Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Carcinog ; 63(4): 589-600, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38197430

RESUMEN

Prostate cancer (PCa) is the second most common cancer type among American men and it is estimated that in 2023, 34,700 men will die from PCa. Since it can take a considerable amount of time for the disease to progress to clinically evident cancer, there is ample opportunity for effective chemopreventive strategies to be applied for the successful management of PCa progression. In the current study, we have developed a two-tiered metabolomics-based screen to identify synergistic combinations of phytochemicals for PCa chemoprevention. This involves an initial screen for ATP depletion in PCa cells followed by a targeted screen for blocking glutamine uptake in the same cells. One of the phytochemical combinations (enoxolone [ENO] + silibinin [SIL]), identified via this screen, was examined for effects on PCa cell survival, oncogenic signaling and tumor growth in vivo. This combination was found to synergistically reduce cell survival, colony formation and cell cycle progression of PCa cell lines to a greater extent than either agent alone. The combination of ENO and SIL also synergistically reduced tumor growth when administered ad libitum through the diet in a HMVP2 allograft PCa tumor model. Treatment with the combination also significantly reduced STAT3 and mTORC1 signaling pathways in mouse and human PCa cells while significantly reducing levels of critical cell cycle regulatory proteins, contributing to the synergistic inhibition of tumor growth observed. Collectively, the current results demonstrate a novel approach to identifying synergistic combinations of phytochemicals for chemoprevention of PCa and possibly other cancers.


Asunto(s)
Ácido Glicirretínico , Neoplasias Primarias Secundarias , Neoplasias de la Próstata , Masculino , Humanos , Animales , Ratones , Detección Precoz del Cáncer , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/prevención & control , Proteínas de Ciclo Celular , Línea Celular , Supervivencia Celular , Línea Celular Tumoral
2.
Blood ; 139(26): 3752-3770, 2022 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-35439288

RESUMEN

Differentiation blockade is a hallmark of acute myeloid leukemia (AML). A strategy to overcome such a blockade is a promising approach against the disease. The lack of understanding of the underlying mechanisms hampers development of such strategies. Dysregulated ribonucleotide reductase (RNR) is considered a druggable target in proliferative cancers susceptible to deoxynucleoside triphosphate (dNTP) depletion. Herein, we report an unanticipated discovery that hyperactivating RNR enables differentiation and decreases leukemia cell growth. We integrate pharmacogenomics and metabolomics analyses to identify that pharmacologically (eg, nelarabine) or genetically upregulating RNR subunit M2 (RRM2) creates a dNTP pool imbalance and overcomes differentiation arrest. Moreover, R-loop-mediated DNA replication stress signaling is responsible for RRM2 activation by nelarabine treatment. Further aggravating dNTP imbalance by depleting the dNTP hydrolase SAM domain and HD domain-containing protein 1 (SAMHD1) enhances ablation of leukemia stem cells by RRM2 hyperactivation. Mechanistically, excessive activation of extracellular signal-regulated kinase (ERK) signaling downstream of the imbalance contributes to cellular outcomes of RNR hyperactivation. A CRISPR screen identifies a synthetic lethal interaction between loss of DUSP6, an ERK-negative regulator, and nelarabine treatment. These data demonstrate that dNTP homeostasis governs leukemia maintenance, and a combination of DUSP inhibition and nelarabine represents a therapeutic strategy.


Asunto(s)
Leucemia Mieloide Aguda , Ribonucleótido Reductasas , Replicación del ADN , Homeostasis , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Polifosfatos , Ribonucleótido Reductasas/genética , Ribonucleótido Reductasas/metabolismo
3.
Opt Express ; 32(11): 20360-20369, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38859149

RESUMEN

The size of the bandgap in a photonic crystal ring is typically intuitively considered to monotonically grow as the modulation amplitude of the grating increases, causing increasingly large frequency splittings between the "dielectric" and "air" bands. In contrast, here we report that as the modulation amplitude in a photonic crystal ring increases, the bandgap does not simply increase monotonically. Instead, after the initial increase, the bandgap closes and then reopens again with the two bands flipped in energy. The air and dielectric band edges are degenerate at the bandgap closing point. We demonstrate this behavior experimentally in silicon nitride photonic crystal microrings, where we show that the bandgap is closed to within the linewidth of the optical cavity mode, whose intrinsic quality factor remains unperturbed with a value ≈ 1×106. Moreover, through finite-element simulations, we show that such bandgap closing and band flipping phenomena exist in a variety of photonic crystal rings with varying unit cell geometries and cladding layers. At the bandgap closing point, the two standing wave modes with a degenerate frequency are particularly promising for single-frequency lasing applications. Along this line, we propose a compact self-injection locking scheme that integrates many core functionalities in one photonic crystal ring. Additionally, the single-frequency lasing might be applicable to distributed-feedback (DFB) lasers to increase their manufacturing yield.

4.
Proc Natl Acad Sci U S A ; 117(23): 13000-13011, 2020 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-32434918

RESUMEN

Extensive studies in prostate cancer and other malignancies have revealed that l-methionine (l-Met) and its metabolites play a critical role in tumorigenesis. Preclinical and clinical studies have demonstrated that systemic restriction of serum l-Met, either via partial dietary restriction or with bacterial l-Met-degrading enzymes exerts potent antitumor effects. However, administration of bacterial l-Met-degrading enzymes has not proven practical for human therapy because of problems with immunogenicity. As the human genome does not encode l-Met-degrading enzymes, we engineered the human cystathionine-γ-lyase (hMGL-4.0) to catalyze the selective degradation of l-Met. At therapeutically relevant dosing, hMGL-4.0 reduces serum l-Met levels to >75% for >72 h and significantly inhibits the growth of multiple prostate cancer allografts/xenografts without weight loss or toxicity. We demonstrate that in vitro, hMGL-4.0 causes tumor cell death, associated with increased reactive oxygen species, S-adenosyl-methionine depletion, global hypomethylation, induction of autophagy, and robust poly(ADP-ribose) polymerase (PARP) cleavage indicative of DNA damage and apoptosis.


Asunto(s)
Cistationina gamma-Liasa/farmacología , Metionina/antagonistas & inhibidores , Mutagénesis Sitio-Dirigida , Neoplasias de la Próstata/tratamiento farmacológico , Animales , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Línea Celular Tumoral , Cistationina gamma-Liasa/genética , Cistationina gamma-Liasa/aislamiento & purificación , Cistationina gamma-Liasa/uso terapéutico , Daño del ADN/efectos de los fármacos , Pruebas de Enzimas , Humanos , Masculino , Metionina/sangre , Metionina/metabolismo , Ratones , Poli(ADP-Ribosa) Polimerasas/metabolismo , Neoplasias de la Próstata/sangre , Especies Reactivas de Oxígeno/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/farmacología , Proteínas Recombinantes/uso terapéutico , Pruebas de Toxicidad Aguda , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Eur Heart J ; 43(24): 2317-2334, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35267019

RESUMEN

AIMS: Adverse cardiovascular events have day/night patterns with peaks in the morning, potentially related to endogenous circadian clock control of platelet activation. Circadian nuclear receptor Rev-erbα is an essential and negative component of the circadian clock. To date, the expression profile and biological function of Rev-erbα in platelets have never been reported. METHODS AND RESULTS: Here, we report the presence and functions of circadian nuclear receptor Rev-erbα in human and mouse platelets. Both human and mouse platelet Rev-erbα showed a circadian rhythm that positively correlated with platelet aggregation. Global Rev-erbα knockout and platelet-specific Rev-erbα knockout mice exhibited defective in haemostasis as assessed by prolonged tail-bleeding times. Rev-erbα deletion also reduced ferric chloride-induced carotid arterial occlusive thrombosis, prevented collagen/epinephrine-induced pulmonary thromboembolism, and protected against microvascular microthrombi obstruction and infarct expansion in an acute myocardial infarction model. In vitro thrombus formation assessed by CD41-labelled platelet fluorescence intensity was significantly reduced in Rev-erbα knockout mouse blood. Platelets from Rev-erbα knockout mice exhibited impaired agonist-induced aggregation responses, integrin αIIbß3 activation, and α-granule release. Consistently, pharmacological inhibition of Rev-erbα by specific antagonists decreased platelet activation markers in both mouse and human platelets. Mechanistically, mass spectrometry and co-immunoprecipitation analyses revealed that Rev-erbα potentiated platelet activation via oligophrenin-1-mediated RhoA/ERM (ezrin/radixin/moesin) pathway. CONCLUSION: We provided the first evidence that circadian protein Rev-erbα is functionally expressed in platelets and potentiates platelet activation and thrombus formation. Rev-erbα may serve as a novel therapeutic target for managing thrombosis-based cardiovascular disease.


Asunto(s)
Relojes Circadianos , Trombosis , Animales , Plaquetas/metabolismo , Relojes Circadianos/fisiología , Ritmo Circadiano/fisiología , Humanos , Ratones , Ratones Noqueados , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/metabolismo , Activación Plaquetaria
6.
Opt Lett ; 47(13): 3331-3334, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35776618

RESUMEN

Continuous wave optical parametric oscillation (OPO) provides a flexible approach for accessing mid-infrared wavelengths between 2 µm and 5 µm, but operation at these wavelengths has not yet been integrated into silicon nanophotonics. Typically, a Kerr OPO uses a single transverse mode family for pump, signal, and idler modes, and relies on a delicate balance to achieve normal (but close-to-zero) dispersion near the pump and the requisite higher-order dispersion needed for phase- and frequency-matching. Within integrated photonics platforms, this approach results in two major problems. First, the dispersion is very sensitive to geometry, so that small fabrication errors can have a large impact. Second, the device is susceptible to competing nonlinear processes near the pump. In this Letter, we propose a flexible solution to infrared OPO that addresses these two problems by using a silicon nitride photonic crystal microring (PhCR). The frequency shifts created by the PhCR bandgap enable OPO that would otherwise be forbidden. We report an intrinsic optical quality factor up to (1.2 ± 0.1)×106 in the 2-µm band, and use a PhC ring to demonstrated an OPO with a threshold dropped power in the cavity of (90 ± 20) mW, with the pump wavelength at 1998 nm, and the signal and idler wavelengths at 1937 nm and 2063 nm, respectively. We further discuss how to extend the OPO spectral coverage in the mid-infrared. These results establish the PhCR OPO as a promising route for integrated laser sources in the infrared.

7.
Phys Rev Lett ; 129(18): 186101, 2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36374673

RESUMEN

Whispering gallery modes (WGMs) in circularly symmetric optical microresonators exhibit integer quantized angular momentum numbers due to the boundary condition imposed by the geometry. Here, we show that incorporating a photonic crystal pattern in an integrated microring can result in WGMs with fractional optical angular momentum. By choosing the photonic crystal periodicity to open a photonic band gap with a band-edge momentum lying between that of two WGMs of the unperturbed ring, we observe hybridized WGMs with half-integer quantized angular momentum numbers (m∈Z+1/2). Moreover, we show that these modes with fractional angular momenta exhibit high optical quality factors with good cavity-waveguide coupling and an order of magnitude reduced group velocity. Additionally, by introducing multiple artificial defects, multiple modes can be localized to small volumes within the ring, while the relative orientation of the delocalized band-edge states can be well controlled. Our Letter unveils the renormalization of WGMs by the photonic crystal, demonstrating novel fractional angular momentum states and nontrivial multimode orientation control arising from continuous rotational symmetry breaking. The findings are expected to be useful for sensing and metrology, nonlinear optics, and cavity quantum electrodynamics.

8.
Circ Res ; 126(10): e80-e96, 2020 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-32134364

RESUMEN

RATIONALE: Diabetes mellitus is a complex, multisystem disease, affecting large populations worldwide. Chronic CaMKII (Ca2+/calmodulin-dependent kinase II) activation may occur in diabetes mellitus and be arrhythmogenic. Diabetic hyperglycemia was shown to activate CaMKII by (1) O-linked attachment of N-acetylglucosamine (O-GlcNAc) at S280 leading to arrhythmia and (2) a reactive oxygen species (ROS)-mediated oxidation of CaMKII that can increase postinfarction mortality. OBJECTIVE: To test whether high extracellular glucose (Hi-Glu) promotes ventricular myocyte ROS generation and the role played by CaMKII. METHODS AND RESULTS: We tested how extracellular Hi-Glu influences ROS production in adult ventricular myocytes, using DCF (2',7'-dichlorodihydrofluorescein diacetate) and genetically targeted Grx-roGFP2 redox sensors. Hi-Glu (30 mmol/L) significantly increased the rate of ROS generation-an effect prevented in myocytes pretreated with CaMKII inhibitor KN-93 or from either global or cardiac-specific CaMKIIδ KO (knockout) mice. CaMKII KO or inhibition also prevented Hi-Glu-induced sarcoplasmic reticulum Ca2+ release events (Ca2+ sparks). Thus, CaMKII activation is required for Hi-Glu-induced ROS generation and sarcoplasmic reticulum Ca2+ leak in cardiomyocytes. To test the involvement of O-GlcNAc-CaMKII pathway, we inhibited GlcNAcylation removal by Thiamet G (ThmG), which mimicked the Hi-Glu-induced ROS production. Conversely, inhibition of GlcNAcylation (OSMI-1 [(αR)-α-[[(1,2-dihydro-2-oxo-6-quinolinyl)sulfonyl]amino]-N-(2-furanylmethyl)-2-methoxy-N-(2-thienylmethyl)-benzeneacetamide]) prevented ROS induction in response to either Hi-Glu or ThmG. Moreover, in a CRSPR-based knock-in mouse in which the functional GlcNAcylation site on CaMKIIδ was ablated (S280A), neither Hi-Glu nor ThmG induced myocyte ROS generation. So CaMKIIδ-S280 is required for the Hi-Glu-induced (and GlcNAc dependent) ROS production. To identify the ROS source(s), we used different inhibitors of NOX (NADPH oxidase) 2 (Gp91ds-tat peptide), NOX4 (GKT137831), mitochondrial ROS (MitoTempo), and NOS (NO synthase) pathway inhibitors (L-NAME, L-NIO, and L-NPA). Only NOX2 inhibition or KO prevented Hi-Glu/ThmG-induced ROS generation. CONCLUSIONS: Diabetic hyperglycemia induces acute cardiac myocyte ROS production by NOX2 that requires O-GlcNAcylation of CaMKIIδ at S280. This novel ROS induction may exacerbate pathological consequences of diabetic hyperglycemia.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Cardiomiopatías Diabéticas/etiología , Glucosa/toxicidad , Hiperglucemia/complicaciones , Miocitos Cardíacos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Animales , Señalización del Calcio , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/deficiencia , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Células Cultivadas , Cardiomiopatías Diabéticas/enzimología , Cardiomiopatías Diabéticas/fisiopatología , Activación Enzimática , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Glicosilación , Humanos , Hiperglucemia/enzimología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/enzimología , Ratones Endogámicos C57BL , Ratones Noqueados , Miocitos Cardíacos/enzimología , NADPH Oxidasa 2/deficiencia , NADPH Oxidasa 2/genética , Retículo Sarcoplasmático/efectos de los fármacos , Retículo Sarcoplasmático/enzimología
9.
Fish Physiol Biochem ; 48(3): 535-553, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35399145

RESUMEN

Nutritional programming - the association between the early nutritional environment and long-term consequences for an animal - is an emerging area of research in fish biology. Previous studies reported correlations between maternal provisioning of essential fatty acids to eggs and the whole-body fatty acid composition of larvae reared under uniform conditions for red drum, Sciaenops ocellatus. This study aimed to further investigate the nutritional stimulus and the consequences of nutritional programming by feeding adult red drum several distinct diets and rearing larvae under uniform conditions until 21 days post-hatching when larval lipid and fatty acid compositions were assessed. Different maternal diets produced eggs with distinctive lipid and fatty acid compositions, and despite receiving the same larval diet for almost 3 weeks, larvae showed differences in total fatty acid accumulation and in retention of highly unsaturated fatty acids (HUFA). Specifically, larvae reared from a maternal diet of shrimp generally showed elevated levels of fatty acids in the initial steps of the n-3 and n-6 HUFA biosynthetic pathways and reduced levels of fatty acid products of the same pathways, especially in triglyceride. Furthermore, the variations in larval fatty acid accumulation induced by maternal diet varied among females. Lipid metabolism altered by parental diet may have consequences for larval physiological processes and behavioral performance, which may ultimately influence larval survival.


Asunto(s)
Metabolismo de los Lípidos , Perciformes , Animales , Dieta/veterinaria , Ácidos Grasos/metabolismo , Ácidos Grasos Insaturados/metabolismo , Femenino , Larva/metabolismo , Perciformes/fisiología
10.
Anal Chem ; 93(14): 5805-5814, 2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33818082

RESUMEN

Stereospecific recognition of metabolites plays a significant role in the detection of potential disease biomarkers thereby providing new insights in diagnosis and prognosis. D-Hdroxy/amino acids are recognized as potential biomarkers in several metabolic disorders. Despite continuous advances in metabolomics technologies, the simultaneous measurement of different classes of enantiomeric metabolites in a single analytical run remains challenging. Here, we develop a novel strategy for untargeted chiral metabolomics of hydroxy/amine groups (-OH/-NH2) containing metabolites, including all hydroxy acids (HAs) and amino acids (AAs), by chiral derivatization coupled with liquid chromatography-high resolution tandem mass spectrometry (LC-HR-MS/MS). Diacetyl-tartaric anhydride (DATAN) was used for the simultaneous derivatization of-OH/-NH2 containing metabolites as well as the resulting diastereomers, and all the derivatized metabolites were resolved in a single analytical run. Data independent MS/MS acquisition (DIA) was applied to positively identify DATAN-labeled metabolites based on reagent specific diagnostic fragment ions. We discriminated chiral from achiral metabolites based on the reversal of elution order of D and L isomers derivatized with the enantiomeric pair (±) of DATAN in an untargeted manner. Using the developed strategy, a library of 301 standards that consisted of 214 chiral and 87 achiral metabolites were separated and detected in a single analytical run. This approach was then applied to investigate the enantioselective metabolic profile of the bone marrow (BM) and peripheral blood (PB) plasma samples from patients with acute myeloid leukemia (AML) at diagnosis and following completion of the induction phase of chemotherapeutic treatment. The sensitivity and selectivity of the developed method enabled the detection of trace levels of the D-enantiomer of HAs and AAs in primary plasma patient samples. Several of these metabolites were significantly altered in response to chemotherapy. The developed LC-HR-MS method entails a valuable step forward in chiral metabolomics.


Asunto(s)
Metabolómica , Espectrometría de Masas en Tándem , Cromatografía Liquida , Humanos , Metaboloma , Estereoisomerismo
11.
Opt Lett ; 46(2): 222-225, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33448992

RESUMEN

Quantum frequency conversion (QFC) between the visible and telecom is a key to connect quantum memories in fiber-based quantum networks. Current methods for linking such widely separated frequencies, such as sum/difference frequency generation and four-wave mixing Bragg scattering, are prone to broadband noise generated by the pump laser(s). To address this issue, we propose to use third-order sum/difference frequency generation (TSFG/TDFG) for an upconversion/downconversion QFC interface. In this process, two long wavelength pump photons combine their energy and momentum to mediate frequency conversion across the large spectral gap between the visible and telecom bands, which is particularly beneficial from the noise perspective. We show that waveguide-coupled silicon nitride microring resonators can be designed for efficient QFC between 606 and 1550 nm via a 1990 nm pump through TSFG/TDFG. We simulate the device dispersion and coupling, and from the simulated parameters, estimate that the frequency conversion can be efficient (${\gt}80 \%$) at 50 mW pump power. Our results suggest that microresonator TSFG/TDFG is promising for compact, scalable, and low-power QFC across large spectral gaps.

12.
Opt Lett ; 46(11): 2682-2685, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-34061087

RESUMEN

Nanophotonic modes within rectangular cross sections are typically considered to have transverse rectangular field profiles. In this work, we show that, despite the rectangular cross section of most integrated waveguides and microring resonators, there exists considerable hybridization of transverse rectangular modes and transverse circular modes. These hybridized modes can be advantageous in nonlinear wave mixing processes. We use third-harmonic generation as an example to confirm that such a hybridized mode is advantageous in combining reasonable mode overlap and waveguide coupling to a fundamental mode in a silicon nitride microring. Our work illuminates the potential of using transverse circular modes in nanophotonic applications.

13.
Molecules ; 26(20)2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34684827

RESUMEN

Fatty acid profiling on gas chromatography-mass spectrometry (GC-MS) platforms is typically performed offline by manually derivatizing and analyzing small batches of samples. A GC-MS system with a fully integrated robotic autosampler can significantly improve sample handling, standardize data collection, and reduce the total hands-on time required for sample analysis. In this study, we report an optimized high-throughput GC-MS-based methodology that utilizes trimethyl sulfonium hydroxide (TMSH) as a derivatization reagent to convert fatty acids into fatty acid methyl esters. An automated online derivatization method was developed, in which the robotic autosampler derivatizes each sample individually and injects it into the GC-MS system in a high-throughput manner. This study investigated the robustness of automated TMSH derivatization by comparing fatty acid standards and lipid extracts, derivatized manually in batches and online automatically from four biological matrices. Automated derivatization improved reproducibility in 19 of 33 fatty acid standards, with nearly half of the 33 confirmed fatty acids in biological samples demonstrating improved reproducibility when compared to manually derivatized samples. In summary, we show that the online TMSH-based derivatization methodology is ideal for high-throughput fatty acid analysis, allowing rapid and efficient fatty acid profiling, with reduced sample handling, faster data acquisition, and, ultimately, improved data reproducibility.

14.
Opt Express ; 28(26): 39340-39353, 2020 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-33379486

RESUMEN

Direct laser writing (DLW) has recently been used to create versatile micro-optic structures that facilitate photonic-chip coupling, like free-form lenses, free-form mirrors, and photonic wirebonds. However, at the edges of photonic chips, the top-down/off-axis printing orientation typically used limits the size and complexity of structures and the range of materials compatible with the DLW process. To avoid these issues, we develop a DLW method in which the photonic chip's optical input/output (IO) ports are co-linear with the axis of the lithography beam (on-axis printing). Alignment automation and port identification are enabled by a 1-dimensional barcode-like pattern that is fabricated within the chip's device layer and surrounds the IO waveguides to increase their visibility. We demonstrate passive alignment to these markers using standard machine vision techniques, and print single-element elliptical lenses along an array of 42 ports with a 100 % fabrication yield. These lenses improve fiber-to-chip misalignment tolerance relative to other fiber-based coupling techniques. The 1 dB excess loss diameter increases from ≈ 2.3 µm when using a lensed fiber to ≈ 9.9 µm when using the DLW printed micro-optic and a cleaved fiber. The insertion loss penalty introduced by moving to this misalignment-tolerant coupling approach is limited, with an additional loss (in comparison to the lensed fiber) as small as ≈1 dB and ≈2 dB on average. Going forward, on-axis printing can accommodate a variety of multi-element free-space and guided wave coupling elements, without requiring calibration of printing dose specific to the geometry of the 3D printed structure or to the materials comprising the photonic chip. It also enables novel methods for interconnection between chips. To that end, we fabricate a proof-of-concept 3D photonic wire bond between two vertically stacked photonic chips.

15.
Opt Lett ; 45(17): 4939, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32870895

RESUMEN

This publisher's note contains corrections to Opt. Lett.44, 4737 (2019) OPLEDP0146-959210.1364/OL.44.004737.

16.
J Mol Cell Cardiol ; 136: 72-84, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31491377

RESUMEN

Mitochondria are involved in multiple cellular functions, in addition to their core role in energy metabolism. Mitochondria localized in different cellular locations may have different morphology, Ca2+ handling and biochemical properties and may interact differently with other intracellular structures, causing functional specificity. However, most prior studies have utilized isolated mitochondria, removed from their intracellular environment. Mitochondria in cardiac ventricular myocytes are highly organized, with a majority squeezed between the myofilaments in longitudinal chains (intrafibrillar mitochondria, IFM). There is another population of perinuclear mitochondria (PNM) around and between the two nuclei typical in myocytes. Here, we take advantage of live myocyte imaging to test for quantitative morphological and functional differences between IFM and PNM with respect to calcium fluxes, membrane potential, sensitivity to oxidative stress, shape and dynamics. Our findings show higher mitochondrial Ca2+ uptake and oxidative stress sensitivity for IFM vs. PNM, which may relate to higher local energy demand supporting the contractile machinery. In contrast to IFM which are remarkably static, PNM are relatively mobile, appear to participate readily in fission/fusion dynamics and appear to play a central role in mitochondrial genesis and turnover. We conclude that while IFM may be physiologically tuned to support local myofilament energy demands, PNM may be more critical in mitochondrial turnover and regulation of nuclear function and import/export. Thus, important functional differences are present in intrafibrillar vs. perinuclear mitochondrial subpopulations.


Asunto(s)
Mitocondrias Cardíacas/metabolismo , Miocitos Cardíacos/citología , Factores de Edad , Animales , Calcio/metabolismo , Fusión Celular , Recuperación de Fluorescencia tras Fotoblanqueo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Ratones Endogámicos C57BL , Microscopía Confocal , Mitocondrias Cardíacas/ultraestructura , Dinámicas Mitocondriales , Proteínas de Transporte de Membrana Mitocondrial , Poro de Transición de la Permeabilidad Mitocondrial , Mitofagia , Miocitos Cardíacos/metabolismo , Estrés Oxidativo , Conejos
17.
Opt Lett ; 44(17): 4295-4298, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31465386

RESUMEN

We demonstrate the first silicon carbide (SiC) double-microdisk resonator (DMR). The device has a compact footprint with a radius of 24 µm and operates in the ITU high frequency range (3-30 MHz). We develop a multi-layer nanofabrication recipe that yields high optical quality (Q∼105) for the SiC DMR. Because of its strong optomechanical interaction, we observe the thermal-Brownian motions of mechanical modes in a SiC DMR directly at room temperature for the first time, to the best of our knowledge. The observed mechanical modes include fundamental/second-order common modes and fundamental differential (D1) modes. The D1 modes have high mechanical qualities >3800 at around 18.4 MHz tested in vacuum. We further show that optomechanical interactions, including linear and nonlinear optomechanical spring effects, can be observed in a SiC DMR at sub-milliwatt optical power. The SiC DMR has great potential for low-power optomechanical sensing applications in harsh environments.

18.
Opt Lett ; 44(19): 4737-4740, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31568430

RESUMEN

Octave-spanning frequency combs have been successfully demonstrated in Kerr nonlinear microresonators. These microcombs rely on both engineered dispersion, to enable generation of frequency components across the octave, and on engineered coupling, to efficiently extract the generated light into an access waveguide while maintaining a close to critically coupled pump. The latter is challenging, as the spatial overlap between the access waveguide and the ring modes decays with frequency. This leads to strong coupling variation across the octave, with poor extraction at short wavelengths. Here, we investigate how a waveguide wrapped around a portion of the resonator, in a pulley scheme, can improve the extraction of octave-spanning microcombs, in particular at short wavelengths. We use the coupled-mode theory to predict the performance of the pulley couplers and demonstrate good agreement with experimental measurements. Using an optimal pulley coupling design, we demonstrate a 20 dB improvement in extraction at short wavelengths compared to straight waveguide coupling.

19.
Circ Res ; 118(5): 834-41, 2016 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-26712344

RESUMEN

RATIONALE: Mitochondria produce ATP, especially critical for survival of highly aerobic cells, such as cardiac myocytes. Conversely, opening of mitochondrial high-conductance and long-lasting permeability transition pores (mPTP) causes respiratory uncoupling, mitochondrial injury, and cell death. However, low conductance and transient mPTP openings (tPTP) might limit mitochondrial Ca(2+) load and be cardioprotective, but direct evidence for tPTP in cells is limited. OBJECTIVE: To directly characterize tPTP occurrence during sarcoplasmic reticulum Ca(2+) release in adult cardiac myocytes. METHODS AND RESULTS: Here, we measured tPTP directly as transient drops in mitochondrial [Ca(2+)] ([Ca(2+)]mito) and membrane potential (ΔΨm) in adult cardiac myocytes during cyclic sarcoplasmic reticulum Ca release, by simultaneous live imaging of 500 to 1000 individual mitochondria. The frequency of tPTPs rose at higher [Ca(2+)]mito, [Ca(2+)]i, with 1 µmol/L peroxide exposure and in myocyte from failing hearts. The tPTPs were suppressed by preventing mitochondrial Ca(2+) influx, by mPTP inhibitor cyclosporine A, sanglifehrin, and in cyclophilin D knockout mice. These tPTP events were 57±5 s in duration, but were rare (occurring in <0.1% of myocyte mitochondria at any moment) such that the overall energetic cost to the cell is minimal. The tPTP pore size is much smaller than for permanent mPTP, as neither Rhod-2 nor calcein (600 Da) were lost. Thus, proteins and even molecules the size of NADH (663 Da) will be retained during these tPTP. CONCLUSIONS: We conclude that tPTP openings (MitoWinks) may be molecularly related to pathological mPTP, but are likely to be normal physiological manifestation that benefits mitochondrial (and cell) survival by allowing individual mitochondria to reset themselves with little overall energetic cost.


Asunto(s)
Mitocondrias Cardíacas/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Células Cultivadas , Ratones , Ratones Endogámicos C57BL , Permeabilidad
20.
Opt Express ; 23(16): 20884-904, 2015 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-26367942

RESUMEN

Integrated quantum photonics relies critically on the purity, scalability, integrability, and flexibility of a photon source to support diverse quantum functionalities on a single chip. Here we report a chip-scale photon-pair source on the silicon-on-insulator platform that utilizes dramatic cavity-enhanced four-wave mixing in a high-Q silicon microdisk resonator. The device is able to produce high-quality photon pairs at different wavelengths with a high spectral brightness of 6.24×10(7) pairs/s/mW(2)/GHz and photon-pair correlation with a coincidence-to-accidental ratio of 1386 ± 278 while pumped with a continuous-wave laser. The superior performance, together with the structural compactness and CMOS compatibility, opens up a great avenue towards quantum silicon photonics with capability of multi-channel parallel information processing for both integrated quantum computing and long-haul quantum communication.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA