Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Transl Med ; 21(1): 417, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37370126

RESUMEN

BACKGROUND: The family with sequence similarity 20-member C (FAM20C) kinase, a Golgi casein kinase, which is responsible for phosphorylating the majority of the extracellular phosphoproteins within S-x-E/pS motifs, and is fundamentally associated with multiple biological processes to maintain cell proliferation, biomineralization, migration, adhesion, and phosphate homeostasis. In dissecting how FAM20C regulates downstream molecules and potential mechanisms, however, there are multiple target molecules of FAM20C, particularly many phenomena remain elusive, such as changes in cell-autonomous behaviors, incompatibility in genotypes and phenotypes, and others. METHODS: Here, assay for transposase-accessible chromatin using sequencing (ATAC-seq), RNA sequencing (RNA-seq), proteomics, and phosphoproteomics were performed in Fam20c-dificient osteoblasts and to facilitate an integrated analysis and determine the impact of chromatin accessibility, genomic expression, protein alterations, signaling pathway, and post translational modifcations. RESULTS: By combining ATAC-seq and RNA-seq, we identified TCF4 and Wnt signaling pathway as the key regulators in Fam20c-dificient cells. Further, we showed Calpastatin/Calpain proteolysis system as a novel target axis for FAM20C to regulate cell migration and F-actin cytoskeleton by integrated analysis of proteomics and phosphoproteomics. Furthermore, Calpastatin/Calpain proteolysis system could negatively regulate the Wnt signaling pathway. CONCLUSION: These observations implied that Fam20c knockout osteoblasts would cause cell homeostatic imbalance, involving changes in multiple signaling pathways in the conduction system.


Asunto(s)
Calpaína , Proteínas de la Matriz Extracelular , Proteínas de la Matriz Extracelular/genética , Proteolisis , Calpaína/metabolismo , Movimiento Celular , Homeostasis
2.
Gene ; 884: 147731, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37625561

RESUMEN

Short Root Defects defined by a reduced ratio of root to crown, may culminate in root resorption and subsequent tooth loss, in spite of the absence of apparent symptoms. Such defects present considerable impediments to orthodontic treatment and restoration. Recent identification of Fam20a, an emergent pseudokinase, has been associated with enamel development and tooth eruption, yet its definitive role in root formation and eruption remains ambiguous. In this research, we initially ascertained that the targeted knockout of Fam20a within the epithelium led to truncated tooth roots, irregular breaks in the epithelial root sheath initiation of the WNT signaling pathway, and decreased expression of the cell polarity-related transcription factor Cdc42 in murine models. This was concomitant with the participation of the associated epithelial root sheath developmental pathways BMP2, Gli1, and Nfic. Furthermore, we observed that Fam20a predominantly affects the intraosseous eruption phase of tooth emergence. During this phase, the osteoclast peak around the mandibular first molar in cKO mice is delayed, leading to a slower formation of the eruption pathway, ultimately resulting in delayed tooth eruption in mice. The findings of this study enrich the extant knowledge regarding the role of Fam20a, suggesting its potential regulatory function in tooth root development through the WNT/ß-catenin/Cdc42 pathway.


Asunto(s)
Polaridad Celular , Proteínas del Esmalte Dental , Animales , Ratones , Cognición , Epitelio , Osteoclastos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA