Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Lipid Res ; 65(8): 100584, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38925252

RESUMEN

Measurements of sphingolipid metabolism are most accurately performed by LC-MS. However, this technique is expensive, not widely accessible, and without the use of specific probes, it does not provide insight into metabolic flux through the pathway. Employing the fluorescent ceramide analogue NBD-C6-ceramide as a tracer in intact cells, we developed a comprehensive HPLC-based method that simultaneously measures the main nodes of ceramide metabolism in the Golgi. Hence, by quantifying the conversion of NBD-C6-ceramide to NBD-C6-sphingomyelin, NBD-C6-hexosylceramides, and NBD-C6-ceramide-1-phosphate (NBD-C1P), the activities of Golgi resident enzymes sphingomyelin synthase 1, glucosylceramide synthase, and ceramide kinase (CERK) could be measured simultaneously. Importantly, the detection of NBD-C1P allowed us to quantify CERK activity in cells, a usually difficult task. By applying this method, we evaluated the specificity of commonly used sphingolipid inhibitors and discovered that 1-phenyl-2-decanoylamino-3-morpholino-1-propanol, which targets glucosylceramide synthase, and fenretinide (4HPR), an inhibitor for dihydroceramide desaturase, also suppress CERK activity. This study demonstrates the benefit of an expanded analysis of ceramide metabolism in the Golgi, and it provides a qualitative and easy-to-implement method.


Asunto(s)
Ceramidas , Glucosiltransferasas , Aparato de Golgi , Fosfotransferasas (Aceptor de Grupo Alcohol) , Esfingolípidos , Aparato de Golgi/metabolismo , Ceramidas/metabolismo , Esfingolípidos/metabolismo , Humanos , Glucosiltransferasas/antagonistas & inhibidores , Glucosiltransferasas/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , 4-Cloro-7-nitrobenzofurazano/análogos & derivados , 4-Cloro-7-nitrobenzofurazano/metabolismo , Cromatografía Líquida de Alta Presión , Células HeLa , Hexosiltransferasas/metabolismo , Hexosiltransferasas/antagonistas & inhibidores , Esfingomielinas/metabolismo , Transferasas (Grupos de Otros Fosfatos Sustitutos)
2.
Biochem Soc Trans ; 52(4): 1795-1808, 2024 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-39101614

RESUMEN

Sphingolipids (SLs) constitute a discrete subdomain of metabolism, and they display both structural and signaling functions. Accumulating evidence also points to intimate connections between intermediary metabolism and SL metabolism. Given that many SLs exhibit bioactive properties (i.e. transduce signals), these raise the possibility that an important function of SLs is to relay information on metabolic changes into specific cell responses. This could occur at various levels. Some metabolites are incorporated into SLs, whereas others may initiate regulatory or signaling events that, in turn, modulate SL metabolism. In this review, we elaborate on the former as it represents a poorly appreciated aspect of SL metabolism, and we develop the hypothesis that the SL network is highly sensitive to several specific metabolic changes, focusing on amino acids (serine and alanine), various fatty acids, choline (and ethanolamine), and glucose.


Asunto(s)
Transducción de Señal , Esfingolípidos , Esfingolípidos/metabolismo , Humanos , Animales , Glucosa/metabolismo , Ácidos Grasos/metabolismo , Colina/metabolismo
3.
FASEB J ; 37(3): e22787, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36723905

RESUMEN

Sphingosine kinase 1 (SK1) converts the pro-death lipid sphingosine to the pro-survival sphingosine-1-phosphate (S1P) and is upregulated in several cancers. DNA damaging agents, such as the chemotherapeutic doxorubicin (Dox), have been shown to degrade SK1 protein in cancer cells, a process dependent on wild-type p53. As mutations in p53 are very common across several types of cancer, we evaluated the effects of Dox on SK1 in p53 mutant cancer cells. In the p53 mutant breast cancer cell line MDA-MB-231, we show that Dox treatment significantly increases SK1 protein and S1P. Using MDA-MB-231 cells with CRISPR-mediated knockout of SK1 or the selective SK1 inhibitor PF-543, we implicated SK1 in both Dox-induced migration and in a newly uncovered proangiogenic program induced by Dox. Mechanistically, inhibition of SK1 suppressed the induction of the cytokine BMP4 and of the EMT transcription factor Snail in response to Dox. Interestingly, induction of BMP4 by SK1 increased Snail levels following Dox treatment by stabilizing Snail protein. Furthermore, we found that SK1 was required for Dox-induced p38 MAP kinase phosphorylation and that active p38 MAPK in turn upregulated BMP4 and Snail, positioning p38 downstream of SK1 and upstream of BMP4/Snail. Modulating production of S1P by inhibition of de novo sphingolipid synthesis or knockdown of the S1P-degrading enzyme S1P lyase identified S1P as the sphingolipid activator of p38 in this model. This work establishes a novel angiogenic pathway in response to a commonly utilized chemotherapeutic and highlights the potential of SK1 as a secondary drug target for patients with p53 mutant cancer.


Asunto(s)
Neoplasias , Proteína p53 Supresora de Tumor , Humanos , Regulación hacia Arriba , Proteína p53 Supresora de Tumor/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Esfingolípidos , Doxorrubicina/farmacología , Esfingosina/farmacología , Esfingosina/metabolismo , Lisofosfolípidos/farmacología
4.
Int J Mol Sci ; 23(21)2022 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-36361536

RESUMEN

Dysregulation of sphingolipid metabolism plays a complex role in hematological malignancies, beginning with the first historical link between sphingolipids and apoptosis discovered in HL-60 leukemic cells. Numerous manuscripts have reviewed the field including the early discoveries that jumpstarted the studies. Many studies discussed here support a role for sphingolipids, such as ceramide, in combinatorial therapeutic regimens to enhance anti-leukemic effects and reduce resistance to standard therapies. Additionally, inhibitors of specific nodes of the sphingolipid pathway, such as sphingosine kinase inhibitors, significantly reduce leukemic cell survival in various types of leukemias. Acid ceramidase inhibitors have also shown promising results in acute myeloid leukemia. As the field moves rapidly, here we aim to expand the body of literature discussed in previously published reviews by focusing on advances reported in the latter part of the last decade.


Asunto(s)
Neoplasias Hematológicas , Leucemia Mieloide Aguda , Humanos , Esfingolípidos/metabolismo , Ceramidas/metabolismo , Esfingosina/metabolismo , Leucemia Mieloide Aguda/patología
5.
EMBO J ; 36(12): 1736-1754, 2017 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-28495678

RESUMEN

Sphingolipids are membrane lipids globally required for eukaryotic life. The sphingolipid content varies among endomembranes with pre- and post-Golgi compartments being poor and rich in sphingolipids, respectively. Due to this different sphingolipid content, pre- and post-Golgi membranes serve different cellular functions. The basis for maintaining distinct subcellular sphingolipid levels in the presence of membrane trafficking and metabolic fluxes is only partially understood. Here, we describe a homeostatic regulatory circuit that controls sphingolipid levels at the trans-Golgi network (TGN). Specifically, we show that sphingomyelin production at the TGN triggers a signalling pathway leading to PtdIns(4)P dephosphorylation. Since PtdIns(4)P is required for cholesterol and sphingolipid transport to the trans-Golgi network, PtdIns(4)P consumption interrupts this transport in response to excessive sphingomyelin production. Based on this evidence, we envisage a model where this homeostatic circuit maintains a constant lipid composition in the trans-Golgi network and post-Golgi compartments, thus counteracting fluctuations in the sphingolipid biosynthetic flow.


Asunto(s)
Fosfatidilinositoles/metabolismo , Esfingolípidos/metabolismo , Red trans-Golgi/metabolismo , Células HeLa , Homeostasis , Humanos , Modelos Biológicos
6.
J Lipid Res ; 60(4): 819-831, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30573560

RESUMEN

Sphingolipids (SLs) have been implicated in numerous important cellular biologies; however, their study has been hindered by the complexities of SL metabolism. Furthermore, enzymes of SL metabolism represent a dynamic and interconnected network in which one metabolite can be transformed into other bioactive SLs through further metabolism, resulting in diverse cellular responses. Here we explore the effects of both lethal and sublethal doses of doxorubicin (Dox) in MCF-7 cells. The two concentrations of Dox resulted in the regulation of SLs, including accumulations in sphingosine, sphingosine-1-phosphate, dihydroceramide, and ceramide, as well as reduced levels of hexosylceramide. To further define the effects of Dox on SLs, metabolic flux experiments utilizing a d17 dihydrosphingosine probe were conducted. Results indicated the regulation of ceramidases and sphingomyelin synthase components specifically in response to the cytostatic dose. The results also unexpectedly demonstrated dose-dependent inhibition of dihydroceramide desaturase and glucosylceramide synthase in response to Dox. Taken together, this study uncovers novel targets in the SL network for the action of Dox, and the results reveal the significant complexity of SL response to even a single agent. This approach helps to define the role of specific SL enzymes, their metabolic products, and the resulting biologies in response to chemotherapeutics and other stimuli.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Doxorrubicina/farmacología , Redes y Vías Metabólicas , Esfingolípidos/antagonistas & inhibidores , Transporte Biológico/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Células MCF-7 , Esfingolípidos/metabolismo , Relación Estructura-Actividad , Células Tumorales Cultivadas
7.
Anal Biochem ; 575: 70-86, 2019 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-30917945

RESUMEN

Sphingolipid metabolism plays a critical role in regulating processes that control cellular fate. This dynamic pathway can generate and degrade the central players: ceramide, sphingosine and sphingosine-1-phosphate in almost any membrane in the cell, adding an unexpected level of complexity in deciphering signaling events. While in vitro assays have been developed for most enzymes in SL metabolism, these assays are setup for optimal activity conditions and can fail to take into account regulatory components such as compartmentalization, substrate limitations, and binding partners that can affect cellular enzymatic activity. Therefore, many in-cell assays have been developed to derive results that are authentic to the cellular situation which may give context to alteration in SL mass. This review will discuss approaches for utilizing probes for mammalian in-cell assays to interrogate most enzymatic steps central to SL metabolism. The use of inhibitors in conjunction with these probes can verify the specificity of cellular assays as well as provide valuable insight into flux in the SL network. The use of inhibitors specific to each of the central sphingolipid enzymes are also discussed to assist researchers in further interrogation of these pathways.


Asunto(s)
Esfingolípidos/metabolismo , Animales , Homeostasis , Mamíferos , Sondas Moleculares , Análisis Espectral
8.
FASEB J ; 32(8): 4270-4283, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29533737

RESUMEN

Bcr-Abl (break-point cluster region-abelson), the oncogenic trigger of chronic myelogenous leukemia (CML), has previously been shown to up-regulate the expression and activity of sphingomyelin synthase 1 (SMS1), which contributes to the proliferation of CML cells; however, the mechanism by which this increased expression of SMS1 is mediated remains unknown. In the current study, we show that Bcr-Abl enhances the expression of SMS1 via a 30-fold up-regulation of its transcription. Of most interest, the Bcr-Abl-regulated transcription of SMS1 is initiated from a novel transcription start site (TSS) that is just upstream of the open reading frame. This shift in TSS utilization generates an SMS1 mRNA with a substantially shorter 5' UTR compared with its canonical mRNA. This shorter 5' UTR imparts a 20-fold greater translational efficiency to SMS1 mRNA, which further contributes to the increase of its expression in CML cells. Therefore, our study demonstrates that Bcr-Abl increases SMS1 protein levels via 2 concerted mechanisms: up-regulation of transcription and enhanced translation as a result of the shift in TSS utilization. Remarkably, this is the first time that an oncogene-Bcr-Abl-has been demonstrated to drive such a mechanism that up-regulates the expression of a functionally important target gene, SMS1.-Moorthi, S., Burns, T. A., Yu, G.-Q., Luberto, C. Bcr-Abl regulation of sphingomyelin synthase 1 reveals a novel oncogenic-driven mechanism of protein up-regulation.


Asunto(s)
Carcinogénesis/genética , Proteínas de Fusión bcr-abl/genética , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética , Regulación hacia Arriba/genética , Regiones no Traducidas 5'/genética , Línea Celular Tumoral , Células HL-60 , Células HeLa , Humanos , Células K562 , Sistemas de Lectura Abierta/genética , ARN Mensajero/genética , Sitio de Iniciación de la Transcripción/fisiología , Transcripción Genética/genética
9.
J Lipid Res ; 59(6): 1046-1057, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29610123

RESUMEN

Sphingolipids constitute a dynamic metabolic network that interconnects several bioactive molecules, including ceramide (Cer), sphingosine (Sph), Sph 1-phosphate, and Cer 1-phosphate. The interconversion of these metabolites is controlled by a cohort of at least 40 enzymes, many of which respond to endogenous or exogenous stimuli. Typical probing of the sphingolipid pathway relies on sphingolipid mass levels or determination of the activity of individual enzymes. Either approach is unable to provide a complete analysis of flux through sphingolipid metabolism, which, given the interconnectivity of the sphingolipid pathway, is critical information to identify nodes of regulation. Here, we present a one-step in situ assay that comprehensively probes the flux through de novo sphingolipid synthesis, post serine palmitoyltransferase, by monitoring the incorporation and metabolism of the 17 carbon dihydrosphingosine precursor with LC/MS. Pulse labeling and analysis of precursor metabolism identified sequential well-defined phases of sphingolipid synthesis, corresponding to the activity of different enzymes in the pathway, further confirmed by the use of specific inhibitors and modulators of sphingolipid metabolism. This work establishes precursor pulse labeling as a practical tool for comprehensively studying metabolic flux through de novo sphingolipid synthesis and complex sphingolipid generation.


Asunto(s)
Espectrometría de Masas/métodos , Esfingolípidos/metabolismo , Cromatografía Liquida , Humanos , Células MCF-7 , Oxidorreductasas/metabolismo , Fosfatos/metabolismo , Factores de Tiempo
11.
J Biol Chem ; 290(42): 25356-73, 2015 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-26318452

RESUMEN

Ceramide synthases (CerS1-CerS6), which catalyze the N-acylation of the (dihydro)sphingosine backbone to produce (dihydro)ceramide in both the de novo and the salvage or recycling pathway of ceramide generation, have been implicated in the control of programmed cell death. However, the regulation of the de novo pathway compared with the salvage pathway is not fully understood. In the current study, we have found that late accumulation of multiple ceramide and dihydroceramide species in MCF-7 cells treated with TNFα occurred by up-regulation of both pathways of ceramide synthesis. Nevertheless, fumonisin B1 but not myriocin was able to protect from TNFα-induced cell death, suggesting that ceramide synthase activity is crucial for the progression of cell death and that the pool of ceramide involved derives from the salvage pathway rather than de novo biosynthesis. Furthermore, compared with control cells, TNFα-treated cells exhibited reduced focal adhesion kinase and subsequent plasma membrane permeabilization, which was blocked exclusively by fumonisin B1. In addition, exogenously added C6-ceramide mimicked the effects of TNFα that lead to cell death, which were inhibited by fumonisin B1. Knockdown of individual ceramide synthases identified CerS6 and its product C16-ceramide as the ceramide synthase isoform essential for the regulation of cell death. In summary, our data suggest a novel role for CerS6/C16-ceramide as an upstream effector of the loss of focal adhesion protein and plasma membrane permeabilization, via the activation of caspase-7, and identify the salvage pathway as the critical mechanism of ceramide generation that controls cell death.


Asunto(s)
Apoptosis , Ceramidas/biosíntesis , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Oxidorreductasas/metabolismo , Factor de Necrosis Tumoral alfa/fisiología , Caspasas/metabolismo , Activación Enzimática , Proteína-Tirosina Quinasas de Adhesión Focal/antagonistas & inhibidores , Fumonisinas/farmacología , Técnicas de Silenciamiento del Gen , Humanos , Células MCF-7 , Oxidorreductasas/genética , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores
12.
Biochim Biophys Acta ; 1850(4): 628-39, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25484313

RESUMEN

BACKGROUND: A novel murine mitochondria-associated neutral sphingomyelinase (MA-nSMase) has been recently cloned and partially characterized. The subcellular localization of the enzyme was found to be predominant in mitochondria. In this work, the determinants of mitochondrial localization and its topology were investigated. METHODS: MA-nSMase mutants lacking consecutive regions and fusion proteins of GFP with truncated MA-nSMase regions were constructed and expressed in MCF-7 cells. Its localization was analyzed using confocal microscopy and sub-cellular fractionation methods. The sub-mitochondrial localization of MA-nSMase was determined using protease protection assay on isolated mitochondria. RESULTS: The results initially showed that a putative mitochondrial localization signal (MLS), homologous to an MLS in the zebra-fish mitochondrial SMase is not necessary for the mitochondrial localization of the murine MA-nSMase. Evidence is provided to the presence of two regions in MA-nSMase that are sufficient for mitochondrial localization: a signal sequence (amino acids 24-56) that is responsible for the mitochondrial localization and an additional 'signal-anchor' sequence (amino acids 77-99) that anchors the protein to the mitochondrial membrane. This protein is topologically located in the outer mitochondrial membrane where both the C and N-termini remain exposed to the cytosol. CONCLUSIONS: MA-nSMase is a membrane anchored protein with a MLS and a signal-anchor sequence at its N-terminal to localize it to the outer mitochondrial membrane. GENERAL SIGNIFICANCE: Mitochondrial sphingolipids have been reported to play a critical role in cellular viability. This study opens a new window to investigate their cellular functions, and to define novel therapeutic targets.


Asunto(s)
Mitocondrias/enzimología , Esfingomielina Fosfodiesterasa/metabolismo , Secuencia de Aminoácidos , Animales , Humanos , Ratones , Membranas Mitocondriales/enzimología , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Esfingomielina Fosfodiesterasa/química
13.
Infect Immun ; 83(7): 2705-13, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25895971

RESUMEN

Cryptococcus neoformans is a fungal pathogen that causes pulmonary infections, which may progress into life-threatening meningitis. In commonly used mouse models of C. neoformans infections, fungal cells are not contained in the lungs, resulting in dissemination to the brain. We have previously reported the generation of an engineered C. neoformans strain (C. neoformans Δgcs1) which can be contained in lung granulomas in the mouse model and have shown that granuloma formation is dependent upon the enzyme sphingosine kinase 1 (SK1) and its product, sphingosine 1-phosphate (S1P). In this study, we have used four mouse models, CBA/J and C57BL6/J (both immunocompetent), Tgε26 (an isogenic strain of strain CBA/J lacking T and NK cells), and SK(-/-) (an isogenic strain of strain C57BL6/J lacking SK1), to investigate how the granulomatous response and SK1-S1P pathway are interrelated during C. neoformans infections. S1P and monocyte chemotactic protein-1 (MCP-1) levels were significantly elevated in the bronchoalveolar lavage fluid of all mice infected with C. neoformans Δgcs1 but not in mice infected with the C. neoformans wild type. SK1(-/-) mice did not show elevated levels of S1P or MCP-1. Primary neutrophils isolated from SK1(-/-) mice showed impaired antifungal activity that could be restored by the addition of extracellular S1P. In addition, high levels of tumor necrosis factor alpha were found in the mice infected with C. neoformans Δgcs1 in comparison to the levels found in mice infected with the C. neoformans wild type, and their levels were also dependent on the SK1-S1P pathway. Taken together, these results suggest that the SK1-S1P pathway promotes host defense against C. neoformans infections by regulating cytokine levels, promoting extracellular killing by phagocytes, and generating a granulomatous response.


Asunto(s)
Criptococosis/patología , Cryptococcus neoformans/fisiología , Granuloma/patología , Lisofosfolípidos/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Esfingosina/análogos & derivados , Animales , Líquido del Lavado Bronquioalveolar/química , Criptococosis/inmunología , Cryptococcus neoformans/genética , Cryptococcus neoformans/inmunología , Modelos Animales de Enfermedad , Femenino , Eliminación de Gen , Granuloma/inmunología , Pulmón/microbiología , Pulmón/patología , Masculino , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Noqueados , Esfingosina/metabolismo
14.
Mediators Inflamm ; 2015: 640540, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26688618

RESUMEN

Fungal infections pose a significant risk for the increasing population of individuals who are immunocompromised. Phagocytes play an important role in immune defense against fungal pathogens, but the interactions between host and fungi are still not well understood. Sphingolipids have been shown to play an important role in many cell functions, including the function of phagocytes. In this review, we discuss major findings that relate to the importance of sphingolipids in macrophage and neutrophil function and the role of macrophages and neutrophils in the most common types of fungal infections, as well as studies that have linked these three concepts to show the importance of sphingolipid signaling in immune response to fungal infections.


Asunto(s)
Micosis/inmunología , Fagocitosis , Esfingolípidos/fisiología , Aspergilosis/inmunología , Candidiasis/inmunología , Criptococosis/inmunología , Humanos , Macrófagos/fisiología , Micosis/tratamiento farmacológico
15.
J Lipid Res ; 54(3): 794-805, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23160178

RESUMEN

Sphingomyelin synthase (SMS) produces sphingomyelin while consuming ceramide (a negative regulator of cell proliferation) and forming diacylglycerol (DAG) (a mitogenic factor). Therefore, enhanced SMS activity could favor cell proliferation. To examine if dysregulated SMS contributes to leukemogenesis, we measured SMS activity in several leukemic cell lines and found that it is highly elevated in K562 chronic myelogenous leukemia (CML) cells. The increased SMS in K562 cells was caused by the presence of Bcr-abl, a hallmark of CML; stable expression of Bcr-abl elevated SMS activity in HL-60 cells while inhibition of the tyrosine kinase activity of Bcr-abl with Imatinib mesylate decreased SMS activity in K562 cells. The increased SMS activity was the result of up-regulation of the Sms1 isoform. Inhibition of SMS activity with D609 (a pharmacological SMS inhibitor) or down-regulation of SMS1 expression by siRNA selectively inhibited the proliferation of Bcr-abl-positive cells. The inhibition was associated with an increased production of ceramide and a decreased production of DAG, conditions that antagonize cell proliferation. A similar change in lipid profile was also observed upon pharmacological inhibition of Bcr-abl (K526 cells) and siRNA-mediated down-regulation of BCR-ABL (HL-60/Bcr-abl cells). These findings indicate that Sms1 is a downstream target of Bcr-abl, involved in sustaining cell proliferation of Bcr-abl-positive cells.


Asunto(s)
Genes abl/fisiología , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo , Benzamidas , Hidrocarburos Aromáticos con Puentes/farmacología , Línea Celular , Ceramidas/metabolismo , Diglicéridos/metabolismo , Genes abl/genética , Células HL-60 , Humanos , Mesilato de Imatinib , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética , Norbornanos , Piperazinas , Pirimidinas , Tiocarbamatos , Tionas/farmacología , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética
16.
Cell Microbiol ; 14(4): 500-16, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22151739

RESUMEN

In previous studies we showed that the replication of Cryptococcus neoformans in the lung environment is controlled by the glucosylceramide (GlcCer) synthase gene (GCS1), which synthesizes the membrane sphingolipid GlcCer from the C9-methyl ceramide. Here, we studied the effect of the mutation of the sphingolipid C9 methyltransferase gene (SMT1), which adds a methyl group to position 9 of the sphingosine backbone of ceramide. The C. neoformans Δsmt1 mutant does not make C9-methyl ceramide and, thus, any methylated GlcCer. However, it accumulates demethylated ceramide and demethylated GlcCer. The Δsmt1 mutant loses more than 80% of its virulence compared with the wild type and the reconstituted strain. Interestingly, growth of C. neoformans Δsmt1 in the lung was decreased and C. neoformans cells were contained in lung granulomas, which significantly reduced the rate of their dissemination to the brain reducing the onset of meningoencephalitis. Thus, using fluorescent spectroscopy and atomic force microscopy we compared the wild type and Δsmt1 mutant and found that the altered membrane composition and GlcCer structure affects fungal membrane rigidity, suggesting that specific sphingolipid structures are required for proper fungal membrane organization and integrity. Therefore, we propose that the physical structure of the plasma membrane imparted by specific classes of sphingolipids represents a critical factor for the ability of the fungus to establish virulence.


Asunto(s)
Membrana Celular/metabolismo , Cryptococcus neoformans/patogenicidad , Glucosilceramidas/metabolismo , Lípidos de la Membrana/metabolismo , Metiltransferasas/metabolismo , Esfingolípidos/metabolismo , Animales , Encéfalo/microbiología , Encéfalo/patología , Membrana Celular/genética , Permeabilidad de la Membrana Celular , Infecciones del Sistema Nervioso Central/microbiología , Criptococosis/microbiología , Cryptococcus neoformans/genética , Cryptococcus neoformans/crecimiento & desarrollo , Cryptococcus neoformans/metabolismo , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Glucosilceramidas/genética , Granuloma/microbiología , Granuloma/patología , Interacciones Huésped-Patógeno , Concentración de Iones de Hidrógeno , Pulmón/microbiología , Pulmón/patología , Lípidos de la Membrana/genética , Meningoencefalitis/microbiología , Meningoencefalitis/patología , Metilación , Metiltransferasas/genética , Ratones , Ratones Endogámicos CBA , Microscopía de Fuerza Atómica , Mutación , Espectrometría de Fluorescencia , Esfingolípidos/genética , Esfingosina/genética , Esfingosina/metabolismo , Virulencia
17.
Nat Commun ; 14(1): 7262, 2023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37945603

RESUMEN

Transcriptional mechanisms controlling developmental processes establish and maintain proteomic networks, which can govern the levels of intracellular small molecules. Although dynamic changes in bioactive small molecules can link transcription factor and genome activity with cell state transitions, many mechanistic questions are unresolved. Using quantitative lipidomics and multiomics, we discover that the hematopoietic transcription factor GATA1 establishes ceramide homeostasis during erythroid differentiation by regulating genes encoding sphingolipid metabolic enzymes. Inhibiting a GATA1-induced sphingolipid biosynthetic enzyme, delta(4)-desaturase, or disrupting ceramide homeostasis with cell-permeable dihydroceramide or ceramide is detrimental to erythroid, but not myeloid, progenitor activity. Coupled with genetic editing-based rewiring of the regulatory circuitry, we demonstrate that ceramide homeostasis commissions vital stem cell factor and erythropoietin signaling by opposing an inhibitory protein phosphatase 2A-dependent, dual-component mechanism. Integrating bioactive lipids as essential components of GATA factor mechanisms to control cell state transitions has implications for diverse cell and tissue types.


Asunto(s)
Citocinas , Redes Reguladoras de Genes , Citocinas/genética , Proteómica , Factor de Transcripción GATA1/metabolismo , Diferenciación Celular/genética , Ceramidas , Homeostasis
18.
Cancers (Basel) ; 15(9)2023 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-37174024

RESUMEN

BACKGROUND: Colorectal cancer (CRC) is increasing in low- and middle-income countries, likely due to changing lifestyle habits, including diet. We aimed to investigate the relationship between dietary betaine, choline, and choline-containing compounds and CRC risk. METHODS: We analyzed data from a case-control study, including 865 CRC cases and 3206 controls from Iran. Detailed information was collected by trained interviewers using validated questionnaires. The intake of free choline, phosphocholine (Pcho), glycerophosphocholine (GPC), phosphatidylcholine (PtdCho), and sphingomyelin (SM), as well as of betaine was estimated from food frequency questionnaires and categorized into quartiles. The odds ratios (OR) and 95% confidence intervals (CI) of CRC for choline and betaine quartiles were calculated using multivariate logistic regression by adjusting for potential confounders. RESULTS: We observed excess risk of CRC in the highest versus lowest intake of total choline (OR = 1.23, 95% CI 1.13, 1.33), GPC (OR = 1.13, 95% CI 1.00, 1.27), and SM (OR = 1.14, 95% CI 1.01, 1.28). The intake of betaine exerted an inverse association with CRC risk (OR = 0.91, 95% CI 0.83, 0.99). There was no association between free choline, Pcho, PtdCho, and CRC. Analyses stratified by gender showed an elevated OR of CRC in men for SM intake OR = 1.20, 95% CI 1.03, 1.40) and a significantly decreased CRC risk in women for betaine intake (OR = 0.84, 95% CI 0.73, 0.97). CONCLUSION: Dietary modifications leading to an increase in betaine sources and managing the use of animal products as references for SM or other choline types might contribute to decreasing the risk of CRC.

19.
Eur J Clin Nutr ; 77(9): 905-910, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37479807

RESUMEN

INTRODUCTION: Phospholipids are possible favorable agents for colorectal cancer (CRC). Choline has been inversely related to CRC risk but findings are inconsistent. We assessed the effect of dietary sphingomyelin (SM) choline moiety and total choline intake on risk of CRC. METHOD: This analysis is based on a multicenter case-control study conducted between 1992 and 1996 in Italy. A total of 6107 subjects were enrolled, including 1225 colon cancer cases, 728 rectal cancer cases and 4154 hospital-based controls. We applied data on the composition of foods in terms of SM choline moiety and choline intake on dietary information collected through a validated food-frequency questionnaire. Odds ratio (OR) for energy-adjusted tertiles of SM choline moiety and choline were estimated through logistic regression models adjusted for sex, age, center, education, alcohol consumption, body mass index, family history of CRC, and physical activity. RESULTS: Choline was inversely related to CRC risk (OR for the highest versus the lowest tertile: 0.85; 95% confidence interval [CI]: 0.73-0.99), with a significant trend in risk. The OR for an increment of one standard deviation of energy-adjusted choline intake was 0.93 (95% CI: 0.88-0.98). The association was consistent in colon and rectal cancer and also across colon subsites. SM choline moiety was not associated with CRC risk (OR for the highest versus the lowest tertile: 0.96, 95% CI 0.84-1.11). CONCLUSION: This study shows an inverse association between choline intake and CRC but not with SM choline moiety.


Asunto(s)
Neoplasias del Colon , Neoplasias del Recto , Humanos , Estudios de Casos y Controles , Colina , Esfingomielinas , Modelos Logísticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA