Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Br J Cancer ; 122(10): 1467-1476, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32203215

RESUMEN

BACKGROUND: Unsupervised learning methods, such as Hierarchical Cluster Analysis, are commonly used for the analysis of genomic platform data. Unfortunately, such approaches ignore the well-documented heterogeneous composition of prostate cancer samples. Our aim is to use more sophisticated analytical approaches to deconvolute the structure of prostate cancer transcriptome data, providing novel clinically actionable information for this disease. METHODS: We apply an unsupervised model called Latent Process Decomposition (LPD), which can handle heterogeneity within individual cancer samples, to genome-wide expression data from eight prostate cancer clinical series, including 1,785 malignant samples with the clinical endpoints of PSA failure and metastasis. RESULTS: We show that PSA failure is correlated with the level of an expression signature called DESNT (HR = 1.52, 95% CI = [1.36, 1.7], P = 9.0 × 10-14, Cox model), and that patients with a majority DESNT signature have an increased metastatic risk (X2 test, P = 0.0017, and P = 0.0019). In addition, we develop a stratification framework that incorporates DESNT and identifies three novel molecular subtypes of prostate cancer. CONCLUSIONS: These results highlight the importance of using more complex approaches for the analysis of genomic data, may assist drug targeting, and have allowed the construction of a nomogram combining DESNT with other clinical factors for use in clinical management.


Asunto(s)
Biomarcadores de Tumor/sangre , Perfilación de la Expresión Génica/estadística & datos numéricos , Neoplasias de la Próstata/genética , Transcriptoma/genética , Regulación Neoplásica de la Expresión Génica/genética , Genómica/estadística & datos numéricos , Humanos , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Pronóstico , Supervivencia sin Progresión , Modelos de Riesgos Proporcionales , Antígeno Prostático Específico/sangre , Neoplasias de la Próstata/sangre , Neoplasias de la Próstata/patología , Medición de Riesgo , Factores de Riesgo
2.
Genes (Basel) ; 11(7)2020 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-32708551

RESUMEN

The highly heterogeneous clinical course of human prostate cancer has prompted the development of multiple RNA biomarkers and diagnostic tools to predict outcome for individual patients. Biomarker discovery is often unstable with, for example, small changes in discovery dataset configuration resulting in large alterations in biomarker composition. Our hypothesis, which forms the basis of this current study, is that highly significant overlaps occurring between gene signatures obtained using entirely different approaches indicate genes fundamental for controlling cancer progression. For prostate cancer, we found two sets of signatures that had significant overlaps suggesting important genes (p < 10-34 for paired overlaps, hypergeometrical test). These overlapping signatures defined a core set of genes linking hormone signalling (HES6-AR), cell cycle progression (Prolaris) and a molecular subgroup of patients (PCS1) derived by Non Negative Matrix Factorization (NNMF) of control pathways, together designated as SIG-HES6. The second set (designated SIG-DESNT) consisted of the DESNT diagnostic signature and a second NNMF signature PCS3. Stratifications using SIG-HES6 (HES6, PCS1, Prolaris) and SIG-DESNT (DESNT) classifiers frequently detected the same individual high-risk cancers, indicating that the underlying mechanisms associated with SIG-HES6 and SIG-DESNT may act together to promote aggressive cancer development. We show that the use of combinations of a SIG-HES6 signature together with DESNT substantially increases the ability to predict poor outcome, and we propose a model for prostate cancer development involving co-operation between the SIG-HES6 and SIG-DESNT pathways that has implication for therapeutic design.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias de la Próstata , Transcriptoma , Biomarcadores de Tumor/análisis , Estudios de Cohortes , Conjuntos de Datos como Asunto/estadística & datos numéricos , Progresión de la Enfermedad , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Análisis por Micromatrices , Invasividad Neoplásica , Pronóstico , Neoplasias de la Próstata/diagnóstico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología
3.
Eur Urol Focus ; 4(6): 842-850, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-28753852

RESUMEN

BACKGROUND: A critical problem in the clinical management of prostate cancer is that it is highly heterogeneous. Accurate prediction of individual cancer behaviour is therefore not achievable at the time of diagnosis leading to substantial overtreatment. It remains an enigma that, in contrast to breast cancer, unsupervised analyses of global expression profiles have not currently defined robust categories of prostate cancer with distinct clinical outcomes. OBJECTIVE: To devise a novel classification framework for human prostate cancer based on unsupervised mathematical approaches. DESIGN, SETTING, AND PARTICIPANTS: Our analyses are based on the hypothesis that previous attempts to classify prostate cancer have been unsuccessful because individual samples of prostate cancer frequently have heterogeneous compositions. To address this issue, we applied an unsupervised Bayesian procedure called Latent Process Decomposition to four independent prostate cancer transcriptome datasets obtained using samples from prostatectomy patients and containing between 78 and 182 participants. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Biochemical failure was assessed using log-rank analysis and Cox regression analysis. RESULTS AND LIMITATIONS: Application of Latent Process Decomposition identified a common process in all four independent datasets examined. Cancers assigned to this process (designated DESNT cancers) are characterized by low expression of a core set of 45 genes, many encoding proteins involved in the cytoskeleton machinery, ion transport, and cell adhesion. For the three datasets with linked prostate-specific antigen failure data following prostatectomy, patients with DESNT cancer exhibited poor outcome relative to other patients (p=2.65×10-5, p=4.28×10-5, and p=2.98×10-8). When these three datasets were combined the independent predictive value of DESNT membership was p=1.61×10-7 compared with p=1.00×10-5 for Gleason sum. A limitation of the study is that only prediction of prostate-specific antigen failure was examined. CONCLUSIONS: Our results demonstrate the existence of a novel poor prognosis category of human prostate cancer and will assist in the targeting of therapy, helping avoid treatment-associated morbidity in men with indolent disease. PATIENT SUMMARY: Prostate cancer, unlike breast cancer, does not have a robust classification framework. We propose that this failure has occurred because prostate cancer samples selected for analysis frequently have heterozygous compositions (individual samples are made up of many different parts that each have different characteristics). Applying a mathematical approach that can overcome this problem we identify a novel poor prognosis category of human prostate cancer called DESNT.


Asunto(s)
Recurrencia Local de Neoplasia/epidemiología , Neoplasias de la Próstata/genética , Teorema de Bayes , Adhesión Celular/genética , Citoesqueleto/genética , Perfilación de la Expresión Génica , Humanos , Transporte Iónico/genética , Calicreínas/sangre , Masculino , Recurrencia Local de Neoplasia/sangre , Pronóstico , Modelos de Riesgos Proporcionales , Antígeno Prostático Específico/sangre , Prostatectomía , Neoplasias de la Próstata/clasificación , Neoplasias de la Próstata/cirugía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA