Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(42): e2307981120, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37812727

RESUMEN

Benzoxazinoids (BXDs) form a class of indole-derived specialized plant metabolites with broad antimicrobial and antifeedant properties. Unlike most specialized metabolites, which are typically lineage-specific, BXDs occur sporadically in a number of distantly related plant orders. This observation suggests that BXD biosynthesis arose independently numerous times in the plant kingdom. However, although decades of research in the grasses have led to the elucidation of the BXD pathway in the monocots, the biosynthesis of BXDs in eudicots is unknown. Here, we used a metabolomic and transcriptomic-guided approach, in combination with pathway reconstitution in Nicotiana benthamiana, to identify and characterize the BXD biosynthetic pathways from both Aphelandra squarrosa and Lamium galeobdolon, two phylogenetically distant eudicot species. We show that BXD biosynthesis in A. squarrosa and L. galeobdolon utilize a dual-function flavin-containing monooxygenase in place of two distinct cytochrome P450s, as is the case in the grasses. In addition, we identified evolutionarily unrelated cytochrome P450s, a 2-oxoglutarate-dependent dioxygenase, a UDP-glucosyltransferase, and a methyltransferase that were also recruited into these BXD biosynthetic pathways. Our findings constitute the discovery of BXD pathways in eudicots. Moreover, the biosynthetic enzymes of these pathways clearly demonstrate that BXDs independently arose in the plant kingdom at least three times. The heterogeneous pool of identified BXD enzymes represents a remarkable example of metabolic plasticity, in which BXDs are synthesized according to a similar chemical logic, but with an entirely different set of metabolic enzymes.


Asunto(s)
Magnoliopsida , Magnoliopsida/metabolismo , Benzoxazinas/metabolismo , Poaceae/metabolismo , Redes y Vías Metabólicas/genética , Plantas/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo
2.
Proc Natl Acad Sci U S A ; 119(42): e2211254119, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36227916

RESUMEN

Iridoid monoterpenes, widely distributed in plants and insects, have many ecological functions. While the biosynthesis of iridoids has been extensively studied in plants, little is known about how insects synthesize these natural products. Here, we elucidated the biosynthesis of the iridoids cis-trans-nepetalactol and cis-trans-nepetalactone in the pea aphid Acyrthosiphon pisum (Harris), where they act as sex pheromones. The exclusive production of iridoids in hind legs of sexual female aphids allowed us to identify iridoid genes by searching for genes specifically expressed in this tissue. Biochemical characterization of candidate enzymes revealed that the iridoid pathway in aphids proceeds through the same sequence of intermediates as described for plants. The six identified aphid enzymes are unrelated to their counterparts in plants, conclusively demonstrating an independent evolution of the entire iridoid pathway in plants and insects. In contrast to the plant pathway, at least three of the aphid iridoid enzymes are likely membrane bound. We demonstrated that a lipid environment facilitates the cyclization of a reactive enol intermediate to the iridoid cyclopentanoid-pyran scaffold in vitro, suggesting that membranes are an essential component of the aphid iridoid pathway. Altogether, our discovery of this complex insect metabolic pathway establishes the genetic and biochemical basis for the formation of iridoid sex pheromones in aphids, and this discovery also serves as a foundation for understanding the convergent evolution of complex metabolic pathways between kingdoms.


Asunto(s)
Áfidos , Productos Biológicos , Atractivos Sexuales , Animales , Áfidos/genética , Áfidos/metabolismo , Productos Biológicos/metabolismo , Iridoides/química , Iridoides/metabolismo , Lípidos , Monoterpenos/metabolismo , Feromonas/metabolismo , Plantas/metabolismo , Atractivos Sexuales/genética , Atractivos Sexuales/metabolismo
3.
Plant Physiol ; 194(1): 329-346, 2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-37584327

RESUMEN

Aldoximes are well-known metabolic precursors for plant defense compounds such as cyanogenic glycosides, glucosinolates, and volatile nitriles. They are also defenses themselves produced in response to herbivory; however, it is unclear whether aldoximes can be stored over a longer term as defense compounds and how plants protect themselves against the potential autotoxic effects of aldoximes. Here, we show that the Neotropical myrmecophyte tococa (Tococa quadrialata, recently renamed Miconia microphysca) accumulates phenylacetaldoxime glucoside (PAOx-Glc) in response to leaf herbivory. Sequence comparison, transcriptomic analysis, and heterologous expression revealed that 2 cytochrome P450 enzymes, CYP79A206 and CYP79A207, and the UDP-glucosyltransferase UGT85A123 are involved in the formation of PAOx-Glc in tococa. Another P450, CYP71E76, was shown to convert PAOx to the volatile defense compound benzyl cyanide. The formation of PAOx-Glc and PAOx in leaves is a very local response to herbivory but does not appear to be regulated by jasmonic acid signaling. In contrast to PAOx, which was only detectable during herbivory, PAOx-Glc levels remained high for at least 3 d after insect feeding. This, together with the fact that gut protein extracts of 3 insect herbivore species exhibited hydrolytic activity toward PAOx-Glc, suggests that the glucoside is a stable storage form of a defense compound that may provide rapid protection against future herbivory. Moreover, the finding that herbivory or pathogen elicitor treatment also led to the accumulation of PAOx-Glc in 3 other phylogenetically distant plant species suggests that the formation and storage of aldoxime glucosides may represent a widespread plant defense response.


Asunto(s)
Glucósidos , Herbivoria , Glucósidos/metabolismo , Nitrilos/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Oximas/metabolismo , Hojas de la Planta/metabolismo
4.
Plant Physiol ; 188(1): 167-190, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-34718797

RESUMEN

Fungal infection of grasses, including rice (Oryza sativa), sorghum (Sorghum bicolor), and barley (Hordeum vulgare), induces the formation and accumulation of flavonoid phytoalexins. In maize (Zea mays), however, investigators have emphasized benzoxazinoid and terpenoid phytoalexins, and comparatively little is known about flavonoid induction in response to pathogens. Here, we examined fungus-elicited flavonoid metabolism in maize and identified key biosynthetic enzymes involved in the formation of O-methylflavonoids. The predominant end products were identified as two tautomers of a 2-hydroxynaringenin-derived compound termed xilonenin, which significantly inhibited the growth of two maize pathogens, Fusarium graminearum and Fusarium verticillioides. Among the biosynthetic enzymes identified were two O-methyltransferases (OMTs), flavonoid OMT 2 (FOMT2), and FOMT4, which demonstrated distinct regiospecificity on a broad spectrum of flavonoid classes. In addition, a cytochrome P450 monooxygenase (CYP) in the CYP93G subfamily was found to serve as a flavanone 2-hydroxylase providing the substrate for FOMT2-catalyzed formation of xilonenin. In summary, maize produces a diverse blend of O-methylflavonoids with antifungal activity upon attack by a broad range of fungi.


Asunto(s)
Antifúngicos/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Resistencia a la Enfermedad/fisiología , Flavonoides/metabolismo , Fusarium/patogenicidad , Metiltransferasas/metabolismo , Zea mays/metabolismo , Variación Genética , Genotipo , Interacciones Huésped-Patógeno , Enfermedades de las Plantas/microbiología , Zea mays/microbiología
5.
Nat Chem Biol ; 16(12): 1420-1426, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32989301

RESUMEN

The metabolic adaptations by which phloem-feeding insects counteract plant defense compounds are poorly known. Two-component plant defenses, such as glucosinolates, consist of a glucosylated protoxin that is activated by a glycoside hydrolase upon plant damage. Phloem-feeding herbivores are not generally believed to be negatively impacted by two-component defenses due to their slender piercing-sucking mouthparts, which minimize plant damage. However, here we document that glucosinolates are indeed activated during feeding by the whitefly Bemisia tabaci. This phloem feeder was also found to detoxify the majority of the glucosinolates it ingests by the stereoselective addition of glucose moieties, which prevents hydrolytic activation of these defense compounds. Glucosylation of glucosinolates in B. tabaci was accomplished via a transglucosidation mechanism, and two glycoside hydrolase family 13 (GH13) enzymes were shown to catalyze these reactions. This detoxification reaction was also found in a range of other phloem-feeding herbivores.


Asunto(s)
Arabidopsis/parasitología , Glucosinolatos/química , Glicósido Hidrolasas/metabolismo , Hemípteros/enzimología , Proteínas de Insectos/metabolismo , Floema/parasitología , Animales , Arabidopsis/inmunología , Arabidopsis/metabolismo , Conducta Alimentaria/fisiología , Expresión Génica , Glucosinolatos/metabolismo , Glicósido Hidrolasas/clasificación , Glicósido Hidrolasas/genética , Glicosilación , Hemípteros/clasificación , Hemípteros/genética , Interacciones Huésped-Parásitos/inmunología , Proteínas de Insectos/clasificación , Proteínas de Insectos/genética , Floema/inmunología , Floema/metabolismo , Filogenia , Inmunidad de la Planta
6.
Proc Natl Acad Sci U S A ; 116(29): 14651-14660, 2019 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-31262827

RESUMEN

Plant volatile organic compounds (VOCs) mediate many interactions, and the function of common VOCs is especially likely to depend on ecological context. We used a genetic mapping population of wild tobacco, Nicotiana attenuata, originating from a cross of 2 natural accessions from Arizona and Utah, separated by the Grand Canyon, to dissect genetic variation controlling VOCs. Herbivory-induced leaf terpenoid emissions varied substantially, while green leaf volatile emissions were similar. In a field experiment, only emissions of linalool, a common VOC, correlated significantly with predation of the herbivore Manduca sexta by native predators. Using quantitative trait locus mapping and genome mining, we identified an (S)-(+)-linalool synthase (NaLIS). Genome resequencing, gene cloning, and activity assays revealed that the presence/absence of a 766-bp sequence in NaLIS underlies the variation of linalool emissions in 26 natural accessions. We manipulated linalool emissions and composition by ectopically expressing linalool synthases for both enantiomers, (S)-(+)- and (R)-(-)-linalool, reported to oppositely affect M. sexta oviposition, in the Arizona and Utah accessions. We used these lines to test ovipositing moths in increasingly complex environments. The enantiomers had opposite effects on oviposition preference, but the magnitude of the effect depended strongly both on plant genetic background, and complexity of the bioassay environment. Our study reveals that the emission of linalool, a common VOC, differs by orders-of-magnitude among geographically interspersed conspecific plants due to allelic variation in a linalool synthase, and that the response of a specialist herbivore to linalool depends on enantiomer, plant genotype, and environmental complexity.


Asunto(s)
Monoterpenos Acíclicos/toxicidad , Hidroliasas/genética , Manduca/efectos de los fármacos , Nicotiana/genética , Conducta Predatoria/efectos de los fármacos , Monoterpenos Acíclicos/metabolismo , Animales , Arizona , Femenino , Genotipo , Geografía , Interacciones Huésped-Parásitos/genética , Hidroliasas/metabolismo , Larva/efectos de los fármacos , Larva/crecimiento & desarrollo , Masculino , Manduca/fisiología , Oviposición/efectos de los fármacos , Hojas de la Planta/metabolismo , Hojas de la Planta/parasitología , Proteínas de Plantas , Sitios de Carácter Cuantitativo , Estereoisomerismo , Nicotiana/enzimología , Nicotiana/parasitología , Utah , Compuestos Orgánicos Volátiles
7.
BMC Plant Biol ; 21(1): 170, 2021 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-33836664

RESUMEN

BACKGROUND: Protease inhibitors are defense proteins widely distributed in the plant kingdom. By reducing the activity of digestive enzymes in insect guts, they reduce the availability of nutrients and thus impair the growth and development of the attacking herbivore. One well-characterized class of protease inhibitors are Kunitz-type trypsin inhibitors (KTIs), which have been described in various plant species, including Populus spp. Long-lived woody perennials like poplar trees encounter a huge diversity of herbivores, but the specificity of tree defenses towards different herbivore species is hardly studied. We therefore aimed to investigate the induction of KTIs in black poplar (P. nigra) leaves upon herbivory by three different chewing herbivores, Lymantria dispar and Amata mogadorensis caterpillars, and Phratora vulgatissima beetles. RESULTS: We identified and generated full-length cDNA sequences of 17 KTIs that are upregulated upon herbivory in black poplar leaves, and analyzed the expression patterns of the eight most up-regulated KTIs via qRT-PCR. We found that beetles elicited higher transcriptional induction of KTIs than caterpillars, and that both caterpillar species induced similar KTI expression levels. Furthermore, KTI expression strongly correlated with the trypsin-inhibiting activity in the herbivore-damaged leaves, but was not dependent on damage severity, i.e. leaf area loss, for most of the genes. CONCLUSIONS: We conclude that the induction of KTIs in black poplar is controlled at the transcriptional level in a threshold-based manner and is strongly influenced by the species identity of the herbivore. However, the underlying molecular mechanisms and ecological consequences of these patterns remain to be investigated.


Asunto(s)
Cadena Alimentaria , Expresión Génica , Herbivoria , Proteínas de Plantas/genética , Populus/genética , Inhibidores de Proteasas , Animales , Escarabajos/fisiología , Mariposas Nocturnas/fisiología , Filogenia , Proteínas de Plantas/metabolismo , Populus/metabolismo , Inhibidores de Proteasas/metabolismo , Análisis de Secuencia de ADN
8.
Plant Physiol ; 183(1): 137-151, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32098786

RESUMEN

Salicinoids form a specific class of phenolic glycosides characteristic of the Salicaceae. Although salicinoids accumulate in large amounts and have been shown to be involved in plant defense, their biosynthesis is unclear. We identified two sulfated salicinoids, salicin-7-sulfate and salirepin-7-sulfate, in black cottonwood (Populus trichocarpa). Both compounds accumulated in high amounts in above-ground tissues including leaves, petioles, and stems, but were also found at lower concentrations in roots. A survey of salicin-7-sulfate and salirepin-7-sulfate in a subset of poplar (Populus sp.) and willow (Salix sp.) species revealed a broader distribution within the Salicaceae. To elucidate the formation of these compounds, we studied the sulfotransferase (SOT) gene family in P trichocarpa (PtSOT). One of the identified genes, PtSOT1, was shown to encode an enzyme able to convert salicin and salirepin into salicin-7-sulfate and salirepin-7-sulfate, respectively. The expression of PtSOT1 in different organs of P trichocarpa matched the accumulation of sulfated salicinoids in planta. Moreover, RNA interference-mediated knockdown of SOT1 in gray poplar (Populus × canescens) resulted in decreased levels of sulfated salicinoids in comparison to wild-type plants, indicating that SOT1 is responsible for their formation in planta. The presence of a nonfunctional SOT1 allele in black poplar (Populus nigra) was shown to correlate with the absence of salicin-7-sulfate and salirepin-7-sulfate in this species. Food choice experiments with leaves from wild-type and SOT1 knockdown trees suggest that sulfated salicinoids do not affect the feeding preference of the generalist caterpillar Lymantria dispar A potential role of the sulfated salicinoids in sulfur storage and homeostasis is discussed.


Asunto(s)
Proteínas de Plantas/metabolismo , Populus/metabolismo , Sulfotransferasas/metabolismo , Alcoholes Bencílicos/metabolismo , Glucósidos/metabolismo , Hidroquinonas/metabolismo , Proteínas de Plantas/genética , Populus/genética , Interferencia de ARN , Sulfotransferasas/genética
9.
Proc Natl Acad Sci U S A ; 115(37): E8634-E8641, 2018 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-30139915

RESUMEN

Insects use a diverse array of specialized terpene metabolites as pheromones in intraspecific interactions. In contrast to plants and microbes, which employ enzymes called terpene synthases (TPSs) to synthesize terpene metabolites, limited information from few species is available about the enzymatic mechanisms underlying terpene pheromone biosynthesis in insects. Several stink bugs (Hemiptera: Pentatomidae), among them severe agricultural pests, release 15-carbon sesquiterpenes with a bisabolene skeleton as sex or aggregation pheromones. The harlequin bug, Murgantia histrionica, a specialist pest of crucifers, uses two stereoisomers of 10,11-epoxy-1-bisabolen-3-ol as a male-released aggregation pheromone called murgantiol. We show that MhTPS (MhIDS-1), an enzyme unrelated to plant and microbial TPSs but with similarity to trans-isoprenyl diphosphate synthases (IDS) of the core terpene biosynthetic pathway, catalyzes the formation of (1S,6S,7R)-1,10-bisaboladien-1-ol (sesquipiperitol) as a terpene intermediate in murgantiol biosynthesis. Sesquipiperitol, a so-far-unknown compound in animals, also occurs in plants, indicating convergent evolution in the biosynthesis of this sesquiterpene. RNAi-mediated knockdown of MhTPS mRNA confirmed the role of MhTPS in murgantiol biosynthesis. MhTPS expression is highly specific to tissues lining the cuticle of the abdominal sternites of mature males. Phylogenetic analysis suggests that MhTPS is derived from a trans-IDS progenitor and diverged from bona fide trans-IDS proteins including MhIDS-2, which functions as an (E,E)-farnesyl diphosphate (FPP) synthase. Structure-guided mutagenesis revealed several residues critical to MhTPS and MhFPPS activity. The emergence of an IDS-like protein with TPS activity in M. histrionica demonstrates that de novo terpene biosynthesis evolved in the Hemiptera in an adaptation for intraspecific communication.


Asunto(s)
Transferasas Alquil y Aril/metabolismo , Heterópteros/metabolismo , Proteínas de Insectos/metabolismo , Feromonas/metabolismo , Sesquiterpenos/metabolismo , Transferasas Alquil y Aril/clasificación , Transferasas Alquil y Aril/genética , Animales , Vías Biosintéticas/genética , Heterópteros/enzimología , Heterópteros/genética , Proteínas de Insectos/química , Proteínas de Insectos/genética , Masculino , Modelos Moleculares , Estructura Molecular , Feromonas/química , Filogenia , Fosfatos de Poliisoprenilo/metabolismo , Dominios Proteicos , Sesquiterpenos/química , Estereoisomerismo
10.
Beilstein J Org Chem ; 17: 1698-1711, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34367348

RESUMEN

Plant volatiles play a major role in plant-insect interactions as defense compounds or attractants for insect herbivores. Recent studies have shown that endophytic fungi are also able to produce volatiles and this raises the question of whether these fungal volatiles influence plant-insect interactions. Here, we qualitatively investigated the volatiles released from 13 endophytic fungal species isolated from leaves of mature black poplar (Populus nigra) trees. The volatile blends of these endophytes grown on agar medium consist of typical fungal compounds, including aliphatic alcohols, ketones and esters, the aromatic alcohol 2-phenylethanol and various sesquiterpenes. Some of the compounds were previously reported as constituents of the poplar volatile blend. For one endophyte, a species of Cladosporium, we isolated and characterized two sesquiterpene synthases that can produce a number of mono- and sesquiterpenes like (E)-ß-ocimene and (E)-ß-caryophyllene, compounds that are dominant components of the herbivore-induced volatile bouquet of black poplar trees. As several of the fungus-derived volatiles like 2-phenylethanol, 3-methyl-1-butanol and the sesquiterpene (E)-ß-caryophyllene, are known to play a role in direct and indirect plant defense, the emission of volatiles from endophytic microbial species should be considered in future studies investigating tree-insect interactions.

11.
Plant Mol Biol ; 104(1-2): 203-215, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32683610

RESUMEN

KEY MESSAGE: Distinct catalytic features of the Poaceae TPS-a subfamily arose early in grass evolution and the reactions catalyzed have become more complex with time. The structural diversity of terpenes found in nature is mainly determined by terpene synthases (TPS). TPS enzymes accept ubiquitous prenyl diphosphates as substrates and convert them into the various terpene skeletons by catalyzing a carbocation-driven reaction. Based on their sequence similarity, terpene synthases from land plants can be divided into different subfamilies, TPS-a to TPS-h. In this study, we aimed to understand the evolution and functional diversification of the TPS-a subfamily in the Poaceae (the grass family), a plant family that contains important crops such as maize, wheat, rice, and sorghum. Sequence comparisons showed that aside from one clade shared with other monocot plants, the Poaceae TPS-a subfamily consists of five well-defined clades I-V, the common ancestor of which probably originated very early in the evolution of the grasses. A survey of the TPS literature and the characterization of representative TPS enzymes from clades I-III revealed clade-specific substrate and product specificities. The enzymes in both clade I and II function as sesquiterpene synthases with clade I enzymes catalyzing initial C10-C1 or C11-C1 ring closures and clade II enzymes catalyzing C6-C1 closures. The enzymes of clade III mainly act as monoterpene synthases, forming cyclic and acyclic monoterpenes. The reconstruction and characterization of clade ancestors demonstrated that the differences among clades I-III were already present in their ancestors. However, the ancestors generally catalyzed simpler reactions with less double-bond isomerization and fewer cyclization steps. Overall, our data indicate an early origin of key enzymatic features of TPS-a enzymes in the Poaceae, and the development of more complex reactions over the course of evolution.


Asunto(s)
Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo , Poaceae/enzimología , Poaceae/genética , Transferasas Alquil y Aril/clasificación , Clonación Molecular , Escherichia coli/genética , Evolución Molecular , Genes de Plantas/genética , Liasas Intramoleculares/metabolismo , Proteínas de Plantas/genética , Análisis de Secuencia , Terpenos/metabolismo
12.
J Chem Ecol ; 45(2): 187-197, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30267360

RESUMEN

Insects use a wide range of structurally diverse pheromones for intra-specific communication. Compounds in the class of terpenes are emitted as sex, aggregation, alarm, or trail pheromones. Despite the common occurrence of terpene pheromones in different insect lineages, their origin from dietary host plant precursors or de novo biosynthetic pathways often remains unknown. Several stink bugs (Hemiptera: Pentatomidae) release bisabolene-type sesquiterpenes for aggregation and mating. Here we provide evidence for de novo biosynthesis of the sex pheromone trans-/cis-(Z)-α-bisabolene epoxide of the Southern green stink bug, Nezara viridula. We show that an enzyme (NvTPS) related to isoprenyl diphosphate synthases (IDSs) of the core terpene metabolic pathway functions as a terpene synthase (TPS), which converts the general intermediate (E,E)-farnesyl diphosphate (FPP) to the putative pheromone precursor (+)-(S,Z)-α-bisabolene in vitro and in protein lysates. A second identified IDS-type protein (NvFPPS) makes the TPS substrate (E,E)-FPP and functions as a bona fide FPP synthase. NvTPS is highly expressed in male epidermal tissue associated with the cuticle of ventral sternites, which is in agreement with the male specific release of the pheromone from glandular cells in this tissue. Our study supports findings of the function of similar TPS enzymes in the biosynthesis of aggregation pheromones from the pine engraver beetle Ips pini, the striped flea beetle Phyllotreta striolata, and the harlequin bug Murgantia histrionica, and hence provides growing evidence for the evolution of terpene de novo biosynthesis by IDS-type TPS families in insects.


Asunto(s)
Transferasas Alquil y Aril/metabolismo , Heterópteros/enzimología , Proteínas de Insectos/metabolismo , Atractivos Sexuales/metabolismo , Transferasas Alquil y Aril/genética , Animales , Femenino , Cromatografía de Gases y Espectrometría de Masas , Proteínas de Insectos/genética , Masculino , ARN/aislamiento & purificación , ARN/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Atractivos Sexuales/química , Estereoisomerismo
13.
J Chem Ecol ; 45(2): 198, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30710237

RESUMEN

The original version of this article unfortunately contained a mistake. Under the heading "Insects" in "Methods and Materials" the sentence "A colony of N. viridula originated with field collections near Tifton, Georgia, USA" is incorrect.

14.
Proc Natl Acad Sci U S A ; 113(11): 2922-7, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26936952

RESUMEN

Sesquiterpenes play important roles in insect communication, for example as pheromones. However, no sesquiterpene synthases, the enzymes involved in construction of the basic carbon skeleton, have been identified in insects to date. We investigated the biosynthesis of the sesquiterpene (6R,7S)-himachala-9,11-diene in the crucifer flea beetle Phyllotreta striolata, a compound previously identified as a male-produced aggregation pheromone in several Phyllotreta species. A (6R,7S)-himachala-9,11-diene-producing sesquiterpene synthase activity was detected in crude beetle protein extracts, but only when (Z,E)-farnesyl diphosphate [(Z,E)-FPP] was offered as a substrate. No sequences resembling sesquiterpene synthases from plants, fungi, or bacteria were found in the P. striolata transcriptome, but we identified nine divergent putative trans-isoprenyl diphosphate synthase (trans-IDS) transcripts. Four of these putative trans-IDSs exhibited terpene synthase (TPS) activity when heterologously expressed. Recombinant PsTPS1 converted (Z,E)-FPP to (6R,7S)-himachala-9,11-diene and other sesquiterpenes observed in beetle extracts. RNAi-mediated knockdown of PsTPS1 mRNA in P. striolata males led to reduced emission of aggregation pheromone, confirming a significant role of PsTPS1 in pheromone biosynthesis. Two expressed enzymes showed genuine IDS activity, with PsIDS1 synthesizing (E,E)-FPP, whereas PsIDS3 produced neryl diphosphate, (Z,Z)-FPP, and (Z,E)-FPP. In a phylogenetic analysis, the PsTPS enzymes and PsIDS3 were clearly separated from a clade of known coleopteran trans-IDS enzymes including PsIDS1 and PsIDS2. However, the exon-intron structures of IDS and TPS genes in P. striolata are conserved, suggesting that this TPS gene family evolved from trans-IDS ancestors.


Asunto(s)
Transferasas Alquil y Aril/clasificación , Escarabajos/enzimología , Genes de Insecto , Proteínas de Insectos/clasificación , Familia de Multigenes , Feromonas/biosíntesis , Sesquiterpenos/metabolismo , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/aislamiento & purificación , Secuencia de Aminoácidos , Animales , Clonación Molecular , Escarabajos/clasificación , Escarabajos/genética , Evolución Molecular , Femenino , Componentes del Gen , Especiación Genética , Proteínas de Insectos/genética , Proteínas de Insectos/aislamiento & purificación , Masculino , Datos de Secuencia Molecular , Sistemas de Lectura Abierta/genética , Filogenia , Proteínas Recombinantes de Fusión/metabolismo , Homología de Secuencia de Aminoácido , Transcriptoma
15.
Plant Mol Biol ; 95(6): 647, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29086190

RESUMEN

Due to an unfortunate turn of events, the funding note for Open Access publication was not properly provided in the original publication. Hence, the original article has been corrected. The opening line of the Acknowledgement section should read.

16.
Plant Mol Biol ; 95(1-2): 169-180, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28795267

RESUMEN

KEY MESSAGE: Conifers contain P450 enzymes from the CYP79 family that are involved in cyanogenic glycoside biosynthesis. Cyanogenic glycosides are secondary plant compounds that are widespread in the plant kingdom. Their biosynthesis starts with the conversion of aromatic or aliphatic amino acids into their respective aldoximes, catalysed by N-hydroxylating cytochrome P450 monooxygenases (CYP) of the CYP79 family. While CYP79s are well known in angiosperms, their occurrence in gymnosperms and other plant divisions containing cyanogenic glycoside-producing plants has not been reported so far. We screened the transcriptomes of 72 conifer species to identify putative CYP79 genes in this plant division. From the seven resulting full-length genes, CYP79A118 from European yew (Taxus baccata) was chosen for further characterization. Recombinant CYP79A118 produced in yeast was able to convert L-tyrosine, L-tryptophan, and L-phenylalanine into p-hydroxyphenylacetaldoxime, indole-3-acetaldoxime, and phenylacetaldoxime, respectively. However, the kinetic parameters of the enzyme and transient expression of CYP79A118 in Nicotiana benthamiana indicate that L-tyrosine is the preferred substrate in vivo. Consistent with these findings, taxiphyllin, which is derived from L-tyrosine, was the only cyanogenic glycoside found in the different organs of T. baccata. Taxiphyllin showed highest accumulation in leaves and twigs, moderate accumulation in roots, and only trace accumulation in seeds and the aril. Quantitative real-time PCR revealed that CYP79A118 was expressed in plant organs rich in taxiphyllin. Our data show that CYP79s represent an ancient family of plant P450s that evolved prior to the separation of gymnosperms and angiosperms. CYP79A118 from T. baccata has typical CYP79 properties and its substrate specificity and spatial gene expression pattern suggest that the enzyme contributes to the formation of taxiphyllin in this plant species.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Nitrilos/metabolismo , Taxus/enzimología , Secuencia de Aminoácidos , Sistema Enzimático del Citocromo P-450/química , Sistema Enzimático del Citocromo P-450/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Nitrilos/química , Especificidad de Órganos/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Alineación de Secuencia , Taxus/genética , Transcriptoma/genética
17.
BMC Plant Biol ; 16(1): 215, 2016 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-27716065

RESUMEN

BACKGROUND: Amino acid-derived aldoximes and nitriles play important roles in plant defence. They are well-known as precursors for constitutive defence compounds such as cyanogenic glucosides and glucosinolates, but are also released as volatiles after insect feeding. Cytochrome P450 monooxygenases (CYP) of the CYP79 family catalyze the formation of aldoximes from the corresponding amino acids. However, the majority of CYP79s characterized so far are involved in cyanogenic glucoside or glucosinolate biosynthesis and only a few have been reported to be responsible for nitrogenous volatile production. RESULTS: In this study we analysed and compared the jasmonic acid-induced volatile blends of two Erythroxylum species, the cultivated South American crop species E. coca and the African wild species E. fischeri. Both species produced different nitrogenous compounds including aliphatic aldoximes and an aromatic nitrile. Four isolated CYP79 genes (two from each species) were heterologously expressed in yeast and biochemically characterized. CYP79D62 from E. coca and CYP79D61 and CYP79D60 from E. fischeri showed broad substrate specificity in vitro and converted L-phenylalanine, L-isoleucine, L-leucine, L-tryptophan, and L-tyrosine into the respective aldoximes. In contrast, recombinant CYP79D63 from E. coca exclusively accepted L-tryptophan as substrate. Quantitative real-time PCR revealed that CYP79D60, CYP79D61, and CYP79D62 were significantly upregulated in jasmonic acid-treated Erythroxylum leaves. CONCLUSIONS: The kinetic parameters of the enzymes expressed in vitro coupled with the expression patterns of the corresponding genes and the accumulation and emission of (E/Z)-phenylacetaldoxime, (E/Z)-indole-3-acetaldoxime, (E/Z)-3-methylbutyraldoxime, and (E/Z)-2-methylbutyraldoxime in jasmonic acid-treated leaves suggest that CYP79D60, CYP79D61, and CYP79D62 accept L-phenylalanine, L-leucine, L-isoleucine, and L-tryptophan as substrates in vivo and contribute to the production of volatile and semi-volatile nitrogenous defence compounds in E. coca and E. fischeri.


Asunto(s)
Coca/enzimología , Coca/genética , Ciclopentanos/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Compuestos de Nitrógeno/metabolismo , Oximas/metabolismo , Oxilipinas/metabolismo , Proteínas de Plantas/genética , Secuencia de Aminoácidos , Coca/metabolismo , Sistema Enzimático del Citocromo P-450/química , Sistema Enzimático del Citocromo P-450/metabolismo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Alineación de Secuencia , Especificidad de la Especie , Compuestos Orgánicos Volátiles/metabolismo
18.
Plant Physiol ; 167(1): 89-101, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25406120

RESUMEN

The esterification of methylecgonine (2-carbomethoxy-3ß-tropine) with benzoic acid is the final step in the biosynthetic pathway leading to the production of cocaine in Erythoxylum coca. Here we report the identification of a member of the BAHD family of plant acyltransferases as cocaine synthase. The enzyme is capable of producing both cocaine and cinnamoylcocaine via the activated benzoyl- or cinnamoyl-Coenzyme A thioesters, respectively. Cocaine synthase activity is highest in young developing leaves, especially in the palisade parenchyma and spongy mesophyll. These data correlate well with the tissue distribution pattern of cocaine as visualized with antibodies. Matrix-assisted laser-desorption ionization mass spectral imaging revealed that cocaine and cinnamoylcocaine are differently distributed on the upper versus lower leaf surfaces. Our findings provide further evidence that tropane alkaloid biosynthesis in the Erythroxylaceae occurs in the above-ground portions of the plant in contrast with the Solanaceae, in which tropane alkaloid biosynthesis occurs in the roots.


Asunto(s)
Aciltransferasas/metabolismo , Cocaína/biosíntesis , Proteínas de Plantas/metabolismo , Catálisis , Cocaína/análogos & derivados , Cocaína/análisis , Erythroxylaceae/enzimología , Erythroxylaceae/metabolismo , Células del Mesófilo/enzimología , Células del Mesófilo/metabolismo , Hojas de la Planta/enzimología , Hojas de la Planta/metabolismo , Proteínas de Plantas/química
19.
Org Lett ; 26(26): 5522-5527, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38900928

RESUMEN

Here, we use transcriptomic data from seeds of Musella lasiocarpa to identify five enzymes involved in the formation of dihydrocurcuminoids. Characterization of the substrate specificities of the enzymes reveals two distinct dihydrocurcuminoid pathways leading to phenylphenalenones and linear diarylheptanoid derivatives, the major seed metabolites. Furthermore, we demonstrate the stepwise conversion of dihydrobisdemethoxycurcumin to the phenylphenalenone 4'-hydroxylachnanthocarpone by feeding intermediates to M. lasiocarpa root protein extract.


Asunto(s)
Diarilheptanoides , Fenalenos , Diarilheptanoides/química , Fenalenos/química , Estructura Molecular , Semillas/química , Musa/química , Especificidad por Sustrato , Pueblos del Este de Asia
20.
ISME J ; 17(10): 1693-1704, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37479887

RESUMEN

Beauveria bassiana is a soil fungus that parasitizes a large number of arthropod species, including numerous crop pests, causing white muscardine disease and is therefore used as a biological insecticide. However, some insects, such as the cabbage aphid (Brevicoryne brassicae), defend themselves chemically by sequestering dietary pro-toxins (glucosinolates) from their Brassicales host plants. Glucosinolates are accumulated by cabbage aphids and activated to form toxic isothiocyanates when under attack. While isothiocyanate formation protects aphids against most attackers, B. bassiana is still able to infect the cabbage aphid under natural conditions. We therefore investigated how this fungus is able to circumvent the chemical defense system of the cabbage aphid. Here, we describe how B. bassiana infection activates the cabbage aphid defense system, but the resulting toxins are metabolized by B. bassiana via the mercapturic acid pathway, of which the first step is catalyzed by glutathione-S-transferases of low substrate specificity. This detoxification pathway enhances B. bassiana growth when isothiocyanates are present in natural concentrations, and so appears to be an important factor in fungal parasitization of these chemically defended aphids.


Asunto(s)
Áfidos , Beauveria , Insecticidas , Animales , Glucosinolatos , Insectos , Isotiocianatos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA