Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 333
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Immunity ; 55(6): 1067-1081.e8, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35659337

RESUMEN

Immunoregulatory B cells impede antitumor immunity through unknown features and mechanisms. We report the existence of leucine-tRNA-synthase-2 (LARS2)-expressing B cell (LARS B) subset with a transforming growth factor-ß1 (TGF-ß1)-dominant regulatory feature in both mouse and human progressive colorectal cancer (CRC). Of note, LARS B cells exhibited a leucine nutrient preference and displayed active mitochondrial aminoacyl-tRNA biosynthesis. They were located outside the tertiary lymphoid structure and correlated with colorectal hyperplasia and shortened survival in CRC patients. A leucine diet induced LARS B cell generation, whereas LARS B cell deletion by Lars2 gene ablation or leucine blockage repressed CRC immunoevasion. Mechanistically, LARS2 programmed mitochondrial nicotinamide adenine dinucleotide (NAD+) regeneration and oxidative metabolism, thus determining the regulatory feature of LARS B cells in which the NAD-dependent protein deacetylase sirtuin-1 (SIRT1) was involved. We propose a leucine-dieting scheme to inhibit LARS B cells, which is safe and useful for CRC therapy.


Asunto(s)
Aminoacil-ARNt Sintetasas , Neoplasias Colorrectales , Animales , Humanos , Leucina , Ratones , Mitocondrias/metabolismo , NAD/metabolismo , ARN de Transferencia
2.
Development ; 151(4)2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38265146

RESUMEN

Lysosomes are intracellular organelles responsible for degrading diverse macromolecules delivered from several pathways, including the endo-lysosomal and autophagic pathways. Recent reports have suggested that lysosomes are essential for regulating neural stem cells in developing, adult and aged brains. However, the activity of these lysosomes has yet to be monitored in these brain tissues. Here, we report the development of a new probe to measure lysosomal protein degradation in brain tissue by immunostaining. Our results indicate that lysosomal protein degradation fluctuates in neural stem cells of the hippocampal dentate gyrus, depending on age and brain disorders. Neural stem cells increase their lysosomal activity during hippocampal development in the dentate gyrus, but aging and aging-related disease reduce lysosomal activity. In addition, physical exercise increases lysosomal activity in neural stem cells and astrocytes in the dentate gyrus. We therefore propose that three different stages of lysosomal activity exist: the state of increase during development, the stable state during adulthood and the state of reduction due to damage caused by either age or disease.


Asunto(s)
Giro Dentado , Células-Madre Neurales , Animales , Ratones , Giro Dentado/metabolismo , Proteolisis , Células-Madre Neurales/metabolismo , Astrocitos/metabolismo , Lisosomas/metabolismo
4.
Apoptosis ; 29(1-2): 243-266, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37670104

RESUMEN

A particular GTPase-activating protein called RACGAP1 is involved in apoptosis, proliferation, invasion, metastasis, and drug resistance in a variety of malignancies. Nevertheless, the role of RACGAP1 in pan-cancer was less studied, and its value of the expression and prognostic of nasopharyngeal carcinoma (NPC) has not been explored. Hence, the goal of this study was to investigate the oncogenic and immunological roles of RACGAP1 in various cancers and its potential value in NPC. We comprehensively analyzed RACGAP1 expression, prognostic value, function, methylation levels, relationship with immune cells, immune infiltration, and immunotherapy response in pan-cancer utilizing multiple databases. The results discovered that RACGAP1 expression was elevated in most cancers and suggested poor prognosis, which could be related to the involvement of RACGAP1 in various cancer-related pathways such as the cell cycle and correlated with RACGAP1 methylation levels, immune cell infiltration and reaction to immunotherapy, and chemoresistance. RACGAP1 could inhibit anti-tumor immunity and immunotherapy responses by fostering immune cell infiltration and cytotoxic T lymphocyte dysfunction. Significantly, we validated that RACGAP1 mRNA and protein were highly expressed in NPC. The Gene Expression Omnibus database revealed that elevated RACGAP1 expression was associated with shorter PFS in patients with NPC, and RACGAP1 potentially influenced cell cycle progression, DNA replication, metabolism, and immune-related pathways, resulting in the recurrence and metastasis of NPC. This study indicated that RACGAP1 could be a potential biomarker in pan-cancer and NPC.


Asunto(s)
Biomarcadores de Tumor , Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/genética , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Apoptosis/genética , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Neoplasias Nasofaríngeas/genética
5.
Small ; 20(26): e2310414, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38294968

RESUMEN

As opposed to natural photosynthesis, a significant challenge in a semiconductor-based photocatalyst is the limited hole extraction efficiency, which adversely affects solar-to-fuel efficiency. Recent studies have demonstrated that photocatalysts featuring spatially isolated dual catalytic oxidation/reduction sites can yield enhanced hole extraction efficiencies. However, the decay dynamics of excited states in such photocatalysts have not been explored. Here a ternary barbell-shaped CdS/MoS2/Cu2S heterostructure is prepared, comprising CdS nanorods (NRs) interfaced with MoS2 nanosheets at both ends and Cu2S nanoparticles on the sidewall. By using transient absorption (TA) spectra, highly efficient charge separation within the CdS/MoS2/Cu2S heterostructure are identified. This is achieved through directed electron transfer to the MoS2 tips at a rate constant of >8.3 × 109 s-1 and rapid hole transfer to the Cu2S nanoparticles on the sidewall at a rate of >6.1 × 1010 s-1, leading to an exceptional overall charge transfer constant of 2.3 × 1011 s-1 in CdS/MoS2/Cu2S. The enhanced hole transfer efficiency results in a remarkably prolonged charge-separated state, facilitating efficient electron accumulation within the MoS2 tips. Consequently, the ternary CdS/MoS2/Cu2S heterostructure demonstrates a 22-fold enhancement in visible-light-driven H2 generation compare to pure CdS nanorods. This work highlights the significance of efficient hole extraction in enhancing the solar-to-H2 performance of semiconductor-based heterostructure.

6.
Hepatology ; 77(3): 745-759, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35243663

RESUMEN

BACKGROUND AND AIMS: IL-10-producing regulatory B cells (IL-10 + B cells), a dominant regulatory B cell (Breg) subset, foster tumor progression. However, the mechanisms underlying their generation in HCC are poorly understood. Ten-eleven translocation-2 (TET2), a predominant epigenetic regulatory enzyme in B cells, regulates gene expression by catalyzing demethylation of 5-methylcytosine into 5-hydroxymethyl cytosine (5hmC). In this study, we investigated the role of TET2 in IL-10 + B cell generation in HCC and its prospects for clinical application. APPROACH AND RESULTS: TET2 activation in B cells triggered by oxidative stress from the HCC microenvironment promoted IL-10 expression, whereas adoptive transfer of Tet2 -deficient B cells suppressed HCC progression. The aryl hydrocarbon receptor is required for TET2 to hydroxylate Il10 . In addition, high levels of IL-10, TET2, and 5hmc in B cells indicate poor prognosis in patients with HCC. Moreover, we determined TET2 activity using 5hmc in B cells to evaluate the efficacy of anti-programmed death 1 (anti-PD-1) therapy. Notably, TET2 inhibition in B cells facilitates antitumor immunity to improve anti-PD-1 therapy for HCC. CONCLUSIONS: Our findings propose a TET2-dependent epigenetic intervention targeting IL-10 + B cell generation during HCC progression and identify the inhibition of TET2 activity as a promising combination therapy with immune checkpoint inhibitors for HCC.


Asunto(s)
Linfocitos B Reguladores , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , 5-Metilcitosina , Linfocitos B Reguladores/metabolismo , Linfocitos B Reguladores/patología , Carcinoma Hepatocelular/patología , Interleucina-10 , Neoplasias Hepáticas/patología , Microambiente Tumoral
7.
Chemistry ; 30(39): e202401122, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38749913

RESUMEN

Linkage chemistry is an essential aspect to covalent organic framework (COF) applications; it is highly desirable to precisely modulate electronic structure mediated directly by linkage for efficient COF-based photocatalytic hydrogen evolution, which however, remains substantially challenging. Herein, as a proof of concept, a collection of robust multicomponent pyrene-based COFs with abundant donor-acceptor (D-A) interactions has been judiciously designed and synthesized through molecularly engineering linkage for photogeneration of hydrogen. Controlled locking and conversion of linkage critically contribute to continuously regulating COFs' electronic structures further to optimize photocatalytic activities. Remarkably, the well-modulated optoelectronic properties turn on the average hydrogen evolution rate from zero to 15.67 mmol g-1 h-1 by the protonated quinoline-linked COF decorated with the trifluoromethyl group (TT-PQCOF-CF3). Using diversified spectroscopy and theoretical calculations, we show that multiple modifications toward linkage synergistically lead to the redistribution of charge on COFs with extended π-conjugation and reinforced D-A effect, making TT-PQCOF-CF3 a promising material with significantly boosted carrier separation and migration. This study provides important guidance for the design of high-performance COF photocatalysts based on the strategy of linkage-mediated electronic structure modulation in COFs.

8.
Chemistry ; : e202401576, 2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38735852

RESUMEN

A yet-outstanding supramolecular chemistry challenge is isolation of novel varieties of stacked complexes with finely-tuned donor-acceptor bonding and optoelectronic properties, as herein reported for binary adducts comprising two different cyclic trinuclear complexes (CTC@CTC'). Most previous attempts focused only on 1-2 factors among metal/ligand/substituent combinations, resulting in heterobimetallic complexes. Instead, here we show that, when all 3 factors are carefully considered, a broadened variety of CTC@CTC' stacked pairs with intuitively-enhanced intertrimer coordinate-covalent bonding strength and ligand-ligand/metal-ligand dispersion are attained (dM-M' 2.868(2) Å; ΔE>50 kcal/mol, an order of magnitude higher than aurophilic/metallophilic interactions). Significantly, CTC@CTC' pairs remain intact/strongly-bound even in solution (Keq 4.67×105 L/mol via NMR/UV-vis titrations), and the gas phase (mass spectrometry revealing molecular peaks for the entire CTC@CTC' units in sublimed samples), rather than simple co-crystal formation. Photo-/electro-luminescence studies unravel metal-centered phosphorescence useful for novel all metal-organic light-emitting diodes (MOLEDs) optoelectronic device concepts. This work manifests systematic design of supramolecular bonding and multi-faceted spectral properties of pure metal-organic macrometallacyclic donor/acceptor (inorganic/inorganic) stacks with remarkably-rich optoelectronic properties akin to well-established organic/organic and organic/inorganic analogues.

9.
Inorg Chem ; 63(16): 7206-7217, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38592922

RESUMEN

An understanding of how molecular structure influences the thermodynamics of H atom transfer is critical to designing efficient catalysts for reductive chemistries. Herein, we report experimental and theoretical investigations summarizing structure-function relationships of polyoxovanadate-alkoxides that influence bond dissociation free energies of hydroxide ligands located at the surface of the cluster. We evaluate the thermochemical descriptors of O-H bond strength for a series of clusters, namely [V6O13-x(OH)x(TRIOLR)2]-2 (x = 2, 4, 6; R = NO2, Me) and [V6O11-x(OMe)2(OH)x(TRIOLNO2)2]-2, via computational analysis and open circuit potential measurements. Our findings reveal that modifications to the TRIOL ligand (e.g., changing from the previously reported electron withdrawing nitro-backed ligand to the electron-donating methyl variant) have limited influence on the strength of surface O-H bonds as a result of near complete thermodynamic compensation in these systems (i.e., correlated changes in redox potential and cluster basicity). In contrast, changes in surface density of alkoxide ligands via direct alkoxylation of the polyoxovanadate-alkoxide surface result in measurable increases in bond dissociation free energies of surface O-H bonds for the mixed-valent derivatives. Our findings indicate that the extent of (de)localization of electron density across the cluster core has an impact on the bond dissociation free energies of surface O-H bonds across all oxidation states of the assembly.

10.
Inorg Chem ; 2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39033409

RESUMEN

A biocompatible metal-organic framework (MOF), named HSTC-4, constructed using the flexible 4,4'-oxybis(benzoic acid) (OBA), was developed to enable efficient loading and controlled release of vitamin C (VC) through a combination of strategies involving ligand length, structure design, and metal selection. The kinetic product HSTC-4 demonstrates a propensity for transforming into the thermodynamically stable HSTC-5 under external stimuli, such as photoillumination and vacuum heating, as witnessed by single-crystal to single-crystal transformation. Density functional theory (DFT) calculations reveal that the VC guest molecules exhibit stronger binding affinity with HSTC-5 due to its narrower pores compared to HSTC-4, resulting in a slower release of VC from VC@HSTC-5. Furthermore, precise control over VC release can be achieved by introducing surface modifications involving SiO2 onto the structure of VC@HSCT-5, while simultaneously adjusting environmental factors such as pH and temperature conditions. Preliminary cell culture experiments and cytotoxicity assays highlight the biocompatibility of HSTC-5, suggesting that it is a promising platform for sustained drug delivery and diverse biomedical applications.

11.
Proc Natl Acad Sci U S A ; 118(44)2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34706935

RESUMEN

π-stacking in ground-state dimers/trimers/tetramers of N-butoxyphenyl(naphthalene)diimide (BNDI) exceeds 50 kcal ⋅ mol-1 in strength, drastically surpassing that for the *3[pyrene]2 excimer (∼30 kcal ⋅ mol-1; formal bond order = 1) and similar to other weak-to-moderate classical covalent bonds. Cooperative π-stacking in triclinic (BNDI-T) and monoclinic (BNDI-M) polymorphs effects unusually large linear thermal expansion coefficients (α a , α b , α c , ß) of (452, -16.8, -154, 273) × 10-6 ⋅ K-1 and (70.1, -44.7, 163, 177) × 10-6 ⋅ K-1, respectively. BNDI-T exhibits highly reversible thermochromism over a 300-K range, manifest by color changes from orange (ambient temperature) toward red (cryogenic temperatures) or yellow (375 K), with repeated thermal cycling sustained for over at least 2 y.

12.
Biochem Genet ; 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38801462

RESUMEN

Granzyme B (GZMB), a critical member of the Gr gene family, is known to play an essential role in diverse physiological and pathological processes such as inflammation, acute and chronic inflammatory diseases, and cancer progression. In this study, we delve deeper into the role of GZMB within the context of gastric cancer (GC) to examine its expression patterns and functional implications. To accomplish this, we applied a combination of quantitative real-time polymerase chain reaction, western blotting, and immunohistochemistry techniques. These methodologies allowed us to accurately gauge GZMB expression levels in GC tissues and investigate their correlation with various clinical-pathological variables. Our secondary focus was to discern the regulatory influence of GZMB on GC cell biology. We used an array of assays including cell counting kit-8 (CCK-8), colony formation, 5-ethynyl-2'-deoxyuridine, and migration assays. The effect of GZMB on gastric cancer progression was further validated through a subcutaneous xenograft mouse model. Our findings underscored that GZMB mRNA and protein levels were upregulated in GC tissues, a feature that showed a significant correlation with GC staging. We also discovered that a decrease in GZMB expression via knockdown experiments suppressed the proliferation and migration capabilities of GC cells. This effect was manifested through diminished expression levels of epithelial-mesenchymal transition (EMT) markers. In stark contrast, the overexpression of GZMB through plasmid transfection appeared to enhance the proliferation and migration abilities of GC cells. This was coupled with an upregulation in EMT expression. Our study concludes by emphasizing that GZMB promotes the growth, migration, and EMT processes in gastric cancer. In vitro, cell-based experiments and in vivo xenograft mouse models confirm this. Our findings provide a more comprehensive understanding of GZMB's role in gastric cancer pathogenesis, potentially opening doors for novel therapeutic strategies targeting this molecular pathway.

13.
Angew Chem Int Ed Engl ; : e202407468, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38847274

RESUMEN

The creation of frustrated Lewis pairs on catalyst surface is an effective strategy for tuning CO2 activation. The critical step in the formation of frustrated Lewis pairs is the spatial effect of proximal Lewis acid-Lewis base pairs. Here, we demonstrate a facile surface functionalization methodology that enables hydrogen bonding between N and H atoms to mediate the construction of frustrated Lewis pairs in poly(heptazine imide), thereby increasing the propensity to activate CO2 molecules. Experimental and theoretical results show that the construction of active hydrogen bonding regions can facilitate the bending of CO2 molecules. Furthermore, the delocalization of electron clouds induced by the hydrogen bonding-mediated frustrated Lewis pairs can promote the heterolytic cleavage and photocatalytic conversion of CO2. This work highlights the potential of utilizing hydrogen bonding-mediated strategy in heterogeneously photocatalytic activation of CO2 over polymer materials.

14.
Immunology ; 168(1): 135-151, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36082430

RESUMEN

B cells constitute a major component of infiltrating immune cells in colorectal cancer (CRC). However, the characteristics of B cells and their clinical significance remain unclear. In this study, using single-cell RNA sequencing and multicolour immunofluorescence staining experiments, we identified five distinct subtypes of B cells with their marker genes, distribution patterns and functional properties in the CRC tumour microenvironment. Meanwhile, we found a higher proportion of IgG plasma cells in tumour sites than that in adjacent normal mucosal tissues. In addition, the CXCL13-producing CD8+ T cells in the tumour tissues could promote the formation of tertiary lymphoid structure (TLS) B cells, and the CCL28-CCR10 axis is pivotal for IgG plasma cell migration from the periphery of TLSs to the tumour stroma. Finally, we identified four distinct colon immune classes (CICs: A-D) and found that CD20+ B cells within TLSs were enriched in one immune-inflamed or hot tumour group (CIC D). This B cell-rich group, which was characterized by strong antigen presentation, IgG plasma cells accumulation, microsatellite instability-high (MSI-H) and high tumour mutation burden (TMB-H), as well as immunosuppressive property in particular, might become a potential predictive biomarker for future immunotherapy. Additionally, in an immunotherapy cohort, patients with the enrichment of B cells and TLSs were demonstrated to obtain significant therapeutic advantages. Together, our findings provide the detailed landscape of infiltrating B cells and their potential clinical significance in CRC.


Asunto(s)
Neoplasias Colorrectales , Estructuras Linfoides Terciarias , Humanos , Linfocitos T CD8-positivos , Pronóstico , Linfocitos B , Inmunoglobulina G , Microambiente Tumoral
15.
Biochem Biophys Res Commun ; 644: 112-121, 2023 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-36640665

RESUMEN

Regulatory B cells (Bregs) contribute to tumor immunosuppression. However, how B cells acquire their regulatory features in tumors remain unclear. Exosomes are important messengers that transmit tumor information to remodel tumor immunity. Here we revealed that tumor-derived exosomes drive Bregs to suppress anti-tumor immunity by delivering long non-coding RNAs (lncRNAs). HOTAIR was screened by lncRNA profiling in both colorectal cancer (CRC)-derived exosomes and infiltrating B cells. Tumor-derived HOTAIR polarized B cells toward a regulatory feature marked by programmed cell death-ligand 1 (PDL1) in CRC, and induced PDL1+ B cells to suppress CD8+ T cell activity. Exosomal HOTAIR bound to and protected pyruvate kinase M2 (PKM2) against ubiquitination degradation, resulting in STAT3 activation and PDL1 expression. Results from CRC patients showed a positive correlation between exosomal HOTAIR and tumor-infiltrating PDL1+ B cells. These findings reveal how B cells acquire PDL1-dominant regulatory feature in CRC, implying the clinical significance of exosomal therapy targeting HOTAIR.


Asunto(s)
Neoplasias Colorrectales , Exosomas , ARN Largo no Codificante , Humanos , Neoplasias Colorrectales/patología , Exosomas/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Linfoma de Células B/inmunología
16.
Small ; 19(18): e2207173, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36740721

RESUMEN

The relatively short-lived excited states, such as the nascent electron-hole pairs (excitons) and the shallow trapping states, in semiconductor-based photocatalysts produce an exceptionally high charge carrier recombination rate, dominating a low solar-to-fuel performance. Here, a π-conjugated in-plane heterostructure between graphitic carbon nitride (g-CN) and carbon rings (Crings ) (labeling g-CN/Crings ) is effectively synthesized from the thermolysis of melamine-citric acid aggregates via a microwave-assisted heating process. The g-CN/Crings in-plane heterostructure shows remarkably suppressed excited-state decay and increased charge carrier population in photocatalysis. Kinetics analysis from the femtosecond time-resolved transient absorption spectroscopy illustrates that the g-CN/Crings π-conjugated heterostructure produces slower exciton annihilation (τ1  = 7.9 ps) and longer shallow electron trapping (τ2  = 407.1 ps) than pristine g-CN (τ1  = 3.6 ps, τ2  = 264.1 ps) owing to Crings incorporation, both of which enable more photoinduced electrons to participate in the photocatalytic reactions, thereby realizing photoactivity enhancement. As a result, the photocatalytic activity exhibits an eightfold enhancement in visible-light-driven H2 generation. This work provides a viable route of constructing π-conjugated in-plane heterostructures to suppress the excited-state decay and improve the photocatalytic performance.

17.
Small ; 19(33): e2301017, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37066713

RESUMEN

Semiconductor-based heterostructures have exhibited great promise as a photocatalyst to convert solar energy into sustainable chemical fuels, however, their solar-to-fuel efficiency is largely restricted by insufficient interfacial charge separation and limited catalytically active sites. Here the integration of high-efficiency interfacial charge separation and sufficient single-atom metal active sites in a 2D van der Waals (vdW) heterostructure between ultrathin polymeric carbon nitride (p-CN) and Ni-containing Salphen-based covalent organic framework (Ni-COF) nanosheets is illustrated. The results reveal a NiN2 O2 chemical bonding in NiCOF nanosheets, leading to a highly separated single-atom Ni sites, which will function as the catalytically active sites to boost solar fuel production, as confirmed by X-ray absorption spectra and density functional theory calculations. Using ultrafast femtosecond transient adsorption (fs-TA) spectra, it shows that the vdW p-CN/Ni-COF heterostructure exhibits a faster decay lifetime of the exciton annihilation (τ = 18.3 ps) compared to that of neat p-CN (32.6 ps), illustrating an efficiently accelerated electron transfer across the vdW heterointerface from p-CN to Ni-COF, which thus allows more active electrons available to participate in the subsequent reduction reactions. The photocatalytic results offer a chemical fuel generation rate of 2.29 mmol g-1 h-1 for H2 and 6.2 µmol g-1 h-1 for CO, ≈127 and three times higher than that of neat p-CN, respectively. This work provides new insights into the construction of a π-conjugated vdW heterostructure on promoting interfacial charge separation for high-efficiency photocatalysis.

18.
Chem Res Toxicol ; 36(8): 1332-1344, 2023 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-37437120

RESUMEN

Cytochrome P450 2B6 (CYP2B6) is responsible for the metabolism of ∼7% of marketed drugs. The in vitro drug interaction studies guidance for industry issued by the FDA stipulates that drug sponsors need to evaluate whether the investigated drugs interact with the major drug-metabolizing P450s including CYP2B6. Therefore, there has been greater attention to the development of predictive models for CYP2B6 inhibitors and substrates. In this study, conventional machine learning and deep learning models were developed to predict CYP2B6 inhibitors and substrates. Our results showed that the best CYP2B6 inhibitor model yielded the AUC values of 0.95 and 0.75 with the 10-fold cross-validation and the test set, respectively, and the best CYP2B6 substrate model produced the AUC values of 0.93 and 0.90 with the 10-fold cross-validation and the test set, respectively. The generalization ability of the CYP2B6 inhibitor and substrate models was assessed by using the external validation sets. Several significant substructural fragments relevant to CYP2B6 inhibitors and substrates were detected via frequency substructure analysis and information gain. In addition, the applicability domain of the models was defined by employing a nonparametric method based on the probability density distribution. We anticipate that our results would be useful for the prediction of potential CYP2B6 inhibitors and substrates in the early stage of drug discovery.


Asunto(s)
Inhibidores del Citocromo P-450 CYP2B6 , Sistema Enzimático del Citocromo P-450 , Citocromo P-450 CYP2B6/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo
19.
Mol Pharm ; 20(1): 194-205, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36458739

RESUMEN

Cytochrome P450 3A4 (CYP3A4) is one of the major drug metabolizing enzymes in the human body and metabolizes ∼30-50% of clinically used drugs. Inhibition of CYP3A4 must always be considered in the development of new drugs. Time-dependent inhibition (TDI) is an important P450 inhibition type that could cause undesired drug-drug interactions. Therefore, identification of CYP3A4 TDI by a rapid convenient way is of great importance to any new drug discovery effort. Here, we report the development of in silico classification models for prediction of potential CYP3A4 time-dependent inhibitors. On the basis of the CYP3A4 TDI data set that we manually collected from literature and databases, both conventional machine learning and deep learning models were constructed. The comparisons of different sampling strategies, molecular representations, and machine-learning algorithms showed the benefits of a balanced data set and the deep-learning model featured by GraphConv. The generalization ability of the best model was tested by screening an external data set, and the prediction results were validated by biological experiments. In addition, several structural alerts that are relevant to CYP3A4 time-dependent inhibitors were identified via information gain and frequency analysis. We anticipate that our effort would be useful for identification of potential CYP3A4 time-dependent inhibitors in drug discovery and design.


Asunto(s)
Citocromo P-450 CYP3A , Inhibidores Enzimáticos , Humanos , Citocromo P-450 CYP3A/metabolismo , Inhibidores Enzimáticos/farmacología , Inhibidores del Citocromo P-450 CYP3A/farmacología , Interacciones Farmacológicas , Simulación por Computador
20.
Inorg Chem ; 62(37): 14888-14895, 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37668508

RESUMEN

8-aryl or alkyl-naphthyl substituents are widely used as an effective axial shielding strategy for the suppression of chain transfer in late-transition metal-catalyzed ethylene (co)polymerization to yield high molecular weight polyethylene and copolymers. In this study, two 8-cycloalkylnaphthyl acenaphthene-based α-diimine ligands and the corresponding four nickel and palladium complexes were designed and synthesized to explore the effect of axial flexible shielding on ethylene (co)polymerization. In ethylene polymerization, the nickel complexes displayed high activities (up to 1.99 × 106 g mol-1 h-1) and generated lightly branched (34-54/1000 C) polyethylenes with high molecular weights (up to Mn = 1075 kg/mol), whereas the corresponding palladium complexes exhibited moderate activities (level of 104 g mol-1 h-1), producing highly branched (111-125/1000 C) polyethylenes with high molecular weights (up to Mn = 37.6 kg/mol). Highly branched (110-123/1000 C) E-MA copolymers with moderate insertion ratios (1.97-5.56 mol %) were produced by these palladium complexes in ethylene/methyl acrylate (MA) copolymerization. In addition, the size of the 8-cycloalkyl ring in these α-diimine catalysts strongly influences the ethylene (co)polymerization. Compared to cyclopentyl groups, cyclohexyl groups are more effective in suppressing chain transfer reactions in the polymerization of ethylene and the copolymerization of ethylene and MA, leading to higher molecular weight polyethylene and E-MA copolymers. Most interestingly, compared to the reported rigid planar 8-arylnaphthyl catalysts, the flexible 8-cyclohexylnaphthyl catalysts exhibited higher activity and produced higher molecular weight polyethylene in ethylene polymerization. Moreover, in nickel-catalyzed ethylene polymerization, the cyclohexyl catalyst produced significantly reduced branched polyethylene, while in palladium-catalyzed ethylene (co)polymerization, the cyclohexyl catalyst produced more highly branched polyethylene and copolymers. In contrast to the previously reported flexible 8-butylnaphthyl nickel catalysts, the 8-cycloalkylnaphthyl catalysts reported in this work yielded polyethylene with narrow unimodal molecular weight distributions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA