Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Sensors (Basel) ; 19(22)2019 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-31739466

RESUMEN

Autonomous posture detection and self-localization of roadheaders is the key to automatic tunneling and roadheader robotization. In this paper, a multi-sensor based positioning method, involving an inertial system for altitude angles measurement, total station for coordinate measurement, and sensors for measuring the real-time length of the hydraulic cylinder is presented for roadheader position measurement and posture detection. Based on this method, a positioning model for roadheader and cutter positioning is developed. Additionally, flexible trajectory planning methods are provided for automatic cutting. Based on the positioning model and the trajectory planning methods, an automatic cutting procedure is proposed and applied in practical tunneling. The experimental results verify the high accuracy and efficiency of both the positioning method and the model. Furthermore, it is indicated that arbitrary shapes can be generated automatically and precisely according to the planned trajectory, employing the automatic cutting procedure. Therefore, unmanned tunneling can be realized by employing the proposed automatic cutting process.

2.
Dalton Trans ; 53(32): 13308-13319, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-38980718

RESUMEN

Energetic Metal-Organic Framework (EMOF) compounds have gained significant attention in recent years as a hot research topic in the fields of explosives and propellants. This article provides an overview of the latest research progress of EMOFs in various areas, including heat-resistant explosives, burning rate catalysts and initiating explosives. It discusses the recent development trends of high-energy EMOFs, such as high-dimensional and solvent-free structural design, simplified and scalable synthesis conditions, environmentally friendly manufacturing processes with tunable structures, high-energy, low-sensitivity and multifunctional target products. The challenges and issues faced by EMOFs in heat-resistant explosives, burning rate catalysts and initiating explosives are presented. Furthermore, the key research directions for future applications of EMOFs in the fields of explosives and propellants are discussed, including solvent-free high-dimensional EMOFs design and synthesis, precise modulation of EMOFs molecular composition and pore structure, improvement of accurate prediction methods for physicochemical properties of high-energy EMOFs, low-cost large-scale production and development of multifunctional composite EMOFs as energetic materials, exploration of influencing factors, and comprehensive study on the application of novel and high-performance multifunctional EMOFs.

3.
J Fungi (Basel) ; 9(11)2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37998918

RESUMEN

Fungi have important ecological functions in the soil of forests, where they decompose organic matter, provide plants with nutrients, increase plant water uptake, and improve plant resistance to adversity, disease, and disturbance. A forest fire presents a serious disturbance of the local ecosystem and can be considered an important component affecting the function of ecosystem biomes; however, the response of soil fungi to fire disturbance is largely unknown. To investigate the effects of fire disturbance on the community composition and diversity of soil fungi in a taiga forest, we collected soil from plots that had undergone a light, moderate, and heavy fire 10 years previously, with the inclusion of a fire-free control. The present soil fungi were characterized using Illumina MiSeq technology, and the sequences were analyzed to identify differences in the community composition and diversity in response to the changed soil physicochemical properties. The results showed that the Chao1 index, which characterizes the alpha diversity of the fungi, did not change significantly. In contrast, the Shannon index increased significantly (p < 0.05) and the Simpson index decreased significantly (p < 0.05) following a light or heavy fire disturbance compared to the control. The relative abundance of Basidiomycota was significantly higher in the soil of the fire sites than that in the control (p < 0.01), and the relative abundance of Ascomycota was significantly lower (p < 0.01). The results of principal coordinates analyses (PCoAs) showed that fire disturbance highly significantly affected the beta diversity of soil fungi (p < 0.001), while the results of canonical correlation analysis (CCA) indicated that the available nitrogen (AN), moisture content (MC), pH, available potassium (AK), and total nitrogen (TN) contents of the soil significantly affected the compositional structure and diversity of the soil fungal communities. The results of functional prediction showed that the majority of the detected soil fungi were symbiotrophs, followed by saprotrophs and saprotroph-symbiotrophs, with ectomycorrhiza being the dominant functional taxon. Fire disturbance significantly reduced the relative abundance of ectomycorrhiza (p < 0.05). This study illustrates that fire disturbance alters the structural composition, diversity, dominance, and relative abundance of the guilds of soil fungal communities in taiga forest, and strongly affected the beta diversity of soil fungi, with AN, MC, pH, AK, and TN being the most important factors affecting their community structure. The results may provide a useful reference for the restoration and rehabilitation of taiga forests after fire disturbance.

4.
Microorganisms ; 11(10)2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37894267

RESUMEN

As a crucial link between the aboveground and belowground components of forest ecosystems, soil bacterial communities are extremely sensitive to changes in plant communities and soil conditions. To investigate the impact of the difference of constructive species on soil bacterial communities in taiga forests, we conducted a vegetation survey at the international monitoring plot of the Larix gmelinii forests in the Great Khingan Mountains and calculated the important value of Larix gmelinii to determine experimental groups based on this survey. Subsequently, we collected soil samples for high-throughput sequencing to analyze how the soil bacterial community composition and diversity changed, and which factors affected them. The results showed that taiga forests with different important values of Larix gmelinii had heterogeneous habitats, in which the soil AP content significantly increased, and the SOC, MBC, pH, and C/N content decreased significantly (p < 0.05). A total of 32 phyla, 91 classes, 200 orders, 308 families, 496 genera, and 975 species of soil bacteria were obtained by sequencing. Among them, Proteobacteria, Actinobacteriota, and Acidobacteriota were the dominant phyla, and Mycobacterium was the dominant genus, and the relative abundance of each bacterial group was varied. The beta diversity of soil bacteria showed extremely significant differences (p = 0.001), with SOC, C/N, MBC, AP, TN, pH, AN, and WC being the main influencing factors. Functional prediction analysis showed that chemoheterotrophy and aerobic chemoheterotrophy were the main bacterial functional groups, and the relative abundance of each functional group was significantly different (p < 0.05). Overall, taiga forests with differences in constructive species had heterogeneous habitats, which changed the community composition, beta diversity, and potential functions of soil bacteria.

5.
Front Physiol ; 13: 896793, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35615683

RESUMEN

The olfactory system plays a key role in regulating insect behaviors, such as locating host plants, spawning sites, and mating partners and avoiding predators. Chemosensory genes are required for olfactory recognition in insects. Curculio dieckmanni Faust. (Coleoptera: Curculionidae) damages hazelnuts and causes severe economic losses. There are no effective control measures, but understanding the olfaction mechanisms of this insect could lead to a new approach for population management. However, the genes that perform chemosensory functions in C. dieckmanni are still unclear. Using high-throughput sequencing, we assembled the antennal transcriptome of C. dieckmanni and annotated the major chemosensory gene families. Of the chemosensory gene families, we found 23 odorant-binding proteins, 15 chemosensory proteins, 2 sensory neuron membrane proteins, 15 odorant receptors, 23 ionotropic receptors, and nine gustatory receptors. Using Blast sequence alignment and phylogenetic analysis, the sequences of these proteins were identified. Male- and female-specific chemosensory genes involved in odorant detection and recognition were validated by qRT-PCR. Among the chemosensory genes, we found significant differences in the expression of CdieOBP8, CdieOBP9, CdieOBP19, CdieOBP20, CdieOBP21, CdieCSP15, CdieOR13, and CdieOR15 between adult male and female C. dieckmanni. A total of 87 expressed chemosensory proteins were found in C. dieckmanni. Investigating these proteins will help reveal the molecular mechanism of odorant recognition in C. dieckmanni and may aid the development of novel control strategies for this species.

6.
PLoS One ; 16(9): e0255736, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34582494

RESUMEN

Dalbergia Odorifera (DO) has been widely used for the treatment of cardiovascular and cerebrovascular diseasesinclinical. However, the effective substances and possible mechanisms of DO are still unclear. In this study, network pharmacology and molecular docking were used toelucidate the effective substances and active mechanisms of DO in treating ischemic stroke (IS). 544 DO-related targets from 29 bioactive components and 344 IS-related targets were collected, among them, 71 overlapping common targets were got. Enrichment analysis showed that 12 components were the possible bioactive components in DO, which regulating 9 important signaling pathways in 3 biological processes including 'oxidative stress' (KEGG:04151, KEGG:04068, KEGG:04915), 'inflammatory response'(KEGG:04668, KEGG:04064) and 'vascular endothelial function regulation'(KEGG:04066, KEGG:04370). Among these, 5 bioactive components with degree≥20 among the 12 potential bioactive components were selected to be docked with the top5 core targets using AutodockVina software. According to the results of molecular docking, the binding sites of core target protein AKT1 and MOL002974, MOL002975, and MOL002914 were 9, 8, and 6, respectively, and they contained 2, 1, and 0 threonine residues, respectively. And some binding sites were consistent, which may be the reason for the similarities and differences between the docking results of the 3 core bioactive components. The results of in vitro experiments showed that OGD/R could inhibit cell survival and AKT phosphorylation which were reversed by the 3 core bioactive components. Among them, MOL002974 (butein) had a slightly better effect. Therefore, the protective effect of MOL002974 (butein) against cerebral ischemia was further evaluated in a rat model of middle cerebral artery occlusion (MCAO) by detecting neurological score, cerebral infarction volume and lactate dehydrogenase (LDH) level. The results indicated that MOL002974 (butein) could significantly improve the neurological score of rats, decrease cerebral infarction volume, and inhibit the level of LDH in the cerebral tissue and serum in a dose-dependent manner. In conclusion, network pharmacology and molecular docking predicate the possible effective substances and mechanisms of DO in treating IS. And the results are verified by the in vitro and in vivo experiments. This research reveals the possible effective substances from DO and its active mechanisms for treating IS and provides a new direction for the secondary development of DO for treating IS.


Asunto(s)
Dalbergia/química , Medicamentos Herbarios Chinos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Redes Reguladoras de Genes/efectos de los fármacos , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Mapas de Interacción de Proteínas/efectos de los fármacos , Animales , Supervivencia Celular , Infarto Cerebral/tratamiento farmacológico , Infarto Cerebral/metabolismo , Infarto Cerebral/patología , Edaravona/farmacología , Accidente Cerebrovascular Isquémico/metabolismo , Accidente Cerebrovascular Isquémico/patología , Simulación del Acoplamiento Molecular , Células PC12 , Ratas , Ratas Sprague-Dawley , Biología de Sistemas
7.
Eur J Pharmacol ; 871: 172916, 2020 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-31930970

RESUMEN

Macrophages play important roles in the healing and remodeling of cardiac tissues after myocardial ischemia/reperfusion (MI/R) injury. Here we investigated the potential effects of salvianolic acid B (SalB), one of the abundant and bioactive compounds extracted from Chinese herb Salvia Miltiorrhiza (Danshen), on macrophage-mediated inflammation after MI/R and the underlying mechanisms. In primary cultured bone marrow-derived macrophages (BMDMs), SalB attenuated lipopolysaccharide (LPS)-induced M1 biomarkers (IL-6, iNOS, CCL2 and TNF-α) mRNA expression in a concentration-dependent manner. In contrast, M2 biomarkers (Arg1, Clec10a and Mrc) mRNA levels following interleukinin-4 (IL-4) stimulation were significantly upregulated by SalB. In addition, LPS stimulation potently induced transcriptional upregulation of RagD, an important activation factor of mammalian target of rapamycin complex 1 (mTORC1). Interestingly, SalB inhibited RagD upregulation and mTORC1 activation, decreased glycolysis, and reduced inflammatory cytokine production in LPS-stimulated macrophages, all of which were blunted in RagD knockdown macrophages. In mice subjected to MI/R, SalB treatment decreased cardiac M1-macrophages and increased M2-macrophages at 3 days post-MI/R, followed by decreased collagen deposition and ameliorated cardiac dysfunction at 7 days post-MI/R. Collectively, our data have shown that SalB decreases M1-polarized macrophages in MI/R hearts via inhibiting mTORC1-dependent glycolysis, which might contribute to alleviated inflammation and improved cardiac dysfunction afforded by SalB after MI/R.


Asunto(s)
Benzofuranos/farmacología , Corazón/efectos de los fármacos , Macrófagos/efectos de los fármacos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Daño por Reperfusión Miocárdica/inmunología , Daño por Reperfusión Miocárdica/metabolismo , Animales , Glucólisis/efectos de los fármacos , Corazón/fisiopatología , Activación de Macrófagos , Macrófagos/citología , Macrófagos/inmunología , Ratones , Daño por Reperfusión Miocárdica/fisiopatología
8.
Sci Rep ; 9(1): 19343, 2019 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-31852981

RESUMEN

Salvia miltiorrhiza-Dalbergia odorifera coupled-herbs (SMDOCH) has been used to treat coronary heart disease (CHD) for thousands of years, but its unclear bioactive components and mechanisms greatly limit its clinical application. In this study, for the first time, we used network pharmacology to elucidate the mechanisms of action of SMDOCH on CHD. We collected 270 SMDOCH-related targets from 74 bioactive components and 375 CHD-related targets, with 58 overlapping common targets. Next, we performed enrichment analysis for common-target network and protein-protein interaction (PPI) network. The results showed that SMDOCH affected CHD mainly through 10 significant signaling pathways in three biological processes: 'vascular endothelial function regulation', 'inflammatory response', and 'lipid metabolism'. Six pathways belonged to the 'vascular endothelial function regulation' model, which primarily regulated hormone (renin, angiotensin, oestrogen) activity, and included three key upstream pathways that influence vascular endothelial function, namely KEGG:04933, KEGG:05418, and KEGG:04066. Three pathways, namely KEGG:04668, KEGG:04064, and KEGG:04620, belonged to the 'inflammatory response' model. One pathway (KEGG:04920) belonged to the 'lipid metabolism' model. To some extent, this study revealed the potential bioactive components and pharmacological mechanisms of SMDOCH on CHD, and provided a new direction for the development of new drugs for the treatment of CHD.


Asunto(s)
Cardiotónicos/uso terapéutico , Enfermedad Coronaria/tratamiento farmacológico , Dalbergia/química , Extractos Vegetales/uso terapéutico , Mapas de Interacción de Proteínas , Salvia miltiorrhiza/química , Ontología de Genes , Humanos
9.
Ying Yong Sheng Tai Xue Bao ; 14(4): 520-4, 2003 Apr.
Artículo en Zh | MEDLINE | ID: mdl-12920893

RESUMEN

Ecological water demand has some characteristics. The ecological water demand that was used for protection of the green corridor in the lower reaches of Tarim River was chiefly water demand by natural vegetation below Daxihaizi reservoir, and it included gross restoration water amount of ground water level and gross stand water amount in all over the lower reaches of Tarim River. The gross restoration water amount of ground water level mainly included restoration water amount of ground water level and lateral discharge, as well as evaporation of the course. Based on the drainage target of Alagan in 2005, gross ecological water demand was the gross water amount of restoration ground water level between Daxihaizi and Alagan, which would be 13.20 x 10(8) m3. Meanwhile, the annual average water demand would be 2.64 x 10(8) m3. Because the drainage target and vegetation protection target would be all Taitema lake in 2010, the gross ecological water demand included not only the gross water amount of restoration ground water level between Alagan and Taitema lake, but also the ecological stand water amount between Daxihaizi and Taitema lake, which would be 18.32 x 10(8) m3. Meanwhile, the annual average water demand would be 3.66 x 10(8) m3. From the year 2010 to 2030, the gross ecological water demand would be consisted of two parts (the gross stand water amount between Daxihaizi and Alagan, and the water demand by increased vegetation of 18.67 x 10(4) hm2), and the total ecological water demand during the 20 years would be 139.00 x 10(8) m3. Meanwhile, the annual average water demand would be 6.95 x 10(8) m3.


Asunto(s)
Agricultura , Conservación de los Recursos Naturales , Ecología , Abastecimiento de Agua , China , Ambiente , Volatilización
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA