/metabolismo , Azufre/metabolismo
16.
Plant J ; 94(6): 915-932, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29752761

RESUMEN

Despite the importance of oilseeds to worldwide human nutrition, and more recently to the production of bio-based diesel fuels, the detailed mechanisms regulating seed oil biosynthesis remain only partly understood, especially from a tissue-specific perspective. Here, we investigated the spatial distributions of lipid metabolites and transcripts involved in oil biosynthesis from seeds of two low-erucic acid genotypes of Brassica napus with high and low seed-oil content. Integrated results from matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) of lipids in situ, lipidome profiling of extracts from seed tissues, and tissue-specific transcriptome analysis revealed complex spatial distribution patterns of lipids and transcripts. In general, it appeared that many triacylglycerol and phosphatidylcholine species distributed heterogeneously throughout the embryos. Tissue-specific transcriptome analysis identified key genes involved in de novo fatty acid biosynthesis in plastid, triacylglycerols assembly and lipid droplet packaging in the endoplasmic reticulum (ER) that may contribute to the high or low oil phenotype and heterogeneity of lipid distribution. Our results imply that transcriptional regulation represents an important means of impacting lipid compartmentalization in oil seeds. While much information remains to be learned about the intricacies of seed oil accumulation and distribution, these studies highlight the advances that come from evaluating lipid metabolism within a spatial context and with multiple omics level datasets.


Asunto(s)
Brassica napus/metabolismo , Metabolismo de los Lípidos , Semillas/metabolismo , Brassica napus/genética , Regulación de la Expresión Génica de las Plantas , Lípidos/química , Aceites de Plantas/análisis , Aceites de Plantas/metabolismo , Semillas/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
17.
Plant Cell Physiol ; 60(7): 1556-1566, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31073607

RESUMEN

Oil crop Brassica napus is subjected to environmental stresses such as drought, cold and salt. Phospholipase Ds (PLDs) have vital roles in regulation of plant growth, development and stress tolerance. In this study, 32 BnaPLD genes were identified and classified into six subgroups depending on the conserved protein structures. High similarity in gene and protein structures exists between BnaPLDs and AtPLDs. Gene expression analysis showed that BnaPLDα1s and BnaPLDδs had higher expression than other PLDs. BnaPLDα1 and BnaPLDδ were significantly induced by abiotic stresses including dehydration, NaCl, abscisic acid (ABA) and 4�C. Lipidomic analysis showed that the content of main membrane phospholipids decreased gradually under stresses, except phosphatidylglycerol increased under the treatment of ABA and phosphatidylethanolamine increased under 4�C. Correspondingly, their product of phosphatidic acid increased often with a transient peak at 8 h. The plant height of mutants of PLDα1 was significantly reduced. Agronomic traits such as yield, seed number, silique number and branches were significantly impaired in PLDα1 mutants. These results indicate that there is a large family of PLD genes in B. napus, especially BnaPLDα1s and BnaPLDδs may play important roles in membrane lipids remodeling and maintaining of the growth and stress tolerance of B. napus.


Asunto(s)
Brassica napus/genética , Genes de Plantas/genética , Fosfolipasa D/genética , Fosfolípidos/metabolismo , Brassica napus/enzimología , Brassica napus/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/fisiología , Estudio de Asociación del Genoma Completo , Metabolismo de los Lípidos , Lípidos/fisiología , Fosfolipasa D/metabolismo , Fosfolípidos/fisiología , Filogenia , Hojas de la Planta/metabolismo , Estrés Fisiológico , Transcriptoma
18.
Plant Biotechnol J ; 14(3): 926-37, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26260942

RESUMEN

Phospholipase D (PLD), which hydrolyses phospholipids to produce phosphatidic acid, has been implicated in plant response to macronutrient availability in Arabidopsis. This study investigated the effect of increased PLDε expression on nitrogen utilization in Brassica napus to explore the application of PLDε manipulation to crop improvement. In addition, changes in membrane lipid species in response to nitrogen availability were determined in the oil seed crop. Multiple PLDε over expression (PLDε-OE) lines displayed enhanced biomass accumulation under nitrogen-deficient and nitrogen-replete conditions. PLDε-OE plants in the field produced more seeds than wild-type plants but have no impact on seed oil content. Compared with wild-type plants, PLDε-OE plants were enhanced in nitrate transporter expression, uptake and reduction, whereas the activity of nitrite reductase was higher under nitrogen-depleted, but not at nitrogen-replete conditions. The level of nitrogen altered membrane glycerolipid metabolism, with greater impacts on young than mature leaves. The data indicate increased expression of PLDε has the potential to improve crop plant growth and production under nitrogen-depleted and nitrogen-replete conditions.


Asunto(s)
Arabidopsis/enzimología , Brassica napus/crecimiento & desarrollo , Nitrógeno/farmacología , Fosfolipasa D/metabolismo , Semillas/crecimiento & desarrollo , Antocianinas/metabolismo , Biomasa , Brassica napus/efectos de los fármacos , Clorofila/metabolismo , Producción de Cultivos/métodos , Ácidos Grasos/metabolismo , Flores/efectos de los fármacos , Flores/fisiología , Glucolípidos/metabolismo , Lípidos de la Membrana/metabolismo , Nitratos/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Aceites de Plantas/metabolismo , Raíces de Plantas/anatomía & histología , Raíces de Plantas/efectos de los fármacos , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Semillas/efectos de los fármacos
20.
Plant Sci ; 345: 112116, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38750797

RESUMEN

Self-incompatibility (SI) is an important genetic mechanism exploited by numerous angiosperm species to prevent inbreeding. This mechanism has been widely used in the breeding of SI trilinear hybrids of Brassica napus. The SI responses in these hybrids can be overcome by using a salt (NaCl) solution, which is used for seed propagation in SI lines. However, the mechanism underlying the NaCl-induced breakdown of the SI response in B. napus remains unclear. Here, we investigated the role of two key proteins, BnaPLDα1 and BnaMPK6, in the breakdown of SI induced by NaCl. Pollen grain germination and seed set were reduced in BnaPLDα1 triple mutants following incompatible pollination with NaCl treatment. Conversely, SI responses were partially abolished by overexpression of BnaC05.PLDα1 without salt treatment. Furthermore, we observed that phosphatidic acid (PA) produced by BnaPLDα1 bound to B. napus BnaMPK6. The suppression and enhancement of the NaCl-induced breakdown of the SI response in B. napus were observed in BnaMPK6 quadruple mutants and BnaA05.MPK6 overexpression lines, respectively. Moreover, salt-induced stigmatic reactive oxygen species (ROS) accumulation had a minimal effect on the NaCl-induced breakdown of the SI response. In conclusion, our results demonstrate the essential role of the BnaPLDα1-PA-BnaMPK6 pathway in overcoming the SI response to salt treatment in SI B. napus. Additionally, our study provides new insights into the relationship between SI signaling and salt stress response. SIGNIFICANCE STATEMENT: A new molecular mechanism underlying the breakdown of the NaCl-induced self-incompatibility (SI) response in B. napus has been discovered. It involves the induction of BnaPLDα1 expression by NaCl, followed by the activation of BnaMPK6 through the production of phosphatidic acid (PA) by BnaPLDα1. Ultimately, this pathway leads to the breakdown of SI. The involvement of the BnaPLDα1-PA-BnaMPK6 pathway in overcoming the SI response following NaCl treatment provides new insights into the relationship between SI signalling and the response to salt stress.


Asunto(s)
Brassica napus , Proteínas de Plantas , Cloruro de Sodio , Brassica napus/genética , Brassica napus/fisiología , Brassica napus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Cloruro de Sodio/farmacología , Autoincompatibilidad en las Plantas con Flores/genética , Regulación de la Expresión Génica de las Plantas , Polinización
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA