Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
PLoS Genet ; 17(6): e1009534, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34086673

RESUMEN

Assumptions are made about the genetic model of single nucleotide polymorphisms (SNPs) when choosing a traditional genetic encoding: additive, dominant, and recessive. Furthermore, SNPs across the genome are unlikely to demonstrate identical genetic models. However, running SNP-SNP interaction analyses with every combination of encodings raises the multiple testing burden. Here, we present a novel and flexible encoding for genetic interactions, the elastic data-driven genetic encoding (EDGE), in which SNPs are assigned a heterozygous value based on the genetic model they demonstrate in a dataset prior to interaction testing. We assessed the power of EDGE to detect genetic interactions using 29 combinations of simulated genetic models and found it outperformed the traditional encoding methods across 10%, 30%, and 50% minor allele frequencies (MAFs). Further, EDGE maintained a low false-positive rate, while additive and dominant encodings demonstrated inflation. We evaluated EDGE and the traditional encodings with genetic data from the Electronic Medical Records and Genomics (eMERGE) Network for five phenotypes: age-related macular degeneration (AMD), age-related cataract, glaucoma, type 2 diabetes (T2D), and resistant hypertension. A multi-encoding genome-wide association study (GWAS) for each phenotype was performed using the traditional encodings, and the top results of the multi-encoding GWAS were considered for SNP-SNP interaction using the traditional encodings and EDGE. EDGE identified a novel SNP-SNP interaction for age-related cataract that no other method identified: rs7787286 (MAF: 0.041; intergenic region of chromosome 7)-rs4695885 (MAF: 0.34; intergenic region of chromosome 4) with a Bonferroni LRT p of 0.018. A SNP-SNP interaction was found in data from the UK Biobank within 25 kb of these SNPs using the recessive encoding: rs60374751 (MAF: 0.030) and rs6843594 (MAF: 0.34) (Bonferroni LRT p: 0.026). We recommend using EDGE to flexibly detect interactions between SNPs exhibiting diverse action.


Asunto(s)
Modelos Genéticos , Catarata/genética , Conjuntos de Datos como Asunto , Diabetes Mellitus Tipo 2/genética , Frecuencia de los Genes , Estudio de Asociación del Genoma Completo , Glaucoma/genética , Humanos , Hipertensión/genética , Degeneración Macular/genética , Fenotipo , Polimorfismo de Nucleótido Simple
2.
BMC Bioinformatics ; 19(1): 120, 2018 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-29618318

RESUMEN

BACKGROUND: Phenome-wide association studies (PheWAS) are a high-throughput approach to evaluate comprehensive associations between genetic variants and a wide range of phenotypic measures. PheWAS has varying sample sizes for quantitative traits, and variable numbers of cases and controls for binary traits across the many phenotypes of interest, which can affect the statistical power to detect associations. The motivation of this study is to investigate the various parameters which affect the estimation of statistical power in PheWAS, including sample size, case-control ratio, minor allele frequency, and disease penetrance. RESULTS: We performed a PheWAS simulation study, where we investigated variations in statistical power based on different parameters, such as overall sample size, number of cases, case-control ratio, minor allele frequency, and disease penetrance. The simulation was performed on both binary and quantitative phenotypic measures. Our simulation on binary traits suggests that the number of cases has more impact on statistical power than the case to control ratio; also, we found that a sample size of 200 cases or more maintains the statistical power to identify associations for common variants. For quantitative traits, a sample size of 1000 or more individuals performed best in the power calculations. We focused on common genetic variants (MAF > 0.01) in this study; however, in future studies, we will be extending this effort to perform similar simulations on rare variants. CONCLUSIONS: This study provides a series of PheWAS simulation analyses that can be used to estimate statistical power for some potential scenarios. These results can be used to provide guidelines for appropriate study design for future PheWAS analyses.


Asunto(s)
Simulación por Computador , Enfermedad/genética , Estudios de Asociación Genética , Estudio de Asociación del Genoma Completo , Fenotipo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Algoritmos , Humanos
3.
Cell Rep Med ; 3(12): 100855, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36513072

RESUMEN

Nonalcoholic fatty liver disease is common and highly heritable. Genetic studies of hepatic fat have not sufficiently addressed non-European and rare variants. In a medical biobank, we quantitate hepatic fat from clinical computed tomography (CT) scans via deep learning in 10,283 participants with whole-exome sequences available. We conduct exome-wide associations of single variants and rare predicted loss-of-function (pLOF) variants with CT-based hepatic fat and perform cross-modality replication in the UK Biobank (UKB) by linking whole-exome sequences to MRI-based hepatic fat. We confirm single variants previously associated with hepatic fat and identify several additional variants, including two (FGD5 H600Y and CITED2 S198_G199del) that replicated in UKB. A burden of rare pLOF variants in LMF2 is associated with increased hepatic fat and replicates in UKB. Quantitative phenotypes generated from clinical imaging studies and intersected with genomic data in medical biobanks have the potential to identify molecular pathways associated with human traits and disease.


Asunto(s)
Exoma , Enfermedad del Hígado Graso no Alcohólico , Humanos , Exoma/genética , Bancos de Muestras Biológicas , Fenotipo , Tomografía Computarizada por Rayos X , Enfermedad del Hígado Graso no Alcohólico/diagnóstico por imagen , Enfermedad del Hígado Graso no Alcohólico/genética , Proteínas Represoras/genética , Transactivadores/genética
4.
Curr Protoc ; 2(11): e603, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36441943

RESUMEN

Genome-wide association studies (GWAS) are being conducted at an unprecedented rate in population-based cohorts and have increased our understanding of the pathophysiology of many complex diseases. Regardless of the context, the practical utility of this information ultimately depends upon the quality of the data used for statistical analyses. Quality control (QC) procedures for GWAS are constantly evolving. Here, we enumerate some of the challenges in QC of genotyped GWAS data and describe the approaches involving genotype imputation of a sample dataset along with post-imputation quality assurance, thereby minimizing potential bias and error in GWAS results. We discuss common issues associated with QC of the GWAS data (genotyped and imputed), including data file formats, software packages for data manipulation and analysis, sex chromosome anomalies, sample identity, sample relatedness, population substructure, batch effects, and marker quality. We provide detailed guidelines along with a sample dataset to suggest current best practices and discuss areas of ongoing and future research. © 2022 Wiley Periodicals LLC.


Asunto(s)
Estudio de Asociación del Genoma Completo , Proyectos de Investigación , Humanos , Control de Calidad , Genotipo , Aberraciones Cromosómicas Sexuales
5.
Nat Commun ; 13(1): 3428, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35701404

RESUMEN

Clinical and epidemiological studies have shown that circulatory system diseases and nervous system disorders often co-occur in patients. However, genetic susceptibility factors shared between these disease categories remain largely unknown. Here, we characterized pleiotropy across 107 circulatory system and 40 nervous system traits using an ensemble of methods in the eMERGE Network and UK Biobank. Using a formal test of pleiotropy, five genomic loci demonstrated statistically significant evidence of pleiotropy. We observed region-specific patterns of direction of genetic effects for the two disease categories, suggesting potential antagonistic and synergistic pleiotropy. Our findings provide insights into the relationship between circulatory system diseases and nervous system disorders which can provide context for future prevention and treatment strategies.


Asunto(s)
Enfermedades Cardiovasculares , Enfermedades del Sistema Nervioso , Enfermedades Cardiovasculares/genética , Pleiotropía Genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Genómica , Humanos , Enfermedades del Sistema Nervioso/genética , Polimorfismo de Nucleótido Simple
6.
Nat Med ; 27(1): 66-72, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33432171

RESUMEN

The clinical impact of rare loss-of-function variants has yet to be determined for most genes. Integration of DNA sequencing data with electronic health records (EHRs) could enhance our understanding of the contribution of rare genetic variation to human disease1. By leveraging 10,900 whole-exome sequences linked to EHR data in the Penn Medicine Biobank, we addressed the association of the cumulative effects of rare predicted loss-of-function variants for each individual gene on human disease on an exome-wide scale, as assessed using a set of diverse EHR phenotypes. After discovering 97 genes with exome-by-phenome-wide significant phenotype associations (P < 10-6), we replicated 26 of these in the Penn Medicine Biobank, as well as in three other medical biobanks and the population-based UK Biobank. Of these 26 genes, five had associations that have been previously reported and represented positive controls, whereas 21 had phenotype associations not previously reported, among which were genes implicated in glaucoma, aortic ectasia, diabetes mellitus, muscular dystrophy and hearing loss. These findings show the value of aggregating rare predicted loss-of-function variants into 'gene burdens' for identifying new gene-disease associations using EHR phenotypes in a medical biobank. We suggest that application of this approach to even larger numbers of individuals will provide the statistical power required to uncover unexplored relationships between rare genetic variation and disease phenotypes.


Asunto(s)
Registros Electrónicos de Salud , Exoma , Genotipo , Fenotipo , Anciano , Biología Computacional , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Polimorfismo de Nucleótido Simple , Secuenciación del Exoma
7.
Pac Symp Biocomput ; 24: 296-307, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30864331

RESUMEN

Transcriptome-wide association studies (TWAS) have recently gained great attention due to their ability to prioritize complex trait-associated genes and promote potential therapeutics development for complex human diseases. TWAS integrates genotypic data with expression quantitative trait loci (eQTLs) to predict genetically regulated gene expression components and associates predictions with a trait of interest. As such, TWAS can prioritize genes whose differential expressions contribute to the trait of interest and provide mechanistic explanation of complex trait(s). Tissue-specific eQTL information grants TWAS the ability to perform association analysis on tissues whose gene expression profiles are otherwise hard to obtain, such as liver and heart. However, as eQTLs are tissue context-dependent, whether and how the tissue-specificity of eQTLs influences TWAS gene prioritization has not been fully investigated. In this study, we addressed this question by adopting two distinct TWAS methods, PrediXcan and UTMOST, which assume single tissue and integrative tissue effects of eQTLs, respectively. Thirty-eight baseline laboratory traits in 4,360 antiretroviral treatment-naïve individuals from the AIDS Clinical Trials Group (ACTG) studies comprised the input dataset for TWAS. We performed TWAS in a tissue-specific manner and obtained a total of 430 significant gene-trait associations (q-value < 0.05) across multiple tissues. Single tissue-based analysis by PrediXcan contributed 116 of the 430 associations including 64 unique gene-trait pairs in 28 tissues. Integrative tissue-based analysis by UTMOST found the other 314 significant associations that include 50 unique gene-trait pairs across all 44 tissues. Both analyses were able to replicate some associations identified in past variant-based genome-wide association studies (GWAS), such as high-density lipoprotein (HDL) and CETP (PrediXcan, q-value = 3.2e-16). Both analyses also identified novel associations. Moreover, single tissue-based and integrative tissuebased analysis shared 11 of 103 unique gene-trait pairs, for example, PSRC1-low-density lipoprotein (PrediXcan's lowest q-value = 8.5e-06; UTMOST's lowest q-value = 1.8e-05). This study suggests that single tissue-based analysis may have performed better at discovering gene-trait associations when combining results from all tissues. Integrative tissue-based analysis was better at prioritizing genes in multiple tissues and in trait-related tissue. Additional exploration is needed to confirm this conclusion. Finally, although single tissue-based and integrative tissue-based analysis shared significant novel discoveries, tissue context-dependency of eQTLs impacted TWAS gene prioritization. This study provides preliminary data to support continued work on tissue contextdependency of eQTL studies and TWAS.


Asunto(s)
Perfilación de la Expresión Génica/estadística & datos numéricos , Estudio de Asociación del Genoma Completo/estadística & datos numéricos , Especificidad de Órganos/genética , Sitios de Carácter Cuantitativo , Transcriptoma , Fármacos Anti-VIH/uso terapéutico , Biología Computacional , Perfilación de la Expresión Génica/métodos , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo/métodos , Genotipo , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/genética , Humanos , Variantes Farmacogenómicas , Polimorfismo de Nucleótido Simple
8.
Front Genet ; 10: 1240, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31921293

RESUMEN

While genome-wide association studies are an established method of identifying genetic variants associated with disease, environment-wide association studies (EWAS) highlight the contribution of nongenetic components to complex phenotypes. However, the lack of high-throughput quality control (QC) pipelines for EWAS data lends itself to analysis plans where the data are cleaned after a first-pass analysis, which can lead to bias, or are cleaned manually, which is arduous and susceptible to user error. We offer a novel software, CLeaning to Analysis: Reproducibility-based Interface for Traits and Exposures (CLARITE), as a tool to efficiently clean environmental data, perform regression analysis, and visualize results on a single platform through user-guided automation. It exists as both an R package and a Python package. Though CLARITE focuses on EWAS, it is intended to also improve the QC process for phenotypes and clinical lab measures for a variety of downstream analyses, including phenome-wide association studies and gene-environment interaction studies. With the goal of demonstrating the utility of CLARITE, we performed a novel EWAS in the National Health and Nutrition Examination Survey (NHANES) (N overall Discovery=9063, N overall Replication=9874) for body mass index (BMI) and over 300 environment variables post-QC, adjusting for sex, age, race, socioeconomic status, and survey year. The analysis used survey weights along with cluster and strata information in order to account for the complex survey design. Sixteen BMI results replicated at a Bonferroni corrected p < 0.05. The top replicating results were serum levels of g-tocopherol (vitamin E) (Discovery Bonferroni p: 8.67x10-12, Replication Bonferroni p: 2.70x10-9) and iron (Discovery Bonferroni p: 1.09x10-8, Replication Bonferroni p: 1.73x10-10). Results of this EWAS are important to consider for metabolic trait analysis, as BMI is tightly associated with these phenotypes. As such, exposures predictive of BMI may be useful for covariate and/or interaction assessment of metabolic-related traits. CLARITE allows improved data quality for EWAS, gene-environment interactions, and phenome-wide association studies by establishing a high-throughput quality control infrastructure. Thus, CLARITE is recommended for studying the environmental factors underlying complex disease.

9.
Pac Symp Biocomput ; 22: 533-544, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27897004

RESUMEN

A wide range of patient health data is recorded in Electronic Health Records (EHR). This data includes diagnosis, surgical procedures, clinical laboratory measurements, and medication information. Together this information reflects the patient's medical history. Many studies have efficiently used this data from the EHR to find associations that are clinically relevant, either by utilizing International Classification of Diseases, version 9 (ICD-9) codes or laboratory measurements, or by designing phenotype algorithms to extract case and control status with accuracy from the EHR. Here we developed a strategy to utilize longitudinal quantitative trait data from the EHR at Geisinger Health System focusing on outpatient metabolic and complete blood panel data as a starting point. Comprehensive Metabolic Panel (CMP) as well as Complete Blood Counts (CBC) are parts of routine care and provide a comprehensive picture from high level screening of patients' overall health and disease. We randomly split our data into two datasets to allow for discovery and replication. We first conducted a genome-wide association study (GWAS) with median values of 25 different clinical laboratory measurements to identify variants from Human Omni Express Exome beadchip data that are associated with these measurements. We identified 687 variants that associated and replicated with the tested clinical measurements at p<5×10-08. Since longitudinal data from the EHR provides a record of a patient's medical history, we utilized this information to further investigate the ICD-9 codes that might be associated with differences in variability of the measurements in the longitudinal dataset. We identified low and high variance patients by looking at changes within their individual longitudinal EHR laboratory results for each of the 25 clinical lab values (thus creating 50 groups - a high variance and a low variance for each lab variable). We then performed a PheWAS analysis with ICD-9 diagnosis codes, separately in the high variance group and the low variance group for each lab variable. We found 717 PheWAS associations that replicated at a p-value less than 0.001. Next, we evaluated the results of this study by comparing the association results between the high and low variance groups. For example, we found 39 SNPs (in multiple genes) associated with ICD-9 250.01 (Type-I diabetes) in patients with high variance of plasma glucose levels, but not in patients with low variance in plasma glucose levels. Another example is the association of 4 SNPs in UMOD with chronic kidney disease in patients with high variance for aspartate aminotransferase (discovery p-value: 8.71×10-09 and replication p-value: 2.03×10-06). In general, we see a pattern of many more statistically significant associations from patients with high variance in the quantitative lab variables, in comparison with the low variance group across all of the 25 laboratory measurements. This study is one of the first of its kind to utilize quantitative trait variance from longitudinal laboratory data to find associations among genetic variants and clinical phenotypes obtained from an EHR, integrating laboratory values and diagnosis codes to understand the genetic complexities of common diseases.


Asunto(s)
Estudio de Asociación del Genoma Completo/estadística & datos numéricos , Análisis de Varianza , Recuento de Células Sanguíneas/estadística & datos numéricos , Análisis Químico de la Sangre/estadística & datos numéricos , Biología Computacional , Registros Electrónicos de Salud/estadística & datos numéricos , Redes Reguladoras de Genes , Humanos , Clasificación Internacional de Enfermedades , Estudios Longitudinales , Polimorfismo de Nucleótido Simple , Carácter Cuantitativo Heredable
10.
Front Genet ; 5: 352, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25414722

RESUMEN

Combining samples across multiple cohorts in large-scale scientific research programs is often required to achieve the necessary power for genome-wide association studies. Controlling for genomic ancestry through principal component analysis (PCA) to address the effect of population stratification is a common practice. In addition to local genomic variation, such as copy number variation and inversions, other factors directly related to combining multiple studies, such as platform and site recruitment bias, can drive the correlation patterns in PCA. In this report, we describe the combination and analysis of multi-ethnic cohort with biobanks linked to electronic health records for large-scale genomic association discovery analyses. First, we outline the observed site and platform bias, in addition to ancestry differences. Second, we outline a general protocol for selecting variants for input into the subject variance-covariance matrix, the conventional PCA approach. Finally, we introduce an alternative approach to PCA by deriving components from subject loadings calculated from a reference sample. This alternative approach of generating principal components controlled for site and platform bias, in addition to ancestry differences, has the advantage of fewer covariates and degrees of freedom.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA