Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(21): e2220589120, 2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37186856

RESUMEN

The propagation of spin waves in magnetically ordered systems has emerged as a potential means to shuttle quantum information over large distances. Conventionally, the arrival time of a spin wavepacket at a distance, d, is assumed to be determined by its group velocity, vg. Here, we report time-resolved optical measurements of wavepacket propagation in the Kagome ferromagnet Fe3Sn2 that demonstrate the arrival of spin information at times significantly less than d/vg. We show that this spin wave "precursor" originates from the interaction of light with the unusual spectrum of magnetostatic modes in Fe3Sn2. Related effects may have far-reaching consequences toward realizing long-range, ultrafast spin wave transport in both ferromagnetic and antiferromagnetic systems.

2.
Proc Natl Acad Sci U S A ; 113(31): 8648-52, 2016 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-27436895

RESUMEN

Motivated by recent experiments probing anomalous surface states of Dirac semimetals (DSMs) Na3Bi and Cd3As2, we raise the question posed in the title. We find that, in marked contrast to Weyl semimetals, the gapless surface states of DSMs are not topologically protected in general, except on time-reversal-invariant planes of surface Brillouin zone. We first demonstrate this finding in a minimal four-band model with a pair of Dirac nodes at [Formula: see text] where gapless states on the side surfaces are protected only near [Formula: see text] We then validate our conclusions about the absence of a topological invariant protecting double Fermi arcs in DSMs, using a K-theory analysis for space groups of Na3Bi and Cd3As2 Generically, the arcs deform into a Fermi pocket, similar to the surface states of a topological insulator, and this pocket can merge into the projection of bulk Dirac Fermi surfaces as the chemical potential is varied. We make sharp predictions for the doping dependence of the surface states of a DSM that can be tested by angle-resolved photoemission spectroscopy and quantum oscillation experiments.

3.
Phys Rev Lett ; 121(18): 186801, 2018 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-30444417

RESUMEN

Majorana bound states often occur at the end of a 1D topological superconductor. Validated by a new bulk invariant and an intuitive edge argument, we show the emergence of one Majorana Kramers pair at each corner of a square-shaped 2D topological insulator proximitized by an s_{±}-wave (e.g., Fe-based) superconductor. We obtain a phase diagram that addresses the relaxation of crystal symmetry and edge orientation. We propose two experimental realizations in candidate materials. Our scheme offers a higher-order and higher-temperature route for exploring non-Abelian quasiparticles.

4.
Phys Rev Lett ; 121(12): 127703, 2018 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-30296144

RESUMEN

We report the discovery of a strong and tunable spin-lifetime anisotropy with excellent out-of-plane spin lifetimes up to 7.8 ns at 100 K in dual-gated bilayer graphene. Remarkably, this realizes the manipulation of spins in graphene by electrically controlled spin-orbit fields, which is unexpected due to graphene's weak intrinsic spin-orbit coupling (∼12 µeV). We utilize both the in-plane magnetic field Hanle precession and oblique Hanle precession measurements to directly compare the lifetimes of out-of-plane vs in-plane spins. We find that near the charge neutrality point, the application of a perpendicular electric field opens a band gap and generates an out-of-plane spin-orbit field that stabilizes out-of-plane spins against spin relaxation, leading to a large spin-lifetime anisotropy (defined as the ratio between out-of-plane and in-plane spin lifetime) up to ∼12 at 100 K. This intriguing behavior occurs because of the unique spin-valley coupled band structure of bilayer graphene. Our results demonstrate the potential for highly tunable spintronic devices based on dual-gated 2D materials.

5.
Can J Physiol Pharmacol ; 95(1): 59-71, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27831744

RESUMEN

Gravitation is an important factor in maintaining cardiac contractility. Our study investigated whether simulated microgravity increases myocardial susceptibility to ischemia-reperfusion (IR) injury. Using the Langendorff-perfused heart model with 300 beats/min pacing, 4-week tail suspension (SUS) and control (CON) male Sprague-Dawley rats (n = 10 rats/group) were subjected to 60 min of left anterior descending coronary artery (LAD) occlusion followed by 120 min of reperfusion. Left ventricular end-systolic pressure (LVESP), left ventricular end-diastolic pressure (LVEDP), creatine kinase (CK) and lactate dehydrogenase (LDH) activity, and infarct size were assessed. Data demonstrated that there were significantly increased LVEDP, CK, LDH, and infarct size in SUS compared with CON (P < 0.05), accompanied by decreased LVESP (P < 0.05). Furthermore, TUNEL-positive cardiomyocytes were higher in SUS than that in CON (P < 0.01), and AMP-activated protein kinase (AMPK) phosphorylation and Bcl-2/Bax in SUS were less compared with CON (P < 0.05). Similarly, isolated hearts pre-treated with A-769662 exhibited better recovery of cardiac function, increased AMPK phosphorylation, and reduced necrosis and apoptosis. Furthermore, AMPKα protein showed a significant suppression in 4-week hindlimb unweighting rats. These results suggest that AMPK deficiency increases myocardial susceptibility to IR injury in rats subjected to simulated microgravity.


Asunto(s)
Proteínas Quinasas Activadas por AMP/deficiencia , Daño por Reperfusión Miocárdica/enzimología , Daño por Reperfusión Miocárdica/fisiopatología , Simulación de Ingravidez , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Apoptosis , Autofagia , Compuestos de Bifenilo , Peso Corporal , Creatina Quinasa/metabolismo , Hemodinámica , Suspensión Trasera/efectos adversos , Preparación de Corazón Aislado , L-Lactato Deshidrogenasa/metabolismo , Masculino , Músculo Esquelético/metabolismo , Daño por Reperfusión Miocárdica/patología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Necrosis/patología , Fosforilación/efectos de los fármacos , Pironas/farmacología , Ratas , Tiofenos/farmacología , Función Ventricular Izquierda/efectos de los fármacos
6.
Phys Rev Lett ; 116(19): 197203, 2016 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-27232041

RESUMEN

The anyonic excitations of a spin liquid can feature fractional quantum numbers under space group symmetries. Detecting these fractional quantum numbers, which are analogs of the fractional charge of Laughlin quasiparticles, may prove easier than the direct observation of anyonic braiding and statistics. Motivated by the recent numerical discovery of spin-liquid phases in the kagome Heisenberg antiferromagnet, we theoretically predict the pattern of space group symmetry fractionalization in the kagome lattice SO(3)-symmetric chiral spin liquid. We provide a method to detect these fractional quantum numbers in finite-size numerics which is simple to implement in the density matrix renormalization group. Applying these developments to the chiral spin liquid phase of a kagome Heisenberg model, we find perfect agreement between our theoretical prediction and numerical observations.

7.
Phys Rev Lett ; 114(11): 116803, 2015 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-25839301

RESUMEN

Recently, there has been much effort in understanding topological phases of matter with gapless bulk excitations, which are characterized by topological invariants and protected intrinsic boundary states. Here we show that topological semimetals of Majorana fermions arise in exactly solvable Kitaev spin models on a series of three-dimensional lattices. The ground states of these models are quantum spin liquids with gapless nodal spectra of bulk Majorana fermion excitations. It is shown that these phases are topologically stable as long as certain discrete symmetries are protected. The corresponding topological indices and the gapless boundary states are explicitly computed to support these results. In contrast to previous studies of noninteracting systems, the phases discussed in this work are novel examples of gapless topological phases in interacting spin systems.

8.
Phys Rev Lett ; 110(9): 096403, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23496731

RESUMEN

Realizations of Majorana fermions in solid state materials have attracted great interest recently in connection to topological order and quantum information processing. We propose a novel way to create Majorana fermions in superconductors. We show that an incipient noncollinear magnetic order turns a spin-singlet superconductor with nodes into a topological superconductor with a stable Majorana bound state in the vortex core, at a topologically stable magnetic point defect, and on the edge. We argue that such an exotic non-Abelian phase can be realized in extended t-J models on the triangular and square lattices. It is promising to search for Majorana fermions in correlated electron materials where nodal superconductivity and magnetism are two common caricatures.

9.
Sheng Li Xue Bao ; 65(6): 647-53, 2013 Dec 25.
Artículo en Zh | MEDLINE | ID: mdl-24343723

RESUMEN

The aim of this study was to compare in vivo and several in vitro cardiac ischemia-reperfusion (I-R) myocardial injury models, and choose a superior in vitro cardiac I-R model. Sprague-Dawley (SD) rats were randomly grouped into in vivo, Langendorff, Langendorff + pacing, and working heart groups. Left anterior descending (LAD) coronary artery was ligated for 60 min and then reperfused for 120 min in in vivo and in vitro rat hearts. Cardiac function and myocardial infarct size were measured by using pressure transducer and TTC/Evans blue double staining, respectively. The results showed that heart rate was greater in in vivo model than those in the three in vitro models. Coronary flows were dropped after LAD ligation and could recover at early phase of releasing LAD ligation in I-R models of the isolated working heart, Langendorff and Langendorff with 300 beats/min of electrical stimulation. Left ventricular end-systolic pressure (LVESP) decreased during ischemia, and partially restored during reperfusion in the three in vitro models. Left ventricular end-diastolic pressure (LVEDP) increased during ischemia in the three in vitro models. LVEDP was significantly higher in the isolated working heart than those in Langendorff models during ischemia, whereafter decreased slowly during reperfusion. LVEDP elevated further in the initiation of reperfusion period and then decreased, but did not recover to normal levels during reperfusion in Langendorff and Langendorff + pacing groups. Left ventricular myocardial infarct size was (60.4 ± 5.4)% in in vivo I-R model, which was significantly higher than that in Langendorff model and the isolated working heart. Notably, there was no significant difference in myocardial infarct size between in vivo model and Langendorff model with electrical stimulation. These results suggest that Langendorff I-R model with 300 beats/min of electrical stimulation can simulate the in vivo I-R myocardial injury.


Asunto(s)
Corazón/fisiopatología , Daño por Reperfusión Miocárdica , Animales , Frecuencia Cardíaca , Técnicas In Vitro , Infarto del Miocardio/fisiopatología , Ratas , Ratas Sprague-Dawley
10.
Sheng Li Xue Bao ; 65(2): 143-8, 2013 Apr 25.
Artículo en Zh | MEDLINE | ID: mdl-23598869

RESUMEN

One of the major circulatory changes that occur in human during space flight and simulated weightlessness is a cerebral redistribution of body fluids, which is accompanied by an increase of blood volume in the upper body. Therefore, atrial myocardium should increase the secretion of atrial natriuretic peptide (ANP), but the researches lack common conclusion until now. The present study was to investigate the expression level of ANP in simulated weightlessness rats, and to confirm the changes of ANP by observing the associated proteins of soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs). The tail-suspended rat model was used to simulate weightlessness. Western blots were carried out to examine the expression levels of ANP and SNARE proteins in atrial and left ventricular myocardium. The results showed that ANP expression in atrial myocardium showed an increase in 4-week tail-suspended rats (SUS) compared with that in the synchronous control rats (CON). We only detected a trace amount of ANP in the left ventricular myocardium of the CON, but found an enhanced expression of ANP in left ventricular myocardium of the SUS. Expression of VAMP-1/2 (vesicle associated SNARE) increased significantly in both atrial and left ventricular myocardium in the SUS compared with that in the CON. There was no difference of the expression of syntaxin-4 (target compartment associated SNARE) between the CON and SUS, but the expression of SNAP-23 showed an increase in atrial myocardium of the SUS compared with that in the CON. Synip and Munc-18c as regulators of SNAREs did not show significant difference between the CON and SUS. These results suggest that the expression of ANP shows an increase in atrial and left ventricular myocardium of 4-week tail-suspended rats. Enhanced expression of VAMP-1/2 associated with ANP vesicles confirms the increased expression of ANP in atrial and left ventricular myocardium.


Asunto(s)
Factor Natriurético Atrial/metabolismo , Miocardio/metabolismo , Simulación de Ingravidez , Animales , Ventrículos Cardíacos/metabolismo , Ratas , Proteínas SNARE/metabolismo , Proteína 1 de Membrana Asociada a Vesículas/metabolismo , Proteína 2 de Membrana Asociada a Vesículas/metabolismo
11.
Sci Adv ; 9(7): eade7731, 2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36800420

RESUMEN

Topologically protected magnon surface states are highly desirable as an ideal platform to engineer low-dissipation spintronics devices. However, theoretical prediction of topological magnons in strongly correlated materials proves to be challenging because the ab initio density functional theory calculations fail to reliably predict magnetic interactions in correlated materials. Here, we present a symmetry-based approach, which predicts topological magnons in magnetically ordered crystals, upon applying external perturbations such as magnetic/electric fields and/or mechanical strains. We apply this approach to carry out an efficient search for magnetic materials in the Bilbao Crystallographic Server, where, among 198 compounds with an over 300-K transition temperature, we identify 12 magnetic insulators that support room-temperature topological magnons. They feature Weyl magnons with surface magnon arcs and magnon axion insulators with either chiral surface or hinge magnon modes, offering a route to realize energy-efficient devices based on protected surface magnons.

12.
Phys Rev Lett ; 105(21): 216801, 2010 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-21231338

RESUMEN

A theory is developed for the paired even-denominator fractional quantum Hall states in the lowest Landau level. We show that electrons bind to quantized vortices to form composite fermions, interacting through an exact instantaneous interaction that favors chiral p-wave pairing. There are two canonically dual pairing gap functions related by the bosonic Laughlin wave function (Jastrow factor) due to the correlation holes. We find that the ground state is the Moore-Read Pfaffian in the long-wavelength limit for weak Coulomb interactions, a new Pfaffian with an oscillatory pairing function for intermediate interactions, and a Read-Rezayi composite Fermi liquid beyond a critical interaction strength. Our findings are consistent with recent experimental observations of the 1/2 and 1/4 fractional quantum Hall effects in asymmetric wide quantum wells.

13.
Sci Adv ; 3(10): e1700729, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28989961

RESUMEN

Topologically ordered phases of matter can host fractionalized excitations known as "anyons," which obey neither Bose nor Fermi statistics. Despite forming the basis for topological quantum computation, experimental access to these exotic phases has been very limited. We present a new route toward realizing fractionalized topological phases by literally building on unfractionalized phases, which are much more easily realized experimentally. Our approach involves a Kondo lattice model in which a gapped electronic system of noninteracting fermions is coupled to local moments via the exchange interaction. Using general entanglement-based arguments and explicit lattice models, we show that gapped spin liquids can be induced in the spin system, and we demonstrate the power of this "topological bootstrap" by realizing chiral and Z2 spin liquids. This technique enables the realization of many long sought-after fractionalized phases of matter.

14.
Nat Commun ; 6: 6593, 2015 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-25775413

RESUMEN

Since topological insulators were theoretically predicted and experimentally observed in semiconductors with strong spin-orbit coupling, increasing attention has been drawn to topological materials that host exotic surface states. These surface excitations are stable against perturbations since they are protected by global or spatial/lattice symmetries. Following the success in achieving various topological insulators, a tempting challenge now is to search for metallic materials with novel topological properties. Here we predict that orthorhombic perovskite iridates realize a new class of metals dubbed topological crystalline metals, which support zero-energy surface states protected by certain lattice symmetry. These surface states can be probed by photoemission and tunnelling experiments. Furthermore, we show that by applying magnetic fields, the topological crystalline metal can be driven into other topological metallic phases, with different topological properties and surface states.

15.
Nat Commun ; 5: 3507, 2014 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-24667413

RESUMEN

Symmetry-protected topological phases generalize the notion of topological insulators to strongly interacting systems of bosons or fermions. A sophisticated group cohomology approach has been used to classify bosonic symmetry-protected topological phases, which however does not transparently predict their properties. Here we provide a physical picture that leads to an intuitive understanding of a large class of symmetry-protected topological phases in d=1,2,3 dimensions. Such a picture allows us to construct explicit models for the symmetry-protected topological phases, write down ground state wave function and discover topological properties of symmetry defects both in the bulk and on the edge of the system. We consider symmetries that include a Z2 subgroup, which allows us to define domain walls. While the usual disordered phase is obtained by proliferating domain walls, we show that symmetry-protected topological phases are realized when these domain walls are decorated, that is, are themselves symmetry-protected topological phases in one lower dimension. This construction works both for unitary Z2 and anti-unitary time reversal symmetry.

16.
World J Gastroenterol ; 18(41): 5965-71, 2012 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-23139614

RESUMEN

AIM: To evaluate the effect of mitochondrial tumor necrosis factor receptor-associated protein-1 (TRAP-1) on the lymph node metastasis (LNM) in Chinese colorectal cancer (CRC) patients, and develop potential LNM-associated biomarkers for CRC using quantitative real-time polymerase chain reaction (RT-PCR) analysis. METHODS: Differences in mitochondrial TRAP-1 gene expression between primary CRC with LNM (LNM CRC) and without LNM (non-LNM CRC) were assessed in 96 Chinese colorectal carcinoma samples using quantitative RT-PCR analysis, Western blotting, and confirmed with immunohistochemical assay. The relationship between clinicopathological parameters and potential diagnostic biomarkers was also examined. RESULTS: TRAP-1 was significantly upregulated in LNM CRC compared with non-LNM CRC, which was confirmed by RT-PCR, Western blotting and immunohistochemical assay. The expression of TRAP-1 in two different metastatic potential human colorectal cancer cell lines, LoVo and HT29, was analyzed with Western blotting. The expression level of TRAP-1 was dramatically higher in LoVo than in HT29. Overexpression of TRAP-1 was significantly associated with LNM (90.2% in LNM group vs 22% in non-LNM group, P < 0.001), the advanced tumor node metastasis stage (89.1% in LNM group vs 26.9% in non-LNM group, P < 0.001), the increased 5-year recurrence rate (82.7% in LNM group vs 22.6% in non-LNM group, P < 0.001) and the decreased 5-year overall survival rate (48.4% in LNM vs 83.2% in non-LNM group, P < 0.001). Univariate and multivariate analyses indicated that TRAP-1 expression was an independent prognostic factor for recurrence and survival of CRC patients (Hazard ratio of 2.445 in recurrence, P = 0.017; 2.867 in survival, P = 0.028). CONCLUSION: Mitochondria TRAP-1 affects the lymph node metastasis in CRC, and may be a potential biomarker for LNM and a prognostic factor in CRC. Over-expression of TRAP-1 is a predictive factor for the poor outcome of colorectal cancer patients.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/secundario , Proteínas HSP90 de Choque Térmico/metabolismo , Mitocondrias/metabolismo , Biomarcadores de Tumor/genética , Western Blotting , Distribución de Chi-Cuadrado , China , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/cirugía , Femenino , Proteínas HSP90 de Choque Térmico/genética , Células HT29 , Humanos , Inmunohistoquímica , Estimación de Kaplan-Meier , Metástasis Linfática , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Pronóstico , Modelos de Riesgos Proporcionales , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Riesgo , Factores de Tiempo , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA